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1 Introdu
tion

In several mathemati
al models of engineeering pro
esses the Boussinesq equa-

tion system o

urs. Espe
ially for melting pro
esses the heating by the reali-

sation of 
ertain boundary 
onditions is responsible for the resulting 
ow and

temperature �eld. Beside the thermal boundary