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Introduction

The most widespread utility functional used in the economics of time and uncertainty
is the time–additive expected utility functional. This functional forms the basis for
Merton’s (1971) theory of optimal portfolio choice and Breeden’s (1979) Consumption
Based CAPM and the huge literature following these two fundamental articles.

The time–additive utility functional has been criticized for several deficiencies and
consequently been extended in several directions. Here, we are concerned with what we
consider to be the most fundamental critic made by Hindy, Huang, and Kreps (1992)
(HHK henceforth) which is, at the same time, also an inspiring new approach to in-
tertemporal decision theory.

HHK start with an economically sensible requirement for intertemporal preferences:
since consumption of a good at one time is a close substitute for consumption of the
same good an instant later, preferences for intertemporal consumption plans should re-
act in a continuous way when a consumption plan is shifted slightly over time. HHK
present several topologies which formalize the idea of intertemporal substitution and
compute the corresponding topological duals from which price functionals should come.
As a negative result, they show that the time–additive expected utility functional is
not continuous with respect to those topologies — stated differently, the time–additive
expected utility functional is not a good choice if one accepts the requirement of in-
tertemporal substitution. HHK present alternative utility functionals which are indeed
continuous with respect to the proposed topologies and Hindy and Huang (1992) ex-
tend this approach to the stochastic framework. They do not establish, however, the
existence of an equilibrium.

In the case of certainty, the problem of existence is solved by Mas-Colell and Richard
(1991) which is the most general existence theorem for exchange economies with infinite
dimensional commodity space to date; in fact, the HHK paper provoked the Mas–Colell–
Richard theorem.

In the general case with uncertainty, however, the Mas–Colell–Richard theorem does
not apply, and existence of an equilibrium has remained an open issue. The present
paper fills this gap. We prove existence of exchange equilibria for economies which
include the HHK economy as a special case, and we characterize equilibrium prices.

Concerning our setup, we follow in spirit if not literally the fundamental work of
Hindy, Huang, and Kreps (1992).

Consumption patterns are described in cumulative form, i.e., as rightcontinuous,
increasing processes on [0, T ]. Of course, these patterns also have to be adapted to the
information flow in the economy. The consumption space is thus the positive cone in
the space of all optional random measures with integrable total variation.

To capture the substitutability of consumption over time, we endow the consumption
space with the topology of weak convergence in probability plus L1–convergence of total
masses. The norm(s) used by Hindy and Huang (1992) induce the same topology on
the consumption space.
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Agents are characterized by strictly monotone, strictly concave utility functionals
which are continuous in our topology. Moreover, we assume that subgradients exist for
the utility functionals and that these subgradients are bounded and bounded away from
zero on the set of feasible allocations. This smoothness assumption plays here the same
role as (and is somewhat stronger than) uniform properness. The utility functionals
of Hindy–Huang–Kreps and generalizations in the spirit of stochastic differential utility
satisfy these assumptions.

One can show that the setting satisfies all conditions for the Mas–Colell–Richard the-
orem except one: the topological dual is not a lattice, or stated differently, the maximum
of two price candidates does not necessarily induce a continuous linear functional in the
Hindy and Huang (1992) model. The reason for this is inherently stochastic: local time
terms appearing in the Doob–Meyer decomposition of price processes. Hindy and Huang
(1992) show that the topological dual of the commodity space consists of semimartingales
with absolutely continuous compensator. Now the maximum of two semimartingales is
again a semimartingale; however, the compensator of such a maximum involves local
time terms which in general (and in particular in the Brownian models mostly used in
finance) can be singular with respect to Lebesgue measure. Thus, the compensator is
not absolutely continuous in general and the topological dual is not a lattice. Hence,
the Mas–Colell–Richard theorem does not apply, and a different approach is required.

Our approach keeps as much as possible from the well established tools of the lit-
erature. Indeed, as usual in the context of infinite dimensional commodity spaces with
finitely many agents, the Negishi–method is the basis for the proof of existence. As in
Mas-Colell and Richard (1991), a disaggregated version of the Negishi approach is used
in the sense that we consider the utility gradient of every individual agent at some Pareto
optimum and take as price candidate a weighted maximum of these gradients. This is
where the lattice structure plays a role in the abstract Mas–Colell–Richard theorem and
where, therefore, we must deviate.

The major deviation from Mas-Colell and Richard (1991) is that, since we cannot
work with the topological dual of Hindy and Huang (1992), we define the topology only
on the positive cone of the commodity space. Several extensions of the topology to the
whole space are possible, but we do not need to specify one. The topological dual plays
no role in our argument.

Instead, we employ continuity of the price candidates only on the order ideal which
is generated by aggregate endowment. This order ideal can be identified as some L∞–
space and thus, every bounded process induces a continuous linear functional. This
makes it possible to prove existence of equilibria in the economy restricted to the order
ideal. The same idea has been used by Duffie and Zame (1989) to establish existence of
a CCAPM equilibrium with time–additive preferences.

In a final step, we show that the equilibrium of the restricted economy is also an
equilibrium of the original economy. In order to perform this step, we show that sup-
porting price functionals can be represented as weighted maxima of utility gradients
evaluated at the associated optimal allocation. This gives us the required extension of
the equilibrium price functional from the order ideal to the consumption space.
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As explained above, the equilibrium price functional does not necessarily belong to
the topological dual of Hindy and Huang (1992), i.e. there may be points of discon-
tinuity in the commodity space. Nevertheless, one may ask whether the functional is
continuous on the consumption space, i.e. the positive cone of the commodity space.
We show that the answer to this question is affirmative, under the additional assump-
tions that the information flow in the economy is quasi–leftcontinuous and that utility
gradients are semimartingales with a continuous compensator. Hence, for HHK utilities,
for example, there exists an equilibrium with a price functional which is continuous on
the consumption space albeit not on the whole commodity space. For the purposes of
agents, this is the relevant kind of continuity since they are only interested in positive
consumption bundles.

If utility gradients are semimartingales, so are equilibrium prices as they take the
form of a weighted maximum of such gradients. This is notable since semimartingale
prices can be ensured in the time–additive model only by assuming that the aggregate
endowment rate follows a semimartingale. Here, price processes have this particularly
nice structure for any kind of endowment stream.

In contrast to a conjecture in Hindy and Huang (1992), however, it is not possi-
ble to ensure existence of an interest rate in general. Technically, this follows from an
application of the Ito–Tanaka formula to the mentioned maximum representation of
equilibrium prices. It turns out that the predictable part of equilibrium prices typically
has a singular local time component, even when the basic utility gradients are com-
pensated by absolutely continuous processes. The economic reason for this singularity
is that agents refrain from consuming totally when prices are too high as compared to
their marginal utility of consumption, and they only resume consumption after a de-
cline of prices. Hence, it may happen that the identity of the agent whose gradient sets
the price changes when one agent stops consuming and another one restarts. If prices
fluctuate in a diffusion–like manner, such periods of changes may be arbitrarily small,
leading to a singular component in the evolution of equilibrium prices. Essentially the
same singularity effect can also be observed in time–additive settings when marginal
utility at zero is finite as has been shown by Karatzas, Lehoczky, and Shreve (1991). A
difference to the time–additive case with finite marginal utility at zero is that an interest
rate does exist as long as there is one agent who consumes all the time because then the
price process is identical to this agent’s utility gradient.

