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Chapter 7

Discrete Complex Analysis.
Linear Theory

7.1. Basic notions of discrete linear complex analysis

Many constructions in discrete complex analysis are parallel to discrete dif-

ferential geometry in the space of real dimension 2.

Recall that a harmonic function u : R2 � C → R is characterized by the

relation

∆u =
∂2u

∂x2
+

∂2u

∂y2
= 0.

A conjugate harmonic function v : R2 � C → R is defined by the Cauchy-

Riemann equations

∂v

∂y
=

∂u

∂x
,

∂v

∂x
= −∂u

∂y
.

Equivalently, f = u + iv : R2 � C → C is holomorphic, i.e., satisfies the

Cauchy-Riemann equation

∂f

∂y
= i

∂f

∂x
.

The real and the imaginary parts of a holomorphic function are harmonic,

and any real-valued harmonic function can be considered as a real part of a

holomorphic function.

A standard classical way to discretize these notions is the following. A

function u : Z2 → R is called discrete harmonic if it satisfies the discrete
Laplace equation

(∆u)m,n = um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n = 0.

291



292 7. Discrete Linear Complex Analysis

A natural domain of a conjugate discrete harmonic function v : (Z2)∗ → R

is the dual lattice; see Figure 7.1. The defining discrete Cauchy-Riemann

u

v

Figure 7.1. Regular square lattice and its dual.

equations read:

vm+1/2,n+1/2 − vm+1/2,n−1/2 = um+1,n − um,n,

vm+1/2,n+1/2 − vm−1/2,n−1/2 = −(um,n+1 − um,n),

with the natural indexing of the dual lattice; cf. Figure 7.2. The corre-

u0 u1

v0

v1

v1 − v0 = u1 − u0

u0

u1

v0 v1

v1 − v0 = −(u1 − u0)

Figure 7.2. Discrete Cauchy-Riemann equations in terms of u, v.

sponding discrete holomorphic function f : Z2∪ (Z2)∗ → C is defined on the

superposition of the original square lattice Z2 and the dual (Z2)∗, by the

formula

f =

{
u, • ,
iv, ◦ ,

which comes to replace the smooth version f = u+ iv. Remarkably, the dis-

crete Cauchy-Riemann equation for f is one and the same for both pictures:

fm,n+1/2 − fm,n−1/2 = i(fm+1/2,n − fm−1/2,n);

see Figure 7.3.
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f1 f3

f2

f4

f2

f4

f1 f3

f4 − f2 = i(f3 − f1)

Figure 7.3. Discrete Cauchy-Riemann equations in terms of f .

This discretization of the Laplace and the Cauchy-Riemann equations

apparently preserves the majority of important structural features. Its gen-

eralization for arbitrary graphs goes as follows.

Discrete harmonic functions can be defined for an arbitrary graph G with

the set of vertices V (G) and the set of edges E(G).

Definition 7.1. (Discrete Laplacian and discrete harmonic func-
tions) For a given weight function ν : E(G) → R+ on edges of G, the
discrete Laplacian is the operator acting on functions f : V (G) → C by

(7.1) (∆f)(x0) =
∑
x∼x0

ν(x0, x)(f(x)− f(x0)),

where the summation is extended over the set of vertices x connected to x0

by an edge. A function f : V (G) → C is called discrete harmonic (with
respect to the weights ν) if ∆f = 0.

The positivity of weights ν in this definition is important from the ana-

lytic point of view, since it guarantees, e.g., the maximum principle for the

discrete Laplacian under suitable boundary conditions (so that discrete har-

monic functions come as minimizers of a convex functional). However, from

the pure algebraic point of view, one might consider at times also arbitrary

real (or even complex) weights.

If G comes from a cellular decomposition of an oriented surface, let G∗

be its dual graph, and let the quad-graph D be its double; see Section 6.4.

Extend the weight function to the edges of G∗ according to the rule

(7.2) ν(e∗) = 1/ν(e).
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Definition 7.2. (Discrete Cauchy-Riemann equations and discrete
holomorphic functions) A function f : V (D) → C is called discrete holo-
morphic (with respect to the weights ν) if for any positively oriented quadri-
lateral (x0, y0, x1, y1) ∈ F (D) (see Figure 7.4),

(7.3)
f(y1)− f(y0)

f(x1)− f(x0)
= iν(x0, x1) = − 1

iν(y0, y1)
.

These equations are called the discrete Cauchy-Riemann equations.

�

�



�x0 x1

y0

y1

−θ1

θ1

−θ0

θ0

Figure 7.4. Positively oriented quadrilateral, with a labelling of di-
rected edges.

The relation between discrete harmonic and discrete holomorphic func-

tions is the same as in the smooth case. It is given by the following statement,

which is a special case of Theorem 6.31.

Theorem 7.3. (Relation between discrete harmonic and discrete
holomorphic functions)

a) If a function f : V (D) → C is discrete holomorphic, then its restric-
tions to V (G) and to V (G∗) are discrete harmonic.

b) Conversely, any discrete harmonic function f : V (G) → C admits a
family of discrete holomorphic extensions to V (D), differing by an additive
constant on V (G∗). Such an extension is uniquely determined by a value at
one arbitrary vertex y ∈ V (G∗).

7.2. Moutard transformation for discrete Cauchy-Riemann
equations

Observe that discrete Cauchy-Riemann equations (7.3) formally are not dif-

ferent from the Moutard equations (2.51) for T-nets. One only has to fix

an orientation of all quadrilateral faces (x0, y0, x1, y1) ∈ F (D). We assume

that it is inherited from the orientation of the underlying surface.

One can now apply the Moutard transformation of Section 2.3.9 to dis-

crete holomorphic functions. To this aim, one has to choose an orientation of

all elementary quadrilaterals in Figure 7.5. This can be done, for example,
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as follows: for the quadrilaterals (x+
0 , y+

0 , x+
1 , y+

1 ) ∈ F (D+), choose an orien-

tation to coincide with that of the corresponding (x0, y0, x1, y1) ∈ F (D). For

a “vertical” quadrilateral over an edge (x, y) ∈ E(D), assume that x ∈ V (G),

y ∈ V (G∗), and choose the positive orientation corresponding to the cyclic

order (x, y, y+, x+) of its vertices. Observe that under this convention, two

opposite “vertical” quadrilaterals are always oriented differently.

x0

x+
0

y0

y+
0

x1

x+
1

y1

y+
1

Figure 7.5. Elementary cube of D.

In the case of arbitrary quad-graphs, one has to generalize one more

ingredient of the Moutard transformation, namely the data (MT∆
2 ).

Theorem 7.4. (Moutard transformation for discrete holomorphic
functions) On an arbitrary bipartite quad-graph D, valid initial conditions
for a Moutard transformation of the discrete Cauchy-Riemann equations
consist of

(MCR∆
1 ) the value of f+ at one point x(0) ∈ V (D);

(MCR∆
2 ) the values of weights on “vertical” quadrilaterals (x, y, y+, x+)

assigned to all edges (x, y) of a Cauchy path in D.

See Theorem 6.6 for necessary and sufficient conditions for a path to be a

Cauchy path, i.e., to support initial data for a well-posed Cauchy problem.

It is natural to assign the weights on the “vertical” quadrilaterals to the

underlying edges of D.

Weights ν on the faces of D together with the data (MCR∆
2 ) yield the

transformed weights ν+ on the faces of D+, as well as the weights over all

edges of E(D). This can be considered as a Moutard transformation for the

Cauchy-Riemann equations on D. Finding a solution f : V (D+) → C of the

transformed equations requires additionally the datum (MCR∆
1 ).

Note that the system of weights ν is highly redundant, due to (7.2). To

fix the ideas in writing the equations, we stick to the weights assigned to
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the “black” diagonals of the quadrilateral faces of the complex D. On the

ground floor, these are the edges of the “black” graph G; on the first floor,

these are the edges of the “black” graph which is a copy of G∗; and for the

“vertical” faces, these are the edges (x, y+), with x ∈ V (G) and y ∈ V (G∗).
Needless to say that the latter weights can be assigned to the quad-graph

edges (x, y) ∈ E(D). So, we write the discrete Cauchy-Riemann equations

as follows:

f(y1)− f(y0) = iν(x0, x1)
(
f(x1)− f(x0)

)
,(7.4)

f(x+
0 )− f(x+

1 ) = iν(y+
0 , y+

1 )
(
f(y+

1 )− f(y+
0 )
)
,(7.5)

f(x+)− f(y) = iν(x, y+)
(
f(y+)− f(x)

)
.(7.6)

Denote, for the sake of brevity,

ν = ν(x0, x1), ν+ = ν(y+
0 , y+

1 ), µjk = ν(xj, y
+
k ).

Regarding the weights ν, µ00, and µ01 as the input of the Moutard transfor-

mation on an elementary hexahedron of D, its output consists of the weights

ν+, µ10, and µ11, given by (cf. (2.59))

(7.7) ν+ν = −µ11µ00 = −µ10µ01 =
νµ00µ01

µ00 − µ01 − ν
.

This transformation is well defined for real weights ν, µjk, but it does not
preserve, in general, positivity of the weights ν.

To give a different form of this transformation, observe that the relation

µ11µ00 = µ10µ01 for each elementary quadrilateral (x0, y0, x1, y1) of D yields

the existence of the function θ : V (D) → C, defined up to a constant factor,

such that iµjk = θ(yk)/θ(xj) (see Exercise 7.1). Moreover, choosing θ(x0)

real at some point x0 ∈ V (G), one sees that θ takes real values on V (G)

and imaginary values on V (G∗). An easy computation shows that the last

equation in (7.7) is equivalent to

θ(y1)− θ(y0) = iν(x0, x1)
(
θ(x1)− θ(x0)

)
,

so that the function θ is discrete holomorphic with respect to the weights ν.

For the transformed weights ν+ one finds:

(7.8) ν+ν =
θ(y0)θ(y1)

θ(x0)θ(x1)
.

Conversely, an arbitrary discrete holomorphic function θ : V (D) → C de-

fines, via (7.8), a Moutard transformation of the discrete Cauchy-Riemann

equations. It should be mentioned that the data (MCR∆
2 ) can be reformu-

lated in terms of the function θ:

(MCR∆
2 ) the values of θ at all vertices along a Cauchy path in D.
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Remark. A Moutard transformation for discrete Cauchy-Riemann equa-

tions yields, by restriction to the “black” graphs, a sort of Darboux trans-

formation of arbitrary discrete Laplacians on G into discrete Laplacians on

G∗.

7.3. Integrable discrete Cauchy-Riemann equations

We now turn to a useful question of “stationary points” of the Moutard

transformation discussed in the previous section. More precisely, this is

the question about conditions on the weights ν : E(G) → R+ such that

there exists a Moutard transformation for which the opposite faces of any

elementary hexahedron of D (see Figure 7.5) carry identical equations.

Theorem 7.5. (Integrability of discrete Cauchy-Riemann equations)
A system of discrete Cauchy-Riemann equations with the weight function
ν : E(G) � E(G∗) → R+ satisfying (7.2) admits a Moutard transformation
into itself if and only if for all x0 ∈ V (G) and all y0 ∈ V (G∗) the following
conditions are fulfilled:

(7.9)
∏

e∈star(x0;G)

1 + iν(e)

1− iν(e)
= 1,

∏
e∗∈star(y0;G∗)

1 + iν(e∗)

1− iν(e∗)
= 1.

Proof. Opposite faces of D and D+ carry identical equations if ν+ν = 1

in (7.7). Clearly, this yields also µ11µ00 = µ10µ01 = −1, which means

that the opposite “vertical” faces also support identical equations (recall

that opposite “vertical” faces carry different orientations). Moreover, given

ν = ν(x0, x1) for an elementary quadrilateral (x0, y0, x1, y1) of D, we find

that the input data µ00, µ01 of the Moutard transformation should be related

as follows:

νµ00µ01

µ00 − µ01 − ν
= 1 ⇔ µ01 =

µ00 − ν

µ00ν + 1
=

(
1 −ν
ν 1

)
[µ00],

where the standard notation for the action of PGL(2, C) on C by Möbius

transformations is used. This means that all the weights on the vertical

faces of a “stationary” Moutard transformation are completely defined by

just one of them, so that such transformations form a one-parameter family.

To derive a condition for ν for the existence of a “stationary” Moutard

transformation, consider a flower of quadrilaterals (x0, yk−1, xk, yk) around

x0 ∈ V (G) (see Figure 6.5). In the natural notation, we find:

µ0,k =
µ0,k−1 − νk

µ0,k−1νk + 1
=

(
1 −νk

νk 1

)
[µ0,k−1].
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Running around x0 should for any µ00 return its value, which means that

the matrix product (
A −B
B A

)
=

�∏
k

(
1 −νk

νk 1

)
should be proportional to the identity matrix. This matrix product is easily

computed (see Exercise 7.2):

A =
1

2

(∏
k

(1 + iνk) +
∏
k

(1− iνk)
)
, B =

1

2i

(∏
k

(1 + iνk)−
∏
k

(1− iνk)
)
,

and the condition B = 0 is equivalent to the first equality in (7.9). The sec-

ond condition in (7.9) is proved similarly, by considering a flower of quadri-

laterals around y0 ∈ V (G∗). �

Thus, the existence of a “stationary” Moutard transformation singles out

a special class of discrete Cauchy-Riemann equations, which have to be con-

sidered as 2D systems with the 3D consistency property; see Section 6.7. In

other words, such Cauchy-Riemann equations should be termed integrable.
The main difference as compared with the examples in Section 6.7 is that

discrete Cauchy-Riemann equations naturally depend on the orientation of

the elementary quadrilaterals, and that their parameters ν are apparently

assigned not to the edges of the quad-graph, but rather to the diagonals of

its faces.

The integrability condition (7.9) admits a nice geometric interpretation.

It is convenient (especially for positive real-valued ν) to use the notation

(7.10) ν(e) = tan
φ(e)

2
, φ(e) ∈ (0, π).

The condition ν(e∗) = 1/ν(e) is translated into

(7.11) φ(e∗) = π − φ(e),

while the condition (7.9) says that for all x0 ∈ V (G) and all y0 ∈ V (G∗),

(7.12)
∏

e∈star(x0;G)

exp(iφ(e)) = 1,
∏

e∗∈star(y0;G∗)

exp(iφ(e∗)) = 1.

These conditions should be compared with conditions characterizing the

angles φ : E(G) � E(G∗) → (0, π) of a rhombic embedding of a quad-graph

D, which consist of (7.11) and

(7.13)
∑

e∈star(x0;G)

φ(e) = 2π,
∑

e∗∈star(y0;G∗)

φ(e∗) = 2π,

for all x0 ∈ V (G) and all y0 ∈ V (G∗). Thus, the integrability condition

(7.12) says that the system of angles φ : E(G) �E(G∗) → (0, π) comes from
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a realization of the quad-graph D as a rhombic ramified embedding in C.

Flowers of such an embedding can wind around its vertices more than once.

Another formulation of the integrability conditions is given in terms of

the edges of the rhombic realizations.

Theorem 7.6. (Integrable Cauchy-Riemann equations in terms of
rhombic edges) Integrability condition (7.9) for the weight function ν :

E(G)�E(G∗) → R+ is equivalent to the following: there exists a labelling of
directed edges of D, θ : �E(D) → S1, such that, in the notation of Figure 7.4,

(7.14) ν(x0, x1) =
1

ν(y0, y1)
= i

θ0 − θ1

θ0 + θ1
.

Under this condition, the 3D consistency of the discrete Cauchy-Riemann
equations is assured by the following values of the weights ν on the diagonals
of the vertical faces of D:

(7.15) ν(x, y+) = i
θ − λ

θ + λ
,

where θ = θ(x, y), and λ ∈ C is an arbitrary number which is interpreted as
the label assigned to all vertical edges of D: λ = θ(x, x+) = θ(y, y+).

So, integrable discrete Cauchy-Riemann equations can be written in a

form with parameters assigned to directed edges of D:

(7.16)
f(y1)− f(y0)

f(x1)− f(x0)
=

θ1 − θ0

θ1 + θ0
,

where

θ0 = p(y0)− p(x0) = p(x1)− p(y1), θ1 = p(y1)− p(x0) = p(x1)− p(y0),

and p : V (G) → C is a rhombic realization of the quad-graph D. Since

θ1 − θ0

θ1 + θ0
=

p(y1)− p(y0)

p(x1)− p(x0)
,

we see that for a discrete holomorphic function f : V (G) → C, the quotient

of diagonals of the f -image of any quadrilateral (x0, y0, x1, y1) ∈ F (D) is

equal to the quotient of diagonals of the corresponding rhombus.

A standard construction of zero curvature representation for 3D con-

sistent equations, given in Theorem 6.4, leads in the present case to the

following result.

Theorem 7.7. (Zero curvature representation of discrete Cauchy-
Riemann equations) The discrete Cauchy-Riemann equations (7.16) ad-
mit a zero curvature representation with spectral parameter dependent 2× 2
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matrices along (x, y) ∈ �E(D) given by

(7.17) L(y, x, α; λ) =

⎛⎝λ + θ −2θ(f(x) + f(y))

0 λ− θ

⎞⎠ ,

where θ = p(y)− p(x).

Linearity of the discrete Cauchy-Riemann equations is reflected in the

triangular structure of the transition matrices.

Also, all constructions of Section 6.8 can be applied to integrable dis-

crete Cauchy-Riemann equations. In particular, for weights coming from a

quasicrystallic rhombic embedding of the quad-graph D, with labels Θ =

{±θ1, . . . ,±θd}, discrete holomorphic functions can be extended from the

corresponding surface ΩD ⊂ Zd to its hull, preserving discrete holomorphy.

Here we have in mind the following natural definition:

Definition 7.8. (Discrete holomorphic functions on Zd) A function
f : Zd → C is called discrete holomorphic if it satisfies, on each elementary
square of Zd, the equation

(7.18)
f(n + ej + ek)− f(n)

f(n + ej)− f(n + ek)
=

θj + θk

θj − θk
.