The paper is organized as follows. Section 1 describes the economy under uncertainty,
the consumption space and agents’ utility functionals. Section 2 analyzes efficient alloca-
tions and their supporting prices. Section 3 establishes existence of general equilibrium
for this economy. Finally, the continuity properties of equilibrium price functionals are
studied in Section 4.
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1 The Economy

We consider a stochastic pure exchange economy with a finite set of agents I. Un-
certainty is modeled through a filtered probability space (Ω,FT , (Ft, 0 ≤ t ≤ T ),P)
satisfying the usual conditions of right continuity and completeness; F0 is P-a.s. trivial.

1.1 Consumption Plans and Price Functionals

Under certainty, cumulative consumption is represented by an increasing, rightcontinu-
ous function in

M+
∆
= {F : [0, T ] → [0,+∞) | F is rightcontinuous and increasing} .

Since small shifts over time affect an agent’s appreciation of a consumption plan only
slightly, the economically appropriate notion of closeness between consumption plans is
the Prohorov distance

dM+(F, F ′)
∆
= inf{ε > 0 | F (t− ε)− ε ≤ F ′(t) ≤ F (t+ ε) + ε for all t ∈ [0, T ]} .

This metric induces the weak topology on M+. In so far we follow, in spirit if not
literally, the fundamental work of Hindy, Huang, and Kreps (1992).

Under uncertainty, an agent chooses a random element C(ω) ∈ M+ which has to
conform to the available information in the sense that (C(t))0≤t≤T is an adapted process.
We assume in addition that expected total consumption remains finite and, thus, the
consumption space is

X+
∆
= {C : (Ω,FT ) →M+ | (C(t))0≤t≤T is adapted with EC(T ) < +∞} .

A natural extension of the Prohorov distance to the uncertain framework is given by

dX+(C,C ′)
∆
= E

[
dM+(C,C ′) ∧ 1

]
+ E |C(T )− C ′(T )| .

This metric endows X+ with the topology of weak convergence in probability plus L1–
convergence of total masses.

The consumption space X+ has a natural ordering � given by

C � C ′ ⇔ C ′ − C ∈ X+ .

Remark 1.1 Note that � does not denote a preference relation. Throughout this paper,
agents’ preferences will be described by utility functionals. Hence, no confusion should
arise.

Every bounded measurable process ψ : Ω× [0, T ] → R gives rise to a (not necessarily
continuous) linear functional 〈ψ, .〉 on X+ via

〈ψ,X〉 ∆
= E

∫ T

0

ψ(t) dX(t) (X ∈ X+) .

If, in addition, ψ is nonnegative and optional, we call it a price process, and we call
〈ψ, .〉 a price functional on X+.
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Remark 1.2 Note that we do not assume continuity of price functionals a priori as is
usually done in equilibrium theory. In fact, we will first identify an equilibrium price
functional in the much larger space of all linear functionals and establish a posteriori its
continuity under appropriate conditions; see Theorem 4.1.

1.2 Primitives of the Economy

Each agent i ∈ I is endowed with some cumulative income stream Ei ∈ X+. To avoid

trivial cases, we assume Ei 6= 0. Aggregate endowment is E
∆
=

∑
iEi.

Assumption 1 Agent i’s preferences are described by a utility functional Vi : X+ → R
with the following properties:

(i) Vi is continuous with respect to dX+, strictly concave and strictly increasing with
respect to �,

(ii) for every C ∈ X+ there exists a bounded optional process ∇Vi(C) with the subgra-
dient property

Vi(C
′)− Vi(C) ≤ 〈∇Vi(C), C ′ − C〉 (C ′ ∈ X+) .

These subgradients are continuous in the sense that, for any two C,C ′ ∈ X+,

lim
ε↓0

〈∇Vi(εC ′ + (1− ε)C), C ′ − C〉 = 〈∇Vi(C), C ′ − C〉 .

Hence, we assume essentially convexity of preferences and a sufficient degree of
smoothness. In addition, we require the following technical

Assumption 2 Subgradients are uniformly bounded from above and bounded away from
zero in the sense that there are nonnegative, optional processes b, B ∈ L1

+(P⊗ dE)\{0}
such that

b ≤ ∇Vi(C) ≤ B P⊗ dE–a.e.

for all C ∈ X+ with C � E.

1.3 Examples

A class of utility functionals which satisfy Assumptions 1 and 2, and which in fact
motivated this work are
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Hindy–Huang–Kreps Preferences. These preferences are given by a utility func-
tional of the form

V (C)
∆
= E

∫ T

0

u(t, Y (C)(t)) dt (C ∈ X+)

where u : [0, T ]×R+ → R denotes a continuous felicity function which is strictly concave,
twice continuously differentiable and increasing in its second argument. The quantity

Y (C)(t)
∆
= ηe−βt +

∫ t

0

βe−β(t−s) dC(s)

describes the investor’s level of satisfaction obtained from his consumption up to time
t ∈ [0, T ]; η > 0 is his initial level of satisfaction, and β > 0 measures how fast
satisfaction decays.

The subgradient ∇V at a given consumption plan C ∈ X+ is given by the optional
version of

∇V (C)(t)
∆
= E

[∫ T

t

∂yu(s, Y (C)(s))βe−β(s−t) ds

∣∣∣∣Ft] (0 ≤ t ≤ T )

as has already been shown by Duffie and Skiadas (1994); Bank and Riedel (2000) prove
continuity of ∇V in the sense of the second part of Assumption 1 (ii). The gradient
bounds of Assumption 2 can be chosen as

b
∆
= min

i
∇Vi(E) and B

∆
= max

i
∇Vi(0) .

Remark 1.3 The above Hindy–Huang–Kreps utility is strictly increasing and strictly
concave only on the slightly smaller consumption space {C ∈ X+ | ∆C(T ) = 0}, since
consumption made at time t = T obviously does not contribute to agent’s utility. How-
ever, this minor deviation from Assumption 1 does not impose any problems if we assume
∆E(T ) = 0.

The generalization of Hindy, Huang, and Zhu (1997) based on two levels of satisfac-
tion is a further example.

Stochastic Differential Utility. Under suitable assumptions, also the stochastic
differential utility version of Hindy–Huang–Kreps preferences forms an example for our
setup. Indeed, let f : [0, T ]× R+ × R → R be a continuous function with the following
properties:

(i) for s ∈ [0, T ], f(s, ·, ·) is strictly increasing, strictly concave, and continuously
differentiable,

(ii) for s ∈ [0, T ] and y ∈ R+, f(s, y, ·) is Lipschitz,
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(iii) for (s, y, u) ∈ [0, T ]× R+ × R, the derivative with respect to y satisfies

∂yf(s, y, u) ≤ K(1 + y)

for some constant K > 0.