For discrete holomorphic functions in Zd, the transition matrices along

the edges (n, n + ek) of Zd are given by

(7.19) Lk(n; λ) =

⎛⎝λ + θk −2θk(f(n + ek) + f(n))

0 λ− θk

⎞⎠ .

All results of this section hold also in the case of generic complex weights

ν, which leads to θ ∈ C and to parallelogram realizations of D.

7.4. Discrete exponential functions

An important class of discrete holomorphic functions is built by discrete

exponential functions. We define them for an arbitrary rhombic embedding

p : V (D) → C. Fix a point x0 ∈ V (D). For any other point x ∈ V (D),

choose some path {ej}n
j=1 ⊂ �E(D) connecting x0 to x, so that ej = (xj−1, xj)

and xn = x. Let the slope of the j-th edge be θj = p(xj) − p(xj−1) ∈ S1.

Then

e(x; z) =

n∏
j=1

z + θj

z − θj
.

Clearly, this definition depends on the choice of the point x0 ∈ V (D), but

not on the path connecting x0 to x.
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An extension of the discrete exponential function from ΩD to the whole

of Zd is given by the following simple formula:

(7.20) e(n; z) =

d∏
k=1

(z + θk

z − θk

)nk

.

The discrete Cauchy-Riemann equations for the discrete exponential func-

tion are easily checked: they are equivalent to a simple identity(z + θj

z − θj
· z + θk

z − θk
− 1

)/(z + θj

z − θj
− z + θk

z − θk

)
=

θj + θk

θj − θk
.

At a given n ∈ Zd, the discrete exponential function is rational with respect

to the parameter z, with poles at the points ε1θ1, . . . , εdθd, where εk =

signnk.

Equivalently, one can identify the discrete exponential function by its

initial values on the axes:

(7.21) e(nek; z) =
(z + θk

z − θk

)n
.

Another characterization says that e(·; z) is the Bäcklund transformation

of the zero solution of discrete Cauchy-Riemann equations on Zd, with the

“vertical” parameter z.

We now show that the discrete exponential functions form a basis in

some natural class of functions (growing not faster than exponentially).

Theorem 7.9. (Discrete exponentials form a basis of discrete holo-
morphic functions) Let f be a discrete holomorphic function on V (D) ∼
V (ΩD), satisfying

(7.22) |f(n)| ≤ exp(C(|n1|+ · · ·+ |nd|)), ∀n ∈ V (ΩD),

with some C ∈ R. Extend it to a discrete holomorphic function on the hull
H(V (ΩD)). There exists a function g defined on the disjoint union of small
neighborhoods around the points ±θk ∈ C and holomorphic on each of these
neighborhoods, such that

(7.23) f(n)− f(0) =
1

2πi

∫
Γ

g(λ)e(n; λ)dλ, ∀n ∈ H(V (ΩD)),

where Γ is a collection of 2d small loops, each running counterclockwise
around one of the points ±θk.

Proof. The proof is constructive and consists of three steps.

(i) Extend f from V (ΩD) to H(V (ΩD)); inequality (7.22) propagates

in the extension process, if the constant C is chosen large enough.
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(ii) Introduce the restrictions f
(k)
n of f : H(V (ΩD)) → C to the coor-

dinate axes:

f (k)
n = f(nek), ak(ΩD) ≤ n ≤ bk(ΩD).

(iii) Set g(λ) =
∑d

k=1(gk(λ)+ g−k(λ)), where the functions g±k(λ) van-

ish everywhere except in small neighborhoods of the points ±θk,

respectively, and are given there by convergent series

(7.24) gk(λ) =
1

2λ

(
f

(k)
1 − f(0) +

∞∑
n=1

(λ− θk

λ + θk

)n(
f

(k)
n+1 − f

(k)
n−1

))
,

and a similar formula for g−k(λ). Formula (7.23) is then easily

verified by computing the residues at λ = ±θk (see Exercise 7.5).

�

It is important to observe that the data f
(k)
n , necessary for the con-

struction of g(λ), are not among the values of f on V (D) ∼ V (ΩD) known

initially, but are encoded in the extension process.

7.5. Discrete logarithmic function

We now define the discrete logarithmic function on a rhombic quad-graph

D. Fix some point x0 ∈ V (D), and set

(7.25) �(x) =
1

2πi

∫
Γ

log(λ)

2λ
e(x; λ)dλ, ∀x ∈ V (D).

Here the integration path Γ is the same as in Theorem 7.9, and fixing x0

is necessary for the definition of the discrete exponential function on D.

To make (7.25) a valid definition, one must specify a branch of log(λ) in a

neighborhood of each point ±θk. This choice depends on x, and is done as

follows.

Assume, without loss of generality, that the circular order of the points

±θk on the positively oriented unit circle S1 is the following: θ1, . . . , θd,

−θ1, . . . ,−θd. We set θk+d = −θk for k = 1, . . . , d, and then define θr for

all r ∈ Z by 2d-periodicity. For each r ∈ Z, assign to θr = exp(iγr) ∈ S1 a

certain value of the argument γr ∈ R: choose a value γ1 of the argument of

θ1 arbitrarily, and then extend it according to the rule

γr+1 − γr ∈ (0, π), ∀r ∈ Z.

Clearly, γr+d = γr + π, and therefore also γr+2d = γr + 2π. It will be

convenient to consider the points θr, supplied with the arguments γr, as

belonging to the Riemann surface Λ of the logarithmic function (a branched

covering of the complex λ-plane).
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For each m ∈ Z, define the “sector” Um on the plane C carrying the

quad-graph D as the set of all points of V (D) which can be reached from

x0 along paths with all edges from {θm, . . . , θm+d−1}. Two sectors Um1 and

Um2 have a nonempty intersection if and only if |m1 −m2| < d. The union

U =
⋃∞

m=−∞ Um is a branched covering of the quad-graph D, and it serves

as the domain of the discrete logarithmic function.

The definition (7.25) of the latter should be read as follows: for x ∈
Um, the poles of e(x; λ) are exactly the points θm, . . . , θm+d−1 ∈ Λ. The

integration path Γ consists of d small loops on Λ around these points, and

arg(λ) =  log(λ) takes values in a small open neighborhood (in R) of the

interval

(7.26) [γm, γm+d−1]

of length less than π. If m increases by 2d, the interval (7.26) is shifted by 2π.

As a consequence, the function � is discrete holomorphic, and its restriction

to the set V (G) of “black” points is discrete harmonic everywhere on U
except at the point x0:

(7.27) ∆�(x) = δx0x.

Thus, the functions gk in the integral representation (7.23) of an arbi-

trary discrete holomorphic function, defined originally in disjoint neighbor-

hoods of the points αr, in the case of the discrete logarithmic function are

actually restrictions of a single analytic function log(λ)/(2λ) to these neigh-

borhoods. This allows one to deform the integration path Γ into a connected

contour lying on a single leaf of the Riemann surface of the logarithm, and

then use standard methods of complex analysis to obtain asymptotic ex-

pressions for the discrete logarithmic function. In particular, one can show

that at the “black” points of V (G),

(7.28) �(x) ∼ log |x− x0|, x →∞.

Properties (7.27), (7.28) characterize the discrete Green’s function on G.

Thus:

Theorem 7.10. (Discrete Green’s function) The discrete logarithmic
function on D, restricted to the set of vertices V (G) of the “black” graph G,
coincides with discrete Green’s function on G.

Now we extend the discrete logarithmic function to Zd, which will allow

us to gain significant additional information about it. In addition to the unit

vectors ek ∈ Zd (corresponding to θk ∈ S1), we introduce their opposites

ek+d = −ek, k ∈ [1, d] (corresponding to θk+d = −θk), and define er for all
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r ∈ Z by 2d-periodicity. Then

(7.29) Sm =

m+d−1⊕
r=m

Zer ⊂ Zd

is a d-dimensional octant containing exactly the part of ΩD which is the

P -image of the sector Um ⊂ D. Clearly, only 2d different octants appear

among the Sm (out of 2d possible d-dimensional octants). Define S̃m as

the octant Sm equipped with the interval (7.26) of values for  log(θr). By

definition, S̃m1 and S̃m2 intersect if the underlying octants Sm1 and Sm2

have a nonempty intersection spanned by the common coordinate semiaxes

Zer, and the  log(θr) for these common semiaxes match. It is easy to

see that S̃m1 and S̃m2 intersect if and only if |m1 − m2| < d. The union

S̃ =
⋃∞

m=−∞ S̃m is a branched covering of the set
⋃2d

m=1 Sm ⊂ Zd.

Definition 7.11. (Discrete logarithmic function on Zd) The discrete
logarithmic function on S̃ is given by the formula

(7.30) �(n) =
1

2πi

∫
Γ

log(λ)

2λ
e(n; λ)dλ, ∀n ∈ S̃,

where for n ∈ S̃m the integration path Γ consists of d loops around the
points θm, . . . , θm+d−1 on Λ, and  log(λ) on Γ is chosen in a small open
neighborhood of the interval (7.26).