Using similar arguments as in Duffie and Epstein (1992), one obtains for any C ∈ X+

a unique optional process U(C) such that

U(C)(t) = E
[∫ T

t

f(s, Y (C)(s), U(C)(s))βe−β(s−t) ds

∣∣∣∣Ft] (0 ≤ t ≤ T )

with Y (C) as above. The utility functional given by V (C)
∆
=U(C)(0) satisfies then

Assumption 1; compare Duffie and Skiadas (1994) and Duffie and Epstein (1992). The
subgradient takes the form

∇V (C)(t) = E
[∫ T

t

eδ(s)∂yf(s, Y (C)(s), U(C)(s))βe−β(s−t) ds

∣∣∣∣Ft]
where δ(t)

∆
=

∫ t

0
∂uf(s, Y (C)(s), U(C)(s)) ds (0 ≤ t ≤ T ).

Remark 1.4 Standard time–additive utility functionals like

V (C) = E
∫ T

0

u(t, c(t)) dt

for absolutely continuous C(t) =
∫ t

0
c(t)dt are not continuous with respect to dX+ and

are thus no examples for our setup; compare Hindy, Huang, and Kreps (1992).

1.4 Equilibrium

An allocation is a vector (Ci)i∈I ∈ X I
+. It is feasible if

∑
iCi � E. The set of feasible

allocations will be denoted by Z.
An (Arrow–Debreu) equilibrium consists of a feasible allocation (C∗

i )i∈I ∈ Z and a
price process ψ∗ such that, for any i ∈ I, the consumption plan C∗

i maximizes agent i’s
utility over all Ci satisfying the budget–constraint 〈ψ∗, Ci〉 ≤ 〈ψ∗, Ei〉 .

The main theorem of this paper is

Theorem 1.5 Under Assumptions 1 and 2, an equilibrium exists.

We have given an informal sketch of the method of proof in the introduction. In the
following, we focus on the technical issues involved.

In Section 2.1 we start with an analysis of the set of Pareto optima parametrized by
the set of utility weights Λ =

{
λ ∈ RI

+ |
∑

i λi = 1
}
. Technically, it is important that

the Pareto optima depend continuously on the utility weights in some topology. Such a
continuity is established for the weak* topology on the order ideal in Lemma 2.2.
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Let us also mention that Kabanov’s version of Komlós’ theorem (Kabanov (1999),
Lemma 3.5; Komlós (1967)) plays an important role in the proofs. It is used to estab-
lish existence of efficient allocations, and it is also useful in showing that the efficient
allocation depends continuously on agents’ weights.

In Section 2.2, we characterize the price functionals which support the efficient allo-
cations on the order ideal. The corresponding price processes are identified as weighted
maxima of agents’ utility gradients at the efficient allocation. This particular structure
allows us to extend the supporting price functionals from the order ideal to the whole
consumption space later on.

Finally, we define in Section 3 the usual excess utility correspondence. Upper hemi–
continuity of this correspondence follows from a classical argument due to Bewley (1969),
and Kakutani’s fixed point theorem yields existence of an equilibrium for the economy
restricted to the order ideal. The characterization of supporting prices as weighted
maxima of utility gradients allows us to extend this equilibrium to an equilibrium of the
original economy.

2 Efficient Allocations and Supporting Prices

The first step in our program is to characterize efficient allocations. To this end, we
prove a version of the Kuhn–Tucker theorem for the welfare maximization problem. As
usual, if agents consume, their utility gradients are equalized in an efficient allocation.
The common value for the utility gradients is the Lagrange multiplier for this problem.
At the same time, it gives rise to a price functional which supports the efficient allocation
in the sense of the Second Welfare Theorem. Of course, their may be other functionals
with the same supporting property. However, as we shall see, they all share the same
structure.

2.1 The Social Welfare–Problem

Let us introduce the set of normalized weights

Λ
∆
=

{
λ ∈ RI

+

∣∣∣ ∑
i
λi = 1

}
.

An allocation (Ci)i∈I is called λ–efficient for agents’ weights λ ∈ Λ if it maximizes the
social welfare

∑
i λiVi(Ci) subject to the feasibility constraint∑

i
Ci � E .

The characterization of efficient allocations is achieved by the following Kuhn–
Tucker–like result.

Lemma 2.1 For any λ ∈ Λ, there exists a unique λ–efficient allocation (Cλ
i )i∈I ∈ Z.

It is characterized by the joint validity of the following properties (i)–(iii) for some
nonnegative, optional random variable ψ:
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(i)
∑

iC
λ
i = E,

(ii) λi∇Vi(Cλ
i ) ≤ ψ,

(iii)
〈
ψ − λi∇Vi(Cλ

i ), Cλ
i

〉
= 0 for every i ∈ I .

The random variable ψ plays the role of a Lagrange multiplier for the problem of
maximizing social welfare. By the flat–off condition (iii), it is uniquely determined
P⊗ dE–almost everywhere as

ψ = max
i
{λi∇Vi(Cλ

i )} .

Proof : Uniqueness of the λ–efficient allocation follows as usual from the strict
concavity of the utility functionals Vi (i ∈ I) by considering a convex combination of
two λ–efficient allocations.

To prove existence, we choose a welfare–maximizing sequence of feasible allocations
((Cn

i )i∈I , n = 1, 2, . . .) such that∑
i
λiVi(C

n
i ) → sup

(Ci)∈Z

∑
i
λiVi(Ci) .

By feasibility, each sequence (Cn
i (T ), n = 1, 2, . . .) (i ∈ I) is bounded in L1(P).

Hence, we may use Kabanov’s version of Komlós’ theorem (Kabanov (1999), Lemma
3.5; Komlós (1967)) to obtain existence of a subsequence, again denoted by n, such that
each sequence (Cn

i , n = 1, 2, . . .) (i ∈ I) is almost surely weakly Cesaro convergent to
some C∗

i (i ∈ I), i.e., we have almost surely

C̃n
i (t)

∆
=

1

n

∑n

k=1
Ck
i (t) → C∗

i (t)

for t = T and also for every point of continuity t of C∗
i . The above convergence shows

that (C∗
i )i∈I also is a feasible allocation. Moreover, it implies dX+(C̃n

i , C
∗
i ) → 0, as, in

addition to the above weak convergence, (C̃n
i (T ), n = 1, 2, . . .) is dominated since

0 ≤ C̃n
i (T ) ≤ E(T )

by feasibility. Finally, also ((C̃n
i )i∈I , n = 1, 2, . . .) is a maximizing sequence of feasible

allocations due to concavity of social welfare. As C̃n
i → C∗

i in (X+, dX+) for every i ∈ I,
this implies λ–efficiency of (C∗

i )i∈I by continuity of preferences (Assumption 1 (i)).
In order to prove the asserted characterization of efficient allocations, we proceed in

three steps.

1. We start with sufficiency of (i)–(iii). Let (Cλ
i )i∈I denote the λ–efficient allocation

and let (Ci)i∈I ∈ Z be another feasible allocation. Due to the subgradient estimate
of Assumption 1 (ii), we have∑

i
λi{Vi(Cλ

i )− Vi(Ci)} ≥
∑

i
λi

〈
∇Vi(Cλ

i ), Cλ
i − Ci

〉
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which by (ii) and (iii) is

≥
〈
ψ,

∑
i
Cλ
i −

∑
i
Ci

〉
.

As ψ is nonnegative, this yields∑
i
λi{Vi(Cλ

i )− Vi(Ci)} ≥
〈
ψ,E −

∑
i
Ci

〉
≥ 0

by condition (i) and feasibility of (Ci)i∈I . Hence an allocation (Ci)i∈I with (i)–(iii)
indeed attains maximal social welfare among all feasible allocations, given agents’
weights λ.

2. Necessity of condition (i) follows immediately from strict monotonicity of pref-
erences. To prove that conditions (ii) and (iii) hold true for some Lagrange pa-
rameter ψ, consider another feasible allocation (Ci)i∈I ∈ Z. For ε ∈ [0, 1], let

Cε
i

∆
= εCi+(1− ε)Cλ

i (i ∈ I). Since every allocation (Cε
i )i∈I is feasible, λ–efficiency

of (Cλ
i )i∈I yields, for ε ∈ (0, 1],

0 ≥ 1

ε

∑
i
λi{Vi(Cε

i )− Vi(C
λ
i )}

≥ 1

ε

∑
i
λi

〈
∇Vi(Cε

i ), C
ε
i − Cλ

i

〉
=

∑
i
λi

〈
∇Vi(Cε

i ), Ci − Cλ
i

〉
.

Using continuity of subgradients (Assumption 1 (ii)), we may let ε ↓ 0 in the above
estimate to deduce ∑

i
〈φi, Ci〉 ≤

∑
i

〈
φi, C

λ
i

〉
where φi

∆
=λi∇Vi(Cλ

i ) (i ∈ I).

We see that (Cλ
i )i∈I also solves the linear problem to maximize

∑
i 〈φi, Ci〉 over

all feasible allocations. In Step 3 below, we show that every solution (C∗
i )i∈I of

this problem satisfies 〈ψ − φi, C
∗
i 〉 = 0 for every i ∈ I where ψ

∆
= maxi φi. For

C∗ = Cλ, we find that, with this choice of ψ, conditions (ii) and (iii) in fact hold
true, too.

3. Let (C∗
i )i∈I ∈ Z be a feasible allocation such that∑

i
〈φi, Ci〉 ≤

∑
i
〈φi, C∗

i 〉

for every other feasible allocation (Ci)i∈I ∈ Z.

Consider the allocation defined by the optional random measures

dCi(t)
∆
=n(t)−11{φi(t)=ψ(t)}dE(t) (i ∈ I)
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with ψ(t) = maxi φi(t) and where n(t)
∆
=

∑
i 1{φi(t)=ψ(t)} denotes the number of

indices i realizing the max in maxi φi(t) (0 ≤ t ≤ T ). Clearly, (Ci)i∈I is feasible
and satisfies ∑

i
〈φi, Ci〉 = 〈ψ,E〉 .

Therefore,
∑

i 〈φi, C∗
i 〉 cannot be less than 〈ψ,E〉. On the other hand, since ψ ≥

φi ≥ 0 for each i ∈ I and as (C∗
i )i∈I is feasible,

∑
i 〈φi, C∗

i 〉 cannot be greater than
〈ψ,E〉. Thus, we must in fact have∑

i
〈φi, C∗

i 〉 = 〈ψ,E〉

which can hold true only if 〈ψ − φi, C
∗
i 〉 = 0 for every i ∈ I.

2

The dependence of efficient allocations and induced expected utilities on agents’
weights will be described in the following Lemma 2.2 and its Corollary 2.3. The latter
result will be a corner stone for our proof of Theorem 1.5.

Lemma 2.2 The mapping λ 7→ Cλ is weakly continuous in the sense that

lim
λn→λ0

〈
ψ,Cλn

i

〉
=

〈
ψ,Cλ0

i

〉
(i ∈ I)

for every ψ ∈ L1(P⊗ dE).

Proof : Let λn (n = 1, 2, . . .) tend to λ0 in Λ. Put Cn ∆
=Cλn

and consider the
densities

Dn
i

∆
=
dCn

i

dE
(n = 0, 1, . . . , i ∈ I) .

Due to feasibility of efficient allocations, these densities have optional versions taking
values in [0, 1]. Now, writing

〈ψ,Cn
i 〉 = E

∫ T

0

ψ(t)Dn
i (t) dE(t) (n = 0, 1, . . . i ∈ I)

for ψ ∈ L1(P ⊗ dE), we see that our assertion is equivalent to the assertion that, for
every i ∈ I the densities Dn

i (n = 1, 2, . . .) converge to D0
i in the weak*–topology

σ (L∞(P⊗ dE), L1(P⊗ dE)). As the unit ball in L∞(P ⊗ dE) is sequentially compact
with respect to this topology, this convergence will be proved once we know that, for
each i ∈ I, all weak*–convergent subsequences of (Dn

i , n = 1, 2, . . .) have the same limit
D0
i .

To prove this, we slightly abuse notation and suppose that ((Dn
i )i∈I , n = 1, 2, . . .)

is a subsequence such that each component (Dn
i , n = 1, 2, . . .) is weak*–convergent to

some D∞
i ∈ L∞(P⊗ dE) (i ∈ I). We then have to show that D∞

i = D0
i for every i ∈ I.
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For this, we note first that, by feasibility, we have ECn
i (T ) ≤ EE(T ) for any n =

1, 2, . . . and every i ∈ I. Hence, by Kabanov’s version of Komlós’ theorem, there is a
subsequence, again denoted by ((Cn

i )i∈I , n = 1, 2, . . .), such that, for any i ∈ I,

C̃n
i

∆
=

1

n

∑n

k=1
Ck
i

almost surely converges weakly to some C∗
i ∈ X+ in the sense that

dM+(C̃n
i , C

∗
i ) → 0 (n ↑ +∞) .