The discrete logarithmic function on D can be described as the restric-

tion of the discrete logarithmic function on S̃ to a branched covering of

ΩD ∼ D. This holds for an arbitrary quasicrystallic quad-graph D whose

set of edge slopes coincides with Θ = {±θ1, . . . ,±θd}.
Now we are in a position to give an alternative definition of the discrete

logarithmic function. Clearly, it is completely characterized by its values

�(ner), r ∈ [m, m+d−1], on the coordinate semiaxes of an arbitrary octant

S̃m. Let us stress once more that the points ner do not lie, in general, on

the original quad-surface ΩD.

Theorem 7.12. (Values of discrete logarithmic function on coordi-
nate axes) The values �

(r)
n = �(ner), r ∈ [m, m + d − 1], of the discrete

logarithmic function on S̃m ⊂ S̃ are given by:

(7.31) �(r)
n =

{
2
(
1 + 1

3 + · · ·+ 1
n−1

)
, n even,

log(θr) = iγr, n odd.

Here the values log(θr) = iγr are chosen in the interval (7.26).

Proof. Comparing formula (7.30) with (7.24), we see that the values �
(r)
n

can be obtained from the expansion of log(λ) in a neighborhood of λ = θr
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into the power series with respect to the powers of (λ− θr)/(λ + θr). This

expansion reads:

log(λ) = log(θr) +

∞∑
n=1

1− (−1)n

n

(λ− θr

λ + θr

)n
.

Thus, we come to a simple difference equation

(7.32) n(�
(r)
n+1 − �

(r)
n−1) = 1− (−1)n,

with the initial conditions

(7.33) �
(r)
0 = �(0) = 0, �

(r)
1 = �(er) = log(θr),

which yield (7.31). �

Observe that values (7.31) at even (resp. odd) points imitate the be-

havior of the real (resp. imaginary) part of the function log(λ) along the

half-lines arg(λ) = arg(θr). This can be easily extended to the whole of

S̃. Restricted to the black points n ∈ S̃ (those with n1 + · · · + nd even),

the discrete logarithmic function models the real part of the logarithm. In

particular, it is real-valued and does not branch: its values on S̃m depend

on m (mod 2d) only. In other words, it is a well-defined function on Sm.

On the contrary, the discrete logarithmic function restricted to the white

points n ∈ S̃ (those with n1 + · · ·+ nd odd) takes purely imaginary values,

and increases by 2πi as m increases by 2d. Hence, this restricted function

models the imaginary part of the logarithm.

It turns out that recurrence relations (7.32) are characteristic for an im-

portant class of solutions of the discrete Cauchy-Riemann equations, namely

for the isomonodromic solutions. In order to introduce this class, recall that

discrete holomorphic functions in Zd possess a zero curvature representa-

tion with transition matrices (7.19). The moving frame Ψ(·, λ) : Zd →
GL(2, C)[λ] is defined by prescribing some Ψ(0; λ), and by extending it re-

currently according to the formula

(7.34) Ψ(n + ek; λ) = Lk(n; λ)Ψ(n; λ).

Finally, define the matrices A(·; λ) : Zd → gl(2, C)[λ] by

(7.35) A(n; λ) =
dΨ(n; λ)

dλ
Ψ−1(n; λ).

These matrices satisfy a recurrence relation, which is obtained by differen-

tiating (7.34),

(7.36) A(n + ek; λ) =
dLk(n; λ)

dλ
L−1

k (n; λ) + Lk(n; λ)A(n; λ)L−1
k (n; λ),

and therefore they are determined uniquely upon fixing some A(0; λ).
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Definition 7.13. (Isomonodromy) A discrete holomorphic function f :

Zd → C is called isomonodromic if, for some choice of A(0; λ), the matrices
A(n; λ) are meromorphic in λ, with poles whose positions and orders do not
depend on n ∈ Zd.

This term originates in the theory of integrable nonlinear differential

equations, where it is used for solutions with a similar analytic characteri-

zation.

It is clear how to extend Definition 7.13 to functions on the covering S̃.

In the following statement, we restrict ourselves to the octant S1 = (Z+)d

for notational simplicity.

Theorem 7.14. (Discrete logarithmic function is isomonodromic)
For a proper choice of A(0; λ), the matrices A(n; λ) at any point n ∈ (Z+)d

have simple poles only:

(7.37) A(n; λ) =
A(0)(n)

λ
+

d∑
l=1

(B(l)(n)

λ + θl
+

C(l)(n)

λ− θl

)
,

with

A(0)(n) =

⎛⎝0 (−1)n1+···+nd

0 0

⎞⎠ ,(7.38)

B(l)(n) = nl

⎛⎝1 −(�(n) + �(n− el))

0 0

⎞⎠ ,(7.39)

C(l)(n) = nl

⎛⎝0 �(n + el) + �(n)

0 1

⎞⎠ .(7.40)

At any point n ∈ S̃, the following constraint holds:

(7.41)

d∑
l=1

nl

(
�(n + el)− �(n− el)

)
= 1− (−1)n1+···+nd .

Proof. The proper choice of A(0; λ) mentioned in the Theorem, can be read

off formula (7.38):

A(0; λ) =
1

λ

(
0 1

0 0

)
.

The proof consists of two parts.

(i) First, one proves the claim for the points of the coordinate semi-

axes. For any r = 1, . . . , d, construct the matrices A(ner; λ) along
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the r-th coordinate semi-axis via formula (7.36) with transition ma-

trices (7.19). This formula shows that the singularities of A(ner; λ)

are poles at λ = 0 and at λ = ±θr, and that the pole λ = 0 re-

mains simple for all n > 0. By a direct computation and induc-

tion, one shows that it is exactly the recurrence relation (7.32) for

f
(r)
n = f(ner) which assures that the poles λ = ±θr remain simple

for all n > 0. Thus, (7.37) holds on the r-th coordinate semiaxis,

with B(l)(ner) = C(l)(ner) = 0 for l �= r.

(ii) The second part of the proof is conceptual, and is based upon the

multidimensional consistency only. Proceed by induction, filling

out the hull of the coordinate semiaxes: each new point is of the

form n + ej + ek, j �= k, with three points n, n + ej , and n +

ek known from the previous steps, where the statements of the

proposition are assumed to hold. Suppose that (7.37) holds at

n + ej , n + ek. The new matrix A(n + ej + ek; λ) is obtained by

two alternative formulas,

A(n + ej + ek; λ) =
dLk(n + ej ; λ)

dλ
L−1

k (n + ej ; λ)(7.42)

+Lk(n + ej ; λ)A(n + ej ; λ)L−1
k (n + ej ; λ),

and the other with k and j interchanged. Equation (7.42) shows

that all poles of A(n + ej + ek; λ) remain simple, with the possible

exception of λ = ±θk, whose orders might increase by 1. The same

statement holds with k replaced by j. Therefore, all poles remain

simple, and (7.37) holds at n+ej +ek. Formulas (7.38)–(7.40) and

constraint (7.41) follow by direct computations based on (7.42). �

7.6. Exercises

7.1. Let D be a bipartite quad-graph, with black vertices xj and white

vertices yj . Let µ : E(D) → C be a function such that, for any elementary

quadrilateral (x0, y0, x1, y1) ∈ F (D),

µ(x0, y0)µ(x1, y1) = µ(x0, y1)µ(x1, y0).

Show that there exists a function θ : V (D) → C such that for every edge

(x, y) ∈ E(D) we have iµ(x, y) = θ(y)/θ(x). If µ is real-valued, then one

can assume that θ takes real values at black points and imaginary values at

white points.

7.2. Prove by induction that the entries of the matrix(
A −B
B A

)
=

�∏
k

(
1 −νk

νk 1

)
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are given by

A =
1

2

(∏
k

(1 + iνk) +
∏
k

(1− iνk)
)
, B =

1

2i

(∏
k

(1 + iνk)−
∏
k

(1− iνk)
)
.

7.3. Check that the function f : Z2 → C given by f(m, n) = (mθ1 + nθ2)
2

satisfies the discrete Cauchy-Riemann equation

f(m + 1, n + 1)− f(m, n)

f(m + 1, n)− f(m, n + 1)
=

θ1 + θ2

θ1 − θ2
.

Generalize this function (“discrete z2”) for Zd and for arbitrary quad-graphs

D.

7.4. Find the “discrete z3”, i.e., the function f : Z2 → C which is polynomial

in m, n of degree 3, with cubic terms (mθ1+nθ2)
3, and satisfying the discrete

Cauchy-Riemann equations.

7.5. Prove that for the functions gk(λ) from (7.24),

Resλ=θk

(λ + θk

λ− θk

)n
gk(λ) = f (k)

n − f(0).

7.6. Estimate the difference �
(k)
n − log n for the values given in (7.31), for n

even.
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Chapter 8

Discrete Complex Analysis.
Integrable Circle Patterns

8.1. Circle patterns

The idea that circle packings and, more generally, circle patterns serve as

a discrete counterpart of analytic functions is by now well established. We

give here a presentation of several results in this area, which treat the inter-

relations between circle patterns and integrable systems.

Definition 8.1. (Circle pattern) Let G be an arbitrary cell decomposition
of an open or closed disk in C. A map z : V (G) → C defines a circle
pattern with combinatorics of G if the following condition is satisfied. Let
y ∈ F (G) ∼ V (G∗) be an arbitrary face of G, and let x1, x2, . . . , xn be its
consecutive vertices. Then the points z(x1), z(x2), . . . , z(xn) ∈ C lie on a
circle, and their circular order is just the listed one. We denote this circle by
C(y), thus putting it into a correspondence with the face y, or, equivalently,
with the respective vertex of the dual cell decomposition G∗.

As a consequence of this condition, if two faces y0, y1 ∈ F (G) have a

common edge (x0, x1), then the circles C(y0) and C(y1) intersect in the

points z(x1), z(x2). In other words, the edges from E(G) correspond to pairs

of neighboring (intersecting) circles of the pattern. Similarly, if several faces

y1, y2, . . . , ym ∈ F (G) meet in one point x0 ∈ V (G), then the corresponding

circles C(y1), C(y2), . . . , C(ym) also have a common intersection point z(x0).

A finite piece of a circle pattern is shown in Figure 8.1.

311
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Figure 8.1. Circle pattern.

Given a circle pattern with combinatorics of G, we can extend the func-

tion z to the vertices of the dual graph, setting

z(y) = center of the circle C(y), y ∈ F (G) � V (G∗).

After this extension, the map z is defined on all of V (D) = V (G) � V (G∗),
where D is the double of G. Consider a face of the double. Its z-image is a

quadrilateral of the kite form, whose vertices correspond to the intersection

points and the centers of two neighboring circles C0, C1 of the pattern. De-

note the radii of C0, C1 by r0, r1, respectively. Let x0, x1 correspond to the

intersection points, and let y0, y1 correspond to the centers of the circles.

Give the circles C0, C1 a positive orientation (induced by the orientation of

the underlying C), and let φ ∈ (0, π) stand for the intersection angle of these

oriented circles. This angle φ is equal to the kite angles at the “black” ver-

tices z(x0), z(x1); see Figure 8.2, where the complementary angle φ∗ = π−φ
is also shown. It will be convenient to assign the intersection angle φ = φ(e)
to the “black” edge e = (x0, x1) ∈ E(G), and to assign the complementary

angle φ∗ = φ(e∗) to the dual “white” edge e∗ = (y0, y1) ∈ E(G∗). Thus, the

function φ : E(G) � E(G∗) → (0, π) satisfies (7.11).

The geometry of Figure 8.2 yields following relations. First of all, the

cross-ratio of the four points corresponding to the vertices of a quadrilateral

face of D is expressed through the intersection angle of the circles C0, C1:

(8.1) q(z(x0), z(y0), z(x1), z(y1)) = exp(2iφ∗).
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z(y0) z(y1)

z(x0)

z(x1)

C1C0

φ∗

ψ01

Figure 8.2. Two intersecting circles.

Furthermore, running around a “black” vertex of D (a common intersection

point of several circles of the pattern), we see that the sum of the consecutive

kite angles vanishes (mod 2π), hence:

(8.2)
∏

e∈star(x0;G)

exp(iφ(e)) = 1, ∀x0 ∈ V (G).

Finally, let ψ01 be the angle of the kite (z(x0), z(y0), z(x1), z(y1)) at the

“white” vertex z(y0), i.e., the angle between the half-lines from the center

z(y0) of the circle C0 to the intersection points z(x0), z(x1) with its circle

C1. It is not difficult to calculate this angle:

(8.3) exp(iψ01) =
r0 + r1 exp(iφ∗)

r0 + r1 exp(−iφ∗)
.

Running around the “white” vertex of D, we come to the relation

(8.4)

m∏
j=1

r0 + rj exp(iφ∗
j )

r0 + rj exp(−iφ∗
j )

= 1, ∀y0 ∈ V (G∗),

where the product is extended over all edges e∗j = (y0, yj) ∈ star(y0; G
∗), and

φ∗
j = φ(e∗j ), while rj are the radii of the circles Cj = C(yj).

8.2. Integrable cross-ratio and Hirota systems

Our main interest is in the circle patterns with prescribed combinatorics

and with prescribed intersection angles for all pairs of neighboring angles.

According to formula (8.1), prescribing all intersection angles amounts to

prescribing cross-ratios for all quadrilateral faces of the quad-graph D. Thus,

we come to the study of cross-ratio equations on arbitrary quad-graphs.
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Let there be given a function Q : E(G) � E(G∗) → C satisfying the

condition

(8.5) Q(e∗) = 1/Q(e), ∀e ∈ E(G).

Definition 8.2. (Cross-ratio system) The cross-ratio system on D corre-
sponding to the function Q consists of the following equations for a function
z : V (D) → C, one for any quadrilateral face (x0, y0, x1, y1) of D:

(8.6) q(z(x0), z(y0), z(x1), z(y1)) = Q(x0, x1) = 1/Q(y0, y1).

An important distinction from the discrete Cauchy-Riemann equations

is that the cross-ratio equations actually do not depend on the orientation

of quadrilaterals.

We have already encountered 3D consistent cross-ratio systems on Zd

in Section 6.7 (see equation (6.33)), in the version with labelled edges. A

natural generalization to the case of arbitrary quad-graphs is this:

x0 x1

y0

y1

α1

α0

α0

α1

Figure 8.3. Quadrilateral, with a labelling of undirected edges.

Definition 8.3. (Integrable cross-ratio system) A cross-ratio system
is called integrable if there exists a labelling α : E(D) → C of undirected

edges of D such that the function Q admits the following factorization (in
the notation of Figure 8.3):

(8.7) Q(x0, x1) =
1

Q(y0, y1)
=

α0

α1
.

Clearly, integrable cross-ratio systems are 3D consistent (see Theorem

4.26), admit Bäcklund transformations, and possess zero curvature repre-
sentation with the transition matrices (6.47). It is not difficult to give an

equivalent reformulation of the integrability condition (8.7).

Theorem 8.4. (Integrability condition of a cross-ratio system) A
cross-ratio system with the function Q : E(G) � E(G∗) → C is integrable if
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and only if for all x0 ∈ V (G) and for all y0 ∈ V (G∗) the following conditions
are fulfilled:

(8.8)
∏

e∈star(x0;G)

Q(e) = 1,
∏

e∗∈star(y0;G∗)

Q(e∗) = 1.

For a labelling of undirected edges α : E(D) → C, we can find a la-

belling θ : �E(D) → C of directed edges such that α = θ2. The function

p : V (D) → C defined by p(y) − p(x) = θ(x, y) gives, according to (8.8), a

parallelogram realization (ramified embedding) of the quad-graph D. The

cross-ratio equations are written as

(8.9) q(z(x0), z(y0), z(x1), z(y1)) =
θ2
0

θ2
1

= q(p(x0), p(y0), p(x1), p(y1));

in other words, for any quadrilateral (x0, y0, x1, y1) ∈ F (D), the cross-ratio

of the vertices of its image under the map z is equal to the cross-ratio of the

vertices of the corresponding parallelogram. In particular, one always has

the trivial solution z(x) ≡ p(x) for all x ∈ V (D).

A very useful transformation of the cross-ratio system is given by the

following construction.

Definition 8.5. (Hirota system) For a given labelling of directed edges
θ : �E(D) → C, the Hirota system consists of the following equations for the
function w : V (D) → C, one for every quadrilateral face (x0, y0, x1, y1) ∈
F (D):

(8.10) θ0w(x0)w(y0) + θ1w(y0)w(x1)− θ0w(x1)w(y1)− θ1w(y1)w(x0) = 0.

Note that the Hirota equation coincides with equation (6.30) of Section

6.7 (by the way, this shows that also in that previous version it was natural

to assign parameters to directed edges). In terms of the parallelogram real-

ization p : V (D) → C of the quad-graph D corresponding to the labelling θ,
equation (8.10) reads:

w(x0)w(y0)
(
p(y0)− p(x0)

)
+ w(y0)w(x1)

(
p(x1)− p(y0)

)
(8.11)

+w(x1)w(y1)
(
p(y1)− p(x1)

)
+ w(y1)w(x0)

(
p(x0)− p(y1)

)
= 0.

Obviously, a transformation w �→ cw on V (G) and w �→ c−1w on V (G∗) with

a constant c ∈ C, hereafter called a black-white scaling, maps solutions of

the Hirota system into solutions. A relation between the cross-ratio and the

Hirota system is based on the following observation:

Theorem 8.6. (Relation between cross-ratio and Hirota systems)
Let w : V (D) → C be a solution of the Hirota system. Then the relation

(8.12) z(y)− z(x) = θ(x, y)w(x)w(y) = w(x)w(y)
(
p(y)− p(x)

)
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for all directed edges (x, y) ∈ �E(D) defines a unique (up to an additive
constant) function z : V (D) → C which is a solution of the cross-ratio
system (8.9). Conversely, for any solution z of the cross-ratio system (8.9),
relation (8.12) defines a unique (up to a black-white scaling) function w :

V (D) → C; this function w solves the Hirota system (8.10).

In particular, the trivial solution z(x) = p(x) of the cross-ratio system

corresponds to the trivial solution of the Hirota system, w(x) ≡ 1 for all x ∈
V (D). By a direct computation one can establish the following fundamental

property.

Theorem 8.7. (Integrability of Hirota system) The Hirota system
(8.10) is 3D consistent.