By dominated convergence, we also have C̃n
i (T ) → C∗

i (T ) in L1(P) and, therefore, even
dX+(C̃n

i , C
∗
i ) → 0 for every i ∈ I. Clearly, the densities

D̃n
i

∆
=
dC̃n

i

dE
=

1

n

∑n

k=1
Dk
i (n = 1, 2, . . .)

inherit weak*–convergence to D∞
i from (Dn

i , n = 1, 2, . . .). Therefore, each C∗
i is

almost surely absolutely continuous with respect to E with density D∞
i . Hence, in

order to conclude our claim, we only need to prove that (C∗
i )i∈I is the unique (!) efficient

allocation for agents’ weights λ0.
To this end, consider any other feasible allocation C = (Ci)i∈I ∈ Z. By continuity

of preferences, we have∑
i
λ0
iVi(C

∗
i ) = lim

n

∑
i
λ0
iVi(C̃

n
i )

which, due to the concavity of every Vi(.) (i ∈ I), is

≥ lim sup
n

1

n

∑n

k=1

∑
i
λ0
iVi(C

k
i )

= lim sup
n

1

n

∑n

k=1

∑
i

{
λki Vi(C

k
i ) +Rk

i

}
for Rk

i
∆
= (λ0

i − λki )Vi(C
k
i ) (k = 1, 2, . . . , i ∈ I). This term tends to zero for k ↑ ∞ as

Vi(C
k
i ) ∈ [Vi(0), Vi(E)] is uniformly bounded and λk → λ0 (k ↑ ∞). Hence, we obtain∑

i
λ0
iVi(C

∗
i ) ≥ lim sup

n

1

n

∑n

k=1

∑
i
λki Vi(C

k
i )

By λk–efficiency of allocation Ck (k = 1, 2, . . .), this is in turn

≥ lim sup
n

1

n

∑n

k=1

∑
i
λki Vi(Ci)

= lim sup
n

∑
i

(
1

n

∑n

k=1
λki

)
Vi(Ci)

=
∑

i
λ0
iVi(Ci)
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where the last equality is due to the convergence λn → λ0. Hence, we have shown∑
i
λ0
iVi(C

∗
i ) ≥

∑
i
λ0
iVi(Ci)

for every feasible allocation (Ci)i∈I . Since, in addition, (C∗
i )i∈I is feasible, it must

coincide with the unique λ0–efficient allocation (C0
i )i∈I and we are done. 2

Let us note the following crucial

Corollary 2.3 Every mapping λ 7→ Vi(C
λ
i ) (i ∈ I) is upper–semicontinuous, i.e.,

lim sup
λn→λ0

Vi(C
λn

i ) ≤ Vi(C
λ0

i ) .

Proof : By concavity we have

Vi(C
λn

i )− Vi(C
λ0

i ) ≤
〈
∇Vi(Cλ0

i ), Cλn

i − Cλ0

i

〉
.

By Lemma 2.2, the last term tends to zero if λn → λ0 in Λ and we are done. 2

2.2 Supporting Prices on the Order Ideal

For some of the following more technical arguments, it will be convenient to work with
the auxiliary consumption space given by the order ideal

X̃+ = X̃+(E)
∆
=

{
X ∈ X+

∣∣∣∣ dXdE exists P–a.s. and is P⊗ dE–essentially bounded

}
.

For a general discussion of the order ideal in general equilibrium theory, we refer the
reader to Mas-Colell and Zame (1991) .

Remark 2.4 The space X̃+ can be identified with L∞+ (Ω× [0, T ],O,P⊗ dE), the set of
all nonnegative, optional processes which are P⊗ dE–essentially bounded. Clearly, any
feasible allocation is contained in X̃ I

+.

By Lemma 2.1, we may associate to every efficient allocation
(
Cλ
i

)
i∈I (λ ∈ Λ) the

Lagrange multiplier

ψλ
∆
= max

i
{λi∇Vi(Cλ

i )} .

We will have a lot more to say about the structure of these multipliers in Section 4.
For the moment, let us content ourselves by noting that each ψλ can be viewed as a
nonnegative, optional random variable in L1(P ⊗ dE). Hence, each of these Lagrange
multipliers gives rise to a price density on X̃+. Considering ψλ as a price density is also
sustained by the fact that it supports its associated efficient allocation (Cλ

i )i∈I . This
will be proved in Lemma 2.6 below.
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Beforehand, let us recall that a price density ψ∗ ∈ L1(P⊗dE) supports an allocation
(C∗

i )i∈I with
∑

iC
∗
i = E, if it is non–zero and if any preferred allocation (Ci)i∈I ∈ X̃ I

+

has a higher ‘price’ under ψ∗ than (C∗
i )i∈I . More precisely, we say ψ∗ supports (C∗

i )i∈I
with

∑
iC

∗
i = E iff 〈ψ∗, E〉 6= 0 and

Vi(Ci) ≥ Vi(C
∗
i ), Ci ∈ X̃+ for all i ∈ I implies

〈
ψ∗,

∑
i
Ci

〉
≥ 〈ψ∗, E〉 .

We note the following

Proposition 2.5 If an allocation (C∗
i )i∈I with

∑
iC

∗
i = E is supported by ψ∗ ∈ L1(P⊗

E), then ψ∗ > 0 P⊗ dE–a.e.

Proof : Suppose to the contrary that P ⊗ dE[ψ∗ ≤ 0] > 0. Then, by strict mono-
tonicity and continuity of preferences, we may choose ε > 0 small enough such that the
allocation defined by

dCi
∆
= (1− ε) dC∗

i + 1{ψ∗≤0} dE (i ∈ I)

is preferred to (C∗
i )i∈I . Thus, the supporting property of ψ∗ implies

〈ψ∗, E〉 ≤
〈
ψ∗,

∑
i
Ci

〉
= (1− ε) 〈ψ∗, E〉+ |I|E

∫ T

0

ψ∗1{ψ∗≤0} dE .

Hence, we obtain

|I|E
∫ T

0

ψ∗1{ψ∗≤0} dE ≥ ε 〈ψ∗, E〉 > 0,

a contradiction to the obvious relation E
∫ T

0
ψ∗1{ψ∗≤0} dE ≤ 0. 2

Now, we may prove

Lemma 2.6 The Lagrange multiplier ψλ supports its associated λ–efficient alloca-
tion (Cλ

i )i∈I. Moreover, any other optional price density ψ ∈ L1(P ⊗ dE) with this
property is of the form

ψ = max
i
{ki∇Vi(Cλ

i )} P⊗ dE–a.s.

for some constants ki ≥ 0 (i ∈ I), and the λ–efficient allocation satisfies the flat–off
conditions 〈

ψ − ki∇Vi(Cλ
i ), Cλ

i

〉
= 0 (i ∈ I) .

Proof : In order to show that ψλ supports
(
Cλ
i

)
i∈I , take an allocation (Ci)i∈I ∈ X̃ I

+

with Vi(Ci) ≥ Vi(C
λ
i ). Concavity of Vi yields

0 ≤
∑

i
λi

{
Vi(Ci)− Vi(C

λ
i )

}
≤

∑
i
λi

〈
∇Vi(Cλ

i ), Ci − Cλ
i

〉
.
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By properties (ii) and (iii) of the efficient allocation (Cλ
i )i∈I (Lemma 2.1), the latter

quantity is

≤
∑

i

〈
ψλ, Ci − Cλ

i

〉
=

〈
ψλ,

∑
i
Ci − E

〉
.