As a usual consequence, the Hirota system admits Bäcklund transforma-

tions and possesses zero curvature representation with transition matrices

along the edge (x, y) ∈ �E(D) given by

(8.13) L(y, x, θ; λ) =

⎛⎝ 1 −θw(y)

−λθ/w(x) w(y)/w(x)

⎞⎠ ,

where θ = p(y)− p(x).

8.3. Integrable circle patterns

Returning to circle patterns, let {z(x) : x ∈ V (G)} be the intersection points

of the circles of a pattern, and let {z(y) : y ∈ V (G∗)} be their centers. Due

to (8.1), the function z : V (D) → C satisfies a cross-ratio system with

Q : E(G) � E(G∗) → S1 defined as Q(e) = exp(2iφ(e)). Because of (8.2),

the first of the integrability conditions (8.8) is fulfilled for an arbitrary circle

pattern. Therefore, integrability of the cross-ratio system for circle patterns

with prescribed intersection angles φ : E(G∗) → (0, π) is equivalent to

(8.14)
∏

e∗∈star(y0;G∗)

exp(2iφ(e∗)) = 1, ∀y0 ∈ V (G∗).

This is equivalent to the existence of the edge labelling α : E(D) → C such

that, in the notation of Figure 8.2,

(8.15) exp(2iφ∗) =
α0

α1
.

Moreover, one can assume that the labelling α takes values in S1.

Our definition of integrable circle patterns will require somewhat more

than integrability of the corresponding cross-ratio system.
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Definition 8.8. (Integrable circle pattern) A circle pattern with pre-
scribed intersection angles φ : E(G∗) → (0, π) is called integrable if

(8.16)
∏

e∗∈star(y0;G∗)

exp(iφ(e∗)) = 1, ∀y0 ∈ V (G∗),

i.e., if for any circle of the pattern the sum of its intersection angles with
all neighboring circles vanishes (mod 2π).

This requirement is equivalent to a somewhat sharper factorization than

(8.15), namely, to the existence of a labelling of the directed edges θ :
�E(D) → S1 such that, in the notation of Figure 8.2,

(8.17) exp(iφ) =
θ1

θ0
⇔ exp(iφ∗) = −θ0

θ1
.

(Of course, the last condition yields (8.15) with α = θ2.) The parallelogram

realization p : V (D) → C corresponding to the labelling θ ∈ S1 is actually a

rhombic one.

Theorem 8.9. (Isoradial integrability criterion) Combinatorial data
G and intersection angles φ : E(G) → (0, π) belong to an integrable circle
pattern if and only if they admit an isoradial realization. In this case, the
dual combinatorial data G∗ and intersection angles φ : E(G∗) → (0, π) admit
a realization as an isoradial circle pattern, as well.

Proof. The rhombic realization p : V (D) → C of the quad-graph D cor-

responds to a circle pattern with the same combinatorics and the same

intersection angles as the original one and with all radii equal to 1, and,

simultaneously, to an analogous dual circle pattern. �

Consider a rhombic realization p : V (D) → C of D. Solutions z :

V (D) → C of the corresponding integrable cross-ratio system which come

from integrable circle patterns are characterized by the property that the

z-image of any quadrilateral (x0, y0, x1, y1) from F (D) is a kite with the

prescribed angle φ at the black vertices z(x0), z(x1) (cf. Figure 8.2). It

turns out that the description of this class of kite solutions admits a more

convenient analytic characterization in terms of the corresponding solutions

w : V (D) → C of the Hirota system defined by (8.12).

Theorem 8.10. (Circle pattern solutions of Hirota system) The so-
lution z of the cross-ratio system corresponds to a circle pattern if and only
if the solution w of the Hirota system, corresponding to z via (8.12), satisfies
the condition

(8.18) w(x) ∈ S1, w(y) ∈ R+, ∀x ∈ V (G), y ∈ V (G∗).



318 8. Integrable Circle Patterns

The values w(y) ∈ R+ have then the interpretation of the radii of the circles
C(y), while the (arguments of the) values w(x) ∈ S1 measure the rotation of
the tangents to the circles intersecting at z(x) with respect to the isoradial
realization of the pattern.

Proof. As is easily seen, the kite conditions are equivalent to

|w(x0)|
|w(x1)| = 1 and

w(y0)

w(y1)
∈ R+.

This yields (8.18), possibly upon a black-white scaling. �

The conditions (8.18) form an admissible reduction of the Hirota system

with θ ∈ S1, in the following sense: if any three of the four points w(x0),

w(y0), w(x1), w(y1) satisfy the condition (8.18), then so does the fourth one.

This is immediately seen, if one rewrites the Hirota equation (8.10) in one

of the two equivalent forms:

(8.19)
w(x1)

w(x0)
=

θ1w(y1)− θ0w(y0)

θ1w(y0)− θ0w(y1)
⇔ w(y1)

w(y0)
=

θ0w(x0) + θ1w(x1)

θ0w(x1) + θ1w(x0)
.

As a consequence of this remark, we obtain Bäcklund transformations for

integrable circle patterns.

Theorem 8.11. (Bäcklund transformations of integrable circle pat-
terns) Let all θ ∈ S1, and let p : V (D) → C be the corresponding rhombic
realization of D. Let the solution w : V (D) → C of the Hirota system corre-
spond to a circle pattern with combinatorics of G, i.e., satisfy (8.18). Con-
sider its Bäcklund transformation w+ : V (D) → C with an arbitrary param-
eter λ ∈ S1 and with an arbitrary initial value w+(x0) ∈ R+ or w+(y0) ∈ S1.
Then

(8.20) w+(x) ∈ R+, w+(y) ∈ S1, ∀x ∈ V (G), y ∈ V (G∗),

so that w+ corresponds to a circle pattern with combinatorics of G∗, which
we call a Bäcklund transform of the original circle pattern.

We close this section by mentioning several Laplace type equations which

can be used to describe integrable circle patterns. First of all, the restriction

of the function z to V (G) (i.e., to the intersection points of the circles)

satisfies the equations

n∑
k=1

αk − αk+1

z(xk)− z(x0)
= 0.

Here z(x0) is any intersection point where n circles C(y1), . . . , C(yn) meet,

z(xk) is the second intersection point of C(yk) with C(yk+1) for each k,

and the αk are the labels on the edges (x0, yk) ∈ E(D). Analogously, the
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restriction of the function z to V (G∗) (i.e., to the centers of the circles)

satisfies the equation
m∑

j=1

αj−1 − αj

z(yj)− z(y0)
= 0.

Here z(y0) is the center of any circle C(y0) that intersects the m circles

C(y1), . . . , C(ym) with centers at the points z(yj); the intersection of C(y0)

with C(yj) consists of two points z(xj−1), z(xj), and αj are the labels on

the edges (y0, xj) ∈ E(D). These two Laplace type equations follow from

the first claim of Theorem 6.31 applied to the cross-ratio system, which is

nothing but the case (Q1)δ=0 of Theorem 6.32.

A similar construction can be applied to the Hirota system, written in

the three-leg form (8.19). Again, it yields two multiplicative Laplace type

equations — on G and on G∗. It is instructive to look at the equation on G∗

(for the radii rj = w(yj) of the circles):

m∏
j=1

θjrj − θj−1r0

θjr0 − θj−1rj
= 1.

Due to (8.17), this equation can be written in terms of the intersection angles

φj of C(y0) with C(yj), and it takes the form of (8.4). Interestingly, the

latter equation holds for any circle pattern and is not specific for integrable

ones (as opposed to the similar Laplace type equation on G).

8.4. za and log z circle patterns

Due to the 3D consistency of the cross-ratio and the Hirota systems, we can

follow the procedure of Section 6.8 and extend solutions of these systems

from a quasicrystallic quad-graph D, realized as a quad-surface ΩD ⊂ Zd,

to the whole of Zd (more precisely, to the hull of ΩD). Then, one can ask

about isomonodromic solutions. This leads to discrete analogs of the power

function. Naturally, these discrete power functions are defined on the same

branched covering S̃ of the set
⋃2d

m=1 Sm ⊂ Zd as the discrete logarithmic

function of Section 7.5.

The discrete cross-ratio system on Zd reads:

(8.21) q
(
z(n), z(n + ej), z(n + ej + ek), z(n + ek)

)
= θ2

j /θ2
k,

and possesses the discrete zero curvature representation with transition ma-

trices along the edges (n, n + ek) of Zd given by

(8.22) Lk(n; λ) =

⎛⎝ 1 z(n)− z(n + ek)

λθ2
k/(z(n)− z(n + ek)) 1

⎞⎠ .
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Through the transformation

(8.23) z(n + ek)− z(n) = θkw(n)w(n + ek),

the solutions of the cross-ratio system are related to the solution of the

Hirota system in Zd,

θjw(n)w(n + ej) + θkw(n + ej)w(n + ej + ek)(8.24)

−θjw(n + ej + ek)w(n + ek)− θkw(n + ek)w(n) = 0.

The latter system possesses a discrete zero curvature representation with

transition matrices along the edges (n, n + ek) of Zd given by

(8.25) Lk(n; λ) =

⎛⎝ 1 −θkw(n + ek)

λθk/w(n) w(n + ek)/w(n)

⎞⎠ .