Hence, 〈ψλ,
∑

iCi〉 ≥ 〈ψλ, E〉 which is the claimed supporting property.
For the second part of the lemma, suppose that ψ ∈ L1(P ⊗ dE) is optional and

supports the allocation (Cλ
i )i∈I . We only need to show that there are nonnegative

constants ki (i ∈ I) such that

(1) ki∇Vi(Cλ
i ) ≤ ψ P⊗ dE–a.e. and

〈
ψ − ki∇Vi(Cλ

i ), Cλ
i

〉
= 0

for every i ∈ I. To this end, put

ki
∆
= P⊗ dE–ess inf

ψ

∇Vi(Cλ
i )

(i ∈ I) .

Obviously, ki ≥ 0 for every i ∈ I and, of course, the first condition in (1) is satisfied.
To verify the second condition for i ∈ I, let us distinguish the cases

〈
ψ,Cλ

i

〉
= 0 and〈

ψ,Cλ
i

〉
> 0.

In the first case, we may conclude from Proposition 2.5 that Cλ
i = 0. Thus, the

second condition in (1) is satisfied trivially. For the case
〈
ψ,Cλ

i

〉
> 0, we prove below

that Cλ
i maximizes utility over all consumption plans Ci ∈ X̃+ with 〈ψ,Ci〉 ≤

〈
ψ,Cλ

i

〉
.

By arguments similar to the proof of Theorem 3.3 in Bank and Riedel (1999), one then
deduces the validity of the second condition in (1) also in this case.

To obtain the claimed optimality of Cλ
i , it suffices to show that any Ci ∈ X̃+ with

Vi(Ci) > Vi(C
λ
i ) must satisfy 〈ψ,Ci〉 >

〈
ψ,Cλ

i

〉
. Note first that, for such a Ci, we also

have Vi((1 − ε)Ci) > Vi(C
λ
i ) for any sufficiently small ε > 0 by continuity Vi. Consider

the allocation (C̃j)j∈I defined by

C̃j
∆
=

{
(1− ε)Ci for j = i,

Cλ
j otherwise.

This allocation is preferred to (Cλ
i )i∈I and, thus, the supporting property of ψ yields

〈ψ,E〉 ≤
〈
ψ,

∑
j
C̃j

〉
= 〈ψ,E〉+

〈
ψ, (1− ε)Ci − Cλ

i

〉
.

This implies
0 <

〈
ψ,Cλ

i

〉
≤ 〈ψ, (1− ε)Ci〉 < 〈ψ,Ci〉

as we wanted to show. 2
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3 Existence of Equilibria

After these technical preliminaries, we are now in a position to prove existence of equi-
libria for intertemporal consumption.

Proof of Theorem 1.5 We start by defining the correspondence G to which Kakutani’s
fixed point theorem will be applied. To this end, let, for any λ ∈ Λ, S(λ) denote the
set of all optional price densities ψ ∈ L1(P⊗ dE) which support the allocation Cλ and
which, in addition, satisfy

(2)
b

|I| 〈B,E〉
≤ ψ ≤ B

〈B,E〉
P⊗ dE–a.e. and

〈
ψ,Cλ

i

〉
≤ λi for every i ∈ I .

Here, b and B are the optional gradient bounds introduced in Assumption 2.
We now define the correspondence

(3) G(λ)
∆
=

{(
λi +

〈
ψ,Ei − Cλ

i

〉)
i∈I | ψ ∈ S(λ)

}
(λ ∈ Λ) .

In Proposition 3.1 below, we show that indeed G satisfies the conditions required for

Kakutani’s theorem. Hence, G has a fixed point λ∗ ∈ Λ. Let C∗ ∆
=Cλ∗ and note that, by

definition of G, there is ψ∗ ∈ S(λ∗) such that 〈ψ∗, Ei〉 = 〈ψ∗, C∗
i 〉 for every i ∈ I. As ψ∗

supports the efficient allocation C∗, this gives us existence of a quasi–equilibrium in the
auxiliary economy where consumption spaces are given by the order ideal X̃+ ⊂ X+.

Now, recall from Lemma 2.6 that, as the density ψ∗ induces a price functional sup-
porting the allocation (C∗

i )i∈I , it must take the form

(4) ψ∗ = max
i
{k∗i∇Vi(C∗

i )}

for some constants k∗i ≥ 0. Note that, via the right side of (4), ψ∗ allows a canonical
extension to a strictly positive, bounded and optional process on the whole time interval
[0, T ]. This process induces, thus, a price functional 〈ψ∗, .〉 on the ‘large’ consumption
space X+.

Let us next show that, in conjunction with (C∗
i )i∈I , this functional 〈ψ∗, .〉 defines a

true Arrow–Debreu–equilibrium for the ‘large’ economy where consumption spaces are
given by X+. To this end, fix i ∈ I and consider a plan Ci ∈ X+ which is strictly preferred
to C∗

i , i.e., assume Vi(Ci) > Vi(C
∗
i ). We have to show that 〈ψ∗, Ci〉 > 〈ψ∗, C∗

i 〉 =
〈ψ∗, Ei〉. In fact, we have

0 > Vi(C
∗
i )− Vi(Ci) ≥ 〈∇Vi(C∗

i ), C
∗
i − Ci〉 ≥ 〈ψ∗, C∗

i − Ci〉 /k∗i ,

where the last estimate is due to k∗i∇Vi(C∗
i ) ≤ ψ∗ and to the flat–off condition in

Lemma 2.6. Hence, any plan which is strictly preferred to C∗
i violates the investor’s

budget constraint. 2

It remains to establish
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Proposition 3.1 The correspondence G defined by (3) satisfies the conditions of Kaku-
tani’s fixed point theorem:

(i) For every λ ∈ Λ, G(λ) is a non–empty convex subset of Λ.

(ii) G is upper hemi–continuous, i.e.,

{(λ, g) | λ ∈ Λ, g ∈ G(λ)}

is closed in Λ× Λ.

Proof : We adopt the notation from the preceding proof.

1. Let us focus on assertion (i) and note first that G(λ) is nonempty for every λ ∈ Λ.
Indeed, we know from Lemma 2.6 that ψλ supports the allocation Cλ. Clearly,
this property is inherited by every positive multiple of ψλ. Moreover, we have

b

|I|
≤ ψλ ≤ B

such that ψ
∆
=ψλ/ 〈B,E〉 obviously satisfies the first constraint in (2). It also

satisfies the second constraint, since by Lemma 2.1 (iii)〈
ψλ, C

λ
i

〉
= λi

〈
∇Vi(Cλ

i ), Cλ
i

〉
≤ λi 〈B,E〉 .

This shows that S(λ) and, hence, also G(λ) is nonempty.

Convexity of G(λ) follows from convexity of S(λ). Moreover, any g ∈ G(λ) satisfies
gi ≥ 0 for every i ∈ I because of the second constraint in (2). In addition,∑

i gi = 1 by Lemma 2.1 (i). Hence, we have in fact G(λ) ⊂ Λ which completes
the proof of assertion (i).