Special solutions of these two systems on S̃ are defined by the following

choice of initial data.

Definition 8.12. (Discrete z2a) For a ∈ (0, 1), the discrete z2a is the
solution of the cross-ratio system on S̃ defined by the values on the coordinate
semiaxes z

(r)
n = z(ner), r ∈ [m, m+d−1], which solve the recurrence relation

(8.26) n
(zn+1 − zn)(zn − zn−1)

zn+1 − zn−1
= azn

with the initial conditions

(8.27) z
(r)
0 = z(0) = 0, z

(r)
1 = z(er) = θ2a

r = exp(2a log θr),

where log θr is chosen in the interval (7.26).

Definition 8.13. (Discrete w2a−1) For a ∈ (0, 1), the discrete w2a−1 is
the solution of the Hirota system on S̃ defined by the values on the coordinate
semiaxes w

(r)
n = w(ner), r ∈ [m, m + d − 1], which solve the recurrence

relation

(8.28) n
wn+1 − wn−1

wn+1 + wn−1
=
(
a− 1

2

)(
1− (−1)n

)
with the initial conditions

(8.29) w
(r)
0 = w(0) = 0, w

(r)
1 = w(er) = θ2a−1

r = exp((2a− 1) log θr),

where log θr is chosen in the interval (7.26).

By induction, one can derive the following explicit expressions for the

solutions z
(r)
n :

(8.30) z
(r)
2n =

n−1∏
k=1

k + a

k − a
· n

n− a
· θ2a

r , z
(r)
2n+1 =

n∏
k=1

k + a

k − a
· θ2a

r ,
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and for w
(r)
n :

(8.31) w
(r)
2n =

n∏
k=1

k − 1 + a

k − a
, w

(r)
2n+1 = θ2a−1

r .

Observe the asymptotic relations for n →∞:

(8.32) z(r)
n = c(a)(nθr)

2a
(
1 + O(n−1)

)
,

(8.33) w
(r)
2n = c(a)n2a−1

(
1 + O(n−1)

)
.

The main technical advantage of the w variables is seen from the following

observation.

Theorem 8.14. (Discrete z2a defines a circle pattern) The function
w2a−1 takes values in R+ at the white points and values in S1 at the black
points. Therefore, the function z2a defines a circle pattern.

Proof. The claim for w2a−1 on the coordinate axes is obvious from the

explicit formulas (8.31), and can be extended to the whole of S̃ according to

the remark after Theorem 8.10. The statement for z2a is now a consequence

of Theorem 8.10. �

The restriction of z2a to various quad-surfaces ΩD give the discrete

analogs of the power function on the corresponding quasicrystallic quad-

graphs D with the set Θ = {±θ1, . . . ,±θd} of edge slopes; see Figure 8.4.

These pictures lead to the conjecture that the circle patterns z2a are embed-

ded. One possible approach to the analytic study of these patterns could be

based on applying the well-developed techniques of the theory of isomon-

odromic solutions. For either of the systems one can introduce the moving

frame as in (7.34):

Ψ(n + ek; λ) = Lk(n; λ)Ψ(n; λ),

and define its logarithmic derivatives as in (7.35):

A(n; λ) =
dΨ(n; λ)

dλ
Ψ−1(n; λ).

Theorem 8.15. (Discrete z2a is isomonodromic) Consider the solution
of the cross-ratio system in (Z+)d with the initial data (8.30). For a proper
choice of A(0; λ), the matrices A(n; λ) at any point n ∈ (Z+)d have simple
poles only:

(8.34) A(n; λ) =
A(0)(n)

λ
+

d∑
l=1

B(l)(n)

λ− θ−2
l

,
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Figure 8.4. Circle patterns z4/5 with combinatorics of the square grid,
and z2/3 with combinatorics of the regular hexagonal lattice (isotropic
and nonisotropic).

with

(8.35) A(0)(n) =

⎛⎝−a/2 −az(n)

0 a/2

⎞⎠ ,

B(l)(n) =
nl

z(n + el)− z(n− el)
(8.36)

×
⎛⎝z(n + el)− z(n) (z(n + el)− z(n))(z(n)− z(n− el))

1 z(n)− z(n− el)

⎞⎠.

At any point n ∈ S̃, the discrete z2a satisfies the following constraint:

(8.37)

d∑
j=1

nj
(z(n + ej)− z(n))(z(n)− z(n− ej))

z(n + ej)− z(n− ej)
= az(n).
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Theorem 8.16. (Discrete w2a−1 is isomonodromic) Consider the solu-
tion of the Hirota system in (Z+)d with the initial data (8.31). For a proper
choice of A(0; λ), the matrices A(n; λ) at any point n ∈ (Z+)d have simple
poles only:

(8.38) A(n; λ) =
A(0)(n)

λ
+

d∑
l=1

B(l)(n)

λ− θ−2
l

,

with

(8.39) A(0)(n) =

⎛⎝−a/2 ∗
0 a/2

⎞⎠ ,

(8.40)

B(l)(n) =
nl

w(n + el) + w(n− el)

⎛⎝w(n + el) θlw(n + el)w(n− el)

1/θl w(n− el)

⎞⎠ .

The upper right entry of the matrix A(0)(n), denoted by the asterisk in
(8.39), is given by A

(0)
12 (n) = −∑d

l=1 B
(l)
12 (n). At any point n ∈ S̃, the

discrete w2a−1 satisfies the following constraint:

(8.41)

d∑
l=1

nl
w(n + el)− w(n− el)

w(n + el) + w(n− el)
=
(
a− 1

2

)(
1− (−1)n1+···+nd

)
.

Proof. The proof of both theorems follows the same scheme as the proof

of Theorem 7.14: one first shows that the poles of A(ner; λ) remain simple,

due to the recurrence relations (8.26), resp. (8.28), and then shows that the

order of poles does not increase at the points n away from the coordinate

axes, due to the multidimensional consistency. �

The transition between z and w variables is a matter of straightforward

computations. Actually, both theorems are dealing with the same matrices

but written in different variables.

It is interesting to study the limiting behavior of the function z2a as

a → 0. It is not difficult to see that for all n �= 0 one has z2a(n) → 1.

Denote

(8.42) L(n) = lim
a→0

z2a(n)− 1

2a
.

This function is called the discrete logarithmic function; it should not be

confused with the namesake function �(n) in the linear theory (Section 7.5).

From (8.42) the following characterization is found: the discrete logarithmic

function L is the solution of the discrete cross-ratio system on S̃ defined by
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the values on the coordinate semiaxes L
(r)
n = L(ner), r ∈ [m, m + d − 1],

which solve the recurrence relation

(8.43) n
(Ln+1 − Ln)(Ln − Ln−1)

Ln+1 − Ln−1
=

1

2

with the initial conditions

(8.44) L
(r)
0 = L(0) = ∞, L

(r)
1 = L(er) = log θr,

where log θr is chosen in the interval (7.26). Explicit expressions:

(8.45) L
(r)
2n = log θr +

n−1∑
k=1

1

k
+

1

2n
, L

(r)
2n+1 = log θr +

n∑
k=1

1

k
.

Theorem 8.17. (Circle pattern logarithm is isomonodromic) The
discrete logarithm is isomonodromic and satisfies, at any point n ∈ S̃, the
following constraint:

(8.46)

d∑
j=1

nj
(L(n + ej)− L(n))(L(n)− L(n− ej))

L(n + ej)− L(n− ej)
=

1

2
.

By restriction to quad-surfaces ΩD, we come to the discrete logarithmic

function on arbitrary quasicrystallic quad-graphs D. By construction, they

all correspond to circle patterns. A conjecture that these circle patterns are

embedded seems plausible (see Figure 8.5).

Figure 8.5. Discrete logarithm circle patterns with combinatorics of
the regular square and hexagonal lattices.

8.5. Linearization

Let θ : �E(D) → C be an edge labelling, and let p : V (D) → C be the

corresponding parallelogram realization of D defined by p(y)−p(x) = θ(x, y).

Consider the trivial solutions

z0(x) = p(x), w0(x) = 1, ∀x ∈ V (D)
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of the cross-ratio system (8.9) and the corresponding Hirota system (8.11).

Suppose that z0 : V (D) → C belongs to a differentiable one-parameter

family of solutions zε : V (D) → C, ε ∈ (−ε0, ε0), of the same cross-ratio

system, and denote by wε : V (D) → C the corresponding solutions of the

Hirota system. Denote

(8.47) g =
dzε

dε

∣∣∣∣
ε=0

, f =

(
w−1

ε

dwε

dε

)
ε=0

.

Theorem 8.18. (Discrete derivative for discrete holomorphic func-
tions) Both functions f, g : V (D) → C solve discrete Cauchy-Riemann
equations (7.16).

Proof. By differentiating (8.12), we obtain a relation between the functions

f, g : V (D) → C:

(8.48) g(y)− g(x) =
(
f(x) + f(y)

)(
p(y)− p(x)

)
, ∀(x, y) ∈ �E(D).

The proof of the theorem is based on this relation solely. Indeed, the ex-

actness condition for the form on the right-hand side on an elementary

quadrilateral reads(
f(x0) + f(y0)

)(
p(y0)− p(x0)

)
+
(
f(y0) + f(x1)

)(
p(x1)− p(y0)

)
+
(
f(x1) + f(y1)

)(
p(y1)− p(x1)

)
+
(
f(y1) + f(x0)

)(
p(x0)− p(y1)

)
= 0,

which is equivalent to (7.16) for the function f . Similarly, the exactness

condition for f , that is,(
f(x0) + f(y0)

)− (f(y0) + f(x1)
)

+
(
f(x1) + f(y1)

)− (f(y1) + f(x0)
)

= 0,

yields

g(y0)− g(x0)

p(y0)− p(x0)
− g(x1)− g(y0)

p(x1)− p(y0)
+

g(y1)− g(x1)

p(y1)− p(x1)
− g(x0)− g(y1)

p(x0)− p(y1)
= 0.

Under the condition p(y0)−p(x0) = p(x1)−p(y1), this is equivalent to (7.16)

for g. �

Remark. This proof shows that, given a discrete holomorphic function

f : V (D) → C, relation (8.48) correctly defines a unique, up to an additive

constant, function g : V (D) → C, which is also discrete holomorphic. Con-

versely, for any g satisfying the discrete Cauchy-Riemann equations (7.16),

relation (8.48) defines a function f uniquely (up to an additive black-white

constant); this function f also solves the discrete Cauchy-Riemann equa-

tions (7.16). Actually, formula (8.48) expresses that the discrete holomor-

phic function f is the discrete derivative of g, and so g is obtained from f
by discrete integration.

Summarizing, we have the following statement.
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Theorem 8.19. (Linearization of circle patterns)

a) A tangent space to the set of solutions of an integrable cross-ratio
system, at a point corresponding to a rhombic embedding of a quad-graph,
consists of discrete holomorphic functions on this embedding. This holds in
both descriptions of the above set: in terms of variables z satisfying the cross-
ratio equations, and in terms of variables w satisfying the Hirota equations.
The corresponding two descriptions of the tangent space are related via the
discrete derivative (resp. antiderivative) of discrete holomorphic functions.

b) A tangent space to the set of integrable circle patterns of a given
combinatorics, at a point corresponding to an isoradial pattern, consists of
discrete holomorphic functions on the rhombic embedding of the correspond-
ing quad-graph, which take real values at white vertices and pure imaginary
values at black ones. This holds in the description of circle patterns in terms
of circle radii and rotation angles at intersection points (Hirota system).

A spectacular example of this linearization property is delivered by the

isomonodromic discrete logarithm studied in Section 7.5 and isomonodromic

z2a circle patterns of Section 8.4.

Theorem 8.20. (Linearization of w2a−1 circle patterns is the dis-
crete logarithm) The tangent vector to the space of integrable circle pat-
terns along the curve consisting of patterns w2a−1, at the isoradial point
corresponding to a = 1/2, is the discrete logarithmic function � defined in
Section 7.5.

Proof. We have to prove that the discrete logarithm � and the discrete

power function w2a−1 are related by

�(n) =
(1

2

d

da
w2a−1(n)

)
a=1/2

.

Due to Theorem 8.18, it is enough to prove this for the initial data on the

coordinate semiaxes. But this follows by differentiating with respect to a
the initial values (8.31) at the point a = 1/2, where all w = 1: the result

coincides with (7.31). �

8.6. Exercises

8.1. Check that formulas (8.30), (8.31) give solutions to the corresponding

difference equations (8.26), (8.28).

8.2. Prove asymptotic relations (8.32), (8.33).

8.3. Fill in the details of the proofs of Theorems 8.15, 8.16.
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8.4. For every solution z : Zd → C of the cross-ratio system (8.21), define

the dual solution z∗ : Zd → C by

z∗(n + ej)− z∗(n) =
θ2
j

z(n + ej)− z(n)
.

The dual solution is defined uniquely up to translation, and this freedom can

be fixed by prescribing z∗(0). Show that for a ∈ (0, 1) the dual solution to

the discrete z2a, normalized to vanish at n = 0, coincides with the discrete

z2(1−a).

8.5. Show that the limit a → 1 in Definition 8.12 leads to the discrete z2

as a solution of the cross-ratio equation, satisfying the recurrence relations

(8.26) with a = 1 on the coordinate semiaxes, and with the initial data

z(0) = 0, z(ej) = 0, z(2ej) = θ2
j , z(ej + ek) =

θ2
j − θ2

k

2(log θj − log θk)
.

In particular, one sector of the discrete z2, defined on (Z+)2, in the case of

θ1 = 1, θ2 = i, is characterized by the initial data

z(0, 0) = z(1, 0) = z(0, 1) = 0, z(2, 0) = 1, z(0, 2) = −1, z(1, 1) = i
2

π
.

8.6. Show that the dual solution to the discrete z2 is the discrete logarithm

L.

8.7. Show that for the cross-ratio system on (Z+)2 with θ1 = 1, θ2 = i, the

dual solution to z(m, n) = 1/(m + in) is given by

z∗(m, n) =
1

3

(
(m + in)3 − (m− in)

)
.

This can be regarded as the discrete z3.

8.7. Bibliographical notes

Section 8.1: Circle patterns. The idea that circle packings and, more

generally, circle patterns serve as a discrete counterpart of analytic functions

is by now well established; see the monograph by Stephenson (2005). The

origin of this idea is connected with the approach by Thurston (1985) to

the Riemann mapping theorem via circle packings. Since then the theory

bifurcated to several areas.

One of them is dealing mainly with approximation problems. The most

popular are hexagonal packings, for which the convergence to the Riemann

mapping was established in Rodin-Sullivan (1987). In He-Schramm (1998)

it was shown that this convergence actually holds in the class C∞, that is,

all higher derivatives are approximated. Similar results are available also for
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circle patterns with combinatorics of the square grid introduced in Schramm

(1997), and even for more general circle patterns; see Bücking (2007).

Another area concentrates around the uniformization theorem of Koebe-

Andreev-Thurston, and is dealing with circle packing realizations of cell com-

plexes of prescribed combinatorics, rigidity properties, constructing hyper-

bolic 3-manifolds, etc.; see Thurston (1997), He (1999), Stephenson (2005).

A variational description of circle packings was initiated by Colin de

Verdière (1991). Further progress is due to Brägger (1992), Rivin (1994),

and Bobenko-Springborn (2004). The extremals of the functional used in the

last paper are described by equation (8.4). An application of this approach in

discrete differential geometry is the construction of discrete minimal surfaces

through circle patterns in Bobenko-Hoffmann-Springborn (2006).

The main topic of this chapter is interrelations of circle patterns with

integrable systems. See the notes to Section 8.3.

Section 8.2: Integrable cross-ratio and Hirota systems. In this gen-

erality (for arbitrary quad-graphs) this material is due to Bobenko-Suris

(2002a). On Z2 the relation between the cross-ratio and Hirota systems

is considered in Capel-Nijhoff (1995). Our presentation follows Bobenko-

Mercat-Suris (2005).

Section 8.3: Integrable circle patterns. Orthogonal circle patterns with

combinatorics of the square grid were studied in Schramm (1997). Hexagonal

circle patterns with fixed intersection angles were investigated in Bobenko-

Hoffmann (2003), and with the multiratio property, in Bobenko-Hoffmann-

Suris (2002). The general theory presented here is formulated in Bobenko-

Mercat-Suris (2005).

Section 8.4: za and log z circle patterns. The circle patterns za on the

square lattice were introduced in Bobenko (1999) and studied in Bobenko-

Pinkall (1999) and Agafonov-Bobenko (2000). The conjecture that these

patterns are embedded, i.e., the interiors of different kites are disjoint, was

formulated in the first of these papers. The study was extended to the reg-

ular hexagonal grid in Bobenko-Hoffmann (2003). The fact that the circle

patterns za are immersed, i.e., the neighboring kites do not overlap, was

proven in Agafonov-Bobenko (2000) for the square grid and in Agafonov-

Bobenko (2003) for the hexagonal grid combinatorics. The embeddedness

was proven in Agafonov (2003) for the case of the square grid combina-

torics. The isomonodromic constraint (8.37) was obtained first for a = 1/2

in Nijhoff (1996), with no geometric interpretation. For the Hirota sys-

tem, the isomonodromic constraint (8.41) was derived in Nijhoff-Ramani-

Grammaticos-Ohta (2001), also with no relation to geometry. Our presen-

tation here follows Bobenko-Mercat-Suris (2005).
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Section 8.5: Linearization. The operation of discrete integration for

discrete holomorphic functions was considered in Duffin (1956, 1968), and

Mercat (2001). Linearization of circle patterns was studied in Bobenko-

Mercat-Suris (2005); in particular, the derivation of Green’s function from

the za circle pattern is taken from this paper.

Section 8.6: Exercises.

Ex. 8.3: See Bobenko-Mercat-Suris (2005).

Ex. 8.5: See Agafonov-Bobenko (2000).

Ex. 8.6: See Agafonov-Bobenko (2000) in the case of the regular square

grid.

Ex. 8.7: See Bobenko-Pinkall (1999).
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