2. To prove assertion (ii), let λn ∈ Λ and gn ∈ G(λn) (n = 1, 2, . . .) converge to λ0

and g0, respectively. We have to show that g0 ∈ G(λ0). Put Cn ∆
=Cλn

and let
ψn ∈ S(λn) be such that

(5) gni = λni + 〈ψn, Ei − Cn
i 〉 (i ∈ I) .

Due to condition (2), the sequence (ψn, n = 1, 2, . . .) is dominated by the P⊗dE–
integrable process B/ 〈B,E〉. In particular, it is uniformly integrable and, by the
Dunford–Pettis–theorem, there is a subsequence, again denoted by (ψn), which
converges weakly to some ψ in L1(P⊗ dE).

We shall show that ψ belongs to S(λ0) and satisfies

(6) g0
i = λ0

i +
〈
ψ,Ei − C0

i

〉
for every i ∈ I.
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Of course, this will yield assertion (ii). Our argument is based on the following
result

(7) lim
n
〈ψn, Cn

i 〉 =
〈
ψ,C0

i

〉
for every i ∈ I

which goes back to Bewley (1969) and which will be established in Step 3 of this
proof.

As a first application of Bewley’s claim, we note that (6) holds true. Indeed,
granted (7), this follows immediately by letting n ↑ ∞ in (5).

Similarly, we show that ψ satisfies the second condition in (2) for λ = λ0. Indeed
as ψn ∈ S(λn) by definition, we know that each ψn satisfies 〈ψn, Cn

i 〉 ≤ λni for
every i ∈ I. Given relation (7), we may pass to the limit n ↑ ∞ to obtain the
desired inequalities 〈

ψ,C0
i

〉
≤ λ0

i (i ∈ I) .

The first condition in (2) is stable with respect to weak convergence in L1(P⊗dE)
and is thus inherited by ψ from ψn (n = 1, 2, . . .).

Concerning the supporting property of ψ, note first that, from ψ ≥ b/(|I| 〈B,E〉)
it follows that

〈ψ,E〉 ≥ 〈b, E〉
|I| 〈B,E〉

> 0 .

Hence, in order to verify ψ ∈ S(λ0), it only remains to show that, under the
price density ψ, every allocation C ∈ X̃ I

+ which is preferred to C0 must have
a higher aggregate price than C0. By monotonicity of preferences, it suffices to
consider a strictly preferred allocation C in the sense that Vi(Ci) > Vi(C

0
i ) for

every i ∈ I. Due to Corollary 2.3 such an allocation C is also strictly preferred to
Cn when n is large enough. As ψn ∈ S(λn) by assumption, each Cn is supported
by ψn (n = 1, 2, . . .). We thus obtain that, for n sufficiently large,〈

ψn,
∑

i
Ci

〉
≥ 〈ψn, E〉 .

Since (ψn) converges weakly in L1(P ⊗ dE) to ψ and
∑

iCi and E belong to the
order ideal X̃+, it follows that〈

ψ,
∑

i
Ci

〉
≥ 〈ψ,E〉 .

This shows that ψ indeed supports C0 and, therefore, completes the proof of
assertion (ii).

3. We still have to prove Bewley’s claim (7). We follow his argument and note first
that the claim already follows from the seemingly weaker assertion

(8) lim sup
n

〈ψn, Cn
i 〉 ≤

〈
ψ,C0

i

〉
for every i ∈ I .
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Indeed, the aggregation property of allocations and claim (8) imply

〈ψ,E〉 ≥ lim sup
n

∑
i
〈ψn, Cn

i 〉 = lim sup
n

〈ψn, E〉 .(9)

Due to the weak convergence ψn → ψ, the last term is again equal to 〈ψ,E〉.
Hence, we must have equality everywhere in (9) and claim (7) follows.

In order to establish (8), fix i ∈ I and set Cε
i

∆
=C0

i +εE for ε > 0. By monotonicity
of preferences, we have Vi(C

ε
i ) > Vi(C

0
i ). Due to Corollary 2.3, we also have

Vi(C
ε
i ) > Vi(C

n
i ) for large n.

Since ψn supports the allocation Cn, it follows that for such n〈
ψn, C

ε
i +

∑
j 6=i

Cn
j

〉
≥ 〈ψn, E〉

or, equivalently,
〈ψn, Cε

i 〉 ≥ 〈ψn, Cn
i 〉 .

Let n tend to infinity and use the weak convergence ψn → ψ to conclude

〈ψ,Cε
i 〉 ≥ lim sup

n
〈ψn, Cn

i 〉 .

Now, claim (8) follows from letting ε→ 0 in the preceding estimate.

2

4 Structure of Equilibrium Prices

Having established existence of an equilibrium ((C∗
i )i∈I , ψ

∗), it is natural to ask, whether
the induced equilibrium price functional 〈ψ∗, .〉 is continuous on our consumption space
(X+, dX+). Indeed, this is desirable from an economic point of view, since ‘similar’
consumption plans in X+ should have ‘similar’ prices. We show in this section that
under two additional assumptions, we indeed have this kind of continuity of the price
functional.

Our first condition is

Assumption 3 The filtration F = (Ft, 0 ≤ t ≤ T ) is quasi left–continuous.

This is an assumption on the way new information is revealed to the agents. It is
satisfied if, e.g., the filtration F is generated by a Brownian motion or a Poisson process.
Economically, an information flow corresponds to a quasi left–continuous filtration if
‘information surprises’ (in the sense of Hindy and Huang (1992)) occur only at times
which cannot be predicted. An earthquake in New York (rather than San Francisco) is
an example. The announcement of a policy change of the Federal reserve is an example
for an information surprise which occurs at a time known in advance.

The second assumption allows us to use stochastic calculus:
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Assumption 4 For every C ∈ X+, each utility gradient ∇Vi(C) (i ∈ I) is a bounded
(P,F)–semimartingale with a continuous compensator of bounded variation.

Clearly, this assumption is satisfied, e.g., if all agents have Hindy–Huang–Kreps prefer-
ences as described in Section 1.3.

Theorem 4.1 Under Assumptions 3 and 4, every equilibrium price functional

C 7→ 〈ψ∗, C〉 (C ∈ X+)

is continuous on (X+, dX+).

Proof :

1. As an equilibrium price process, ψ∗ clearly supports its associated equilibrium

allocation C∗ ∆
= (Cλ∗

i )i∈I . By Lemma 2.1, it thus takes the form

ψ∗ = max
i
{k∗i∇Vi(C∗

i )}

for suitable constants k∗i ≥ 0 (i ∈ I).

Due to Assumption 4, each process φi
∆
= k∗i∇Vi(C∗

i ) (i ∈ I) allows a Doob–Meyer
decomposition φi = Mi +Ai into a local martingale Mi and a continuous compen-
sator Ai of bounded variation.

Moreover, defined as the pointwise maximum of the bounded semimartingales φi,
the process ψ is a bounded semimartingale, too. Hence, it can be decomposed
in the form ψ = M + A where M is a local martingale and A is a predictable
RCLL–process of bounded variation.

In particular, there is a localizing sequence of stopping times Tm (m = 1, 2, . . .)
such that each of the stopped processes MTm , MTm

i (i ∈ I) is a (uniformly inte-
grable) martingale on [0, T ] and such that eventually Tm(ω) = T for P–a.e. ω ∈ Ω.

2. We claim that A almost surely has continuous paths. In order to prove this, it
suffices to show that almost surely A(S) = A(S−) for every predictable stopping
time S ≤ T because both processes (A(t), (0 ≤ t ≤ T ) and (A(t−), 0 ≤ t ≤ T )
are predictable; cf., e.g., Rogers and Williams (1987), Lemma VI.19.2.

Now, recall that, granted quasi–left continuity of the underlying filtration, every
uniformly integrable martingale almost surely does not jump at predictable times;
see, e.g., Theorem VI.18.1 in Rogers and Williams (1987).

We apply this observation first to the martingales MTm
i and obtain that ∆Mi(S) =

0 on {S ≤ Tm} for every i ∈ I. Since, in addition, each Ai is continuous, this
yields ∆φi(S) = 0 on {S ≤ Tm} for every i ∈ I. For m ↑ +∞, this entails
∆φi(S) = 0 (i ∈ I) and, consequently, also ∆ψ(S) = 0 almost surely.

Applying the above observation to the stopped process MTm shows that also
∆M(S) = 0 on {S ≤ Tm}. Letting m ↑ ∞ we obtain ∆M(S) = 0 almost
surely. Together with ∆ψ(S) = 0, this implies ∆A(S) = 0 and we are done.
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3. We are now in a position to prove the asserted continuity of the price functional
C 7→ 〈ψ∗, C〉. To this end, let Cn (n = 1, 2, . . .) converge to C0 in the metric dX+ .
Thus, we have L1(P)–convergence of Cn(T ) to C0(T ) and weak*–convergence in
probability of the measures dCn to dC0. By the usual subsequence argument,
we may assume without loss of generality that both convergences hold true even
almost surely.

Note that the local martingale M is locally bounded since it is the difference of
the bounded process ψ and the continuous process A. Thus, we may assume that
our localizing sequence (Tm) is such that each MTm (m = 1, 2, . . .) is a bounded
martingale.

For ease of notation, we put ψ
∆
=ψ∗. For every m = 1, 2, . . . we have

∣∣〈ψ,Cn〉 −
〈
ψ,C0

〉∣∣ ≤ ∣∣∣∣E ∫ T

0

[ψ − ψTm ] (dCn − dC0)

∣∣∣∣ +

∣∣∣∣E ∫ T

0

ψTm (dCn − dC0)

∣∣∣∣
≤ E

∫ T

Tm

|ψ − ψ(Tm)| (dC0 + dCn)

+

∣∣∣∣E ∫ T

0

MTm (dCn − dC0)

∣∣∣∣ +

∣∣∣∣E ∫ T

0

ATm (dCn − dC0)

∣∣∣∣ .
Let us denote the preceding three summands by I, II, and III, respectively. For
the first summand, we have

I ≤ ‖ψ‖∞E
[(
Cn(T ) + C0(T )

)
1{Tm<T}

]
.

As Cn(T ) → C0(T ) in L1(P) by assumption, dominated convergence yields

lim sup
n

I ≤ 2‖ψ‖∞E
[
C0(T )1{Tm<T}

]
.

Using the martingale property of MTm , we may rewrite the second summand in
the form

II = |E
[
M(Tm)(Cn(T )− C0(T ))

]
| .

Thus,
lim sup

n
II ≤ ‖M(Tm)‖∞ lim sup

n
E|Cn(T )− C0(T )| = 0 .

Finally, note that, due to the continuity of A, we have

(10)

∫ T

0

ATm dCn →
∫ T

0

ATm dC0 (n ↑ ∞)

almost surely. Moreover, we have∣∣∣∣∫ T

0

ATm dCn

∣∣∣∣ ≤ ∥∥∥∥ sup
0≤t≤T

|ATm(t)|
∥∥∥∥
∞
Cn(T ) .
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Once again we use the L1(P)–convergence Cn(T ) → C0(T ) and deduce that the
right side of this estimate defines a uniformly integrable family of random vari-
ables parametrized by n. Hence, by Lebesgue’s Theorem, we obtain that the
convergence (10) holds true also in L1(P). For the third summand, this gives us

lim sup
n

III = 0 .

Summing up, we find that, for every m = 1, 2, . . .,

lim sup
n

| 〈ψ,Cn〉 −
〈
ψ,C0

〉
| ≤ lim sup

n
I + lim sup

n
II + lim sup

n
III

≤ 2‖ψ‖∞E
[
C0(T )1{Tm<T}

]
+ 0 + 0 .(11)

Letting m ↑ ∞ in (11), we get by dominated convergence that indeed

lim sup
n

| 〈ψ,Cn〉 −
〈
ψ,C0

〉
| ≤ 2‖ψ‖∞E

[
C0(T )1⋂

m{Tm<T}
]

= 0

because Tm(ω) = T eventually for P–a.e. ω ∈ Ω.

2

Properties of Equilibrium Price Processes We study now the properties of equi-
librium price processes in more detail.

Being the weighted maximum of utility gradients, the equilibrium price process is
a semimartingale if gradients are semimartingales. This is an important property be-
cause it provides an equilibrium foundation for the application of stochastic calculus in
mathematical finance.

Going a step further, we see from the preceding proof that the bounded variation
part of the equilibrium price process is continuous if gradients’ bounded variation parts
are continuous.

A fundamental question is whether this bounded variation part is even absolutely
continuous because then an interest rate exists. The gradients of Hindy–Huang–Kreps
utility functionals have such a nice representation. Hence, in a one consumer world,
the Hindy–Huang–Kreps approach guarantees the existence of an interest rate. Hindy
and Huang (1992) even suggest that also with heterogeneous agents, the equilibrium
price process would have this nice property. However, this need not always be the case.
From the Tanaka formula, it follows that the maximum of semimartingales whose finite
variation part is absolutely continuous can be decomposed into a local martingale, an ab-
solutely continuous part of bounded variation and a part which depends on local time of
the gradients. In general, local times are not absolutely continuous. Hence, the equilib-
rium price process possibly does not belong to the dual suggested by Hindy and Huang
(1992). Moreover, our characterization of supporting price functionals (Lemma 2.6)
shows that, in general, there may be no equilibrium whose price process is contained in
the Hindy–Huang dual.
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Local time arises in the decomposition of the equilibrium price process whenever the
identity of the agent whose gradient determines the price changes. Hence, whenever one
agent stops consuming and another restarts, local time may appear. Such a phenomenon
has already been remarked in the time–additive setting by Karatzas, Lehoczky, and
Shreve (1991). For finance theory, this has the implication that the money market
account contains a singular component. The detailed consequences for finance theory
remain to be studied in future work.
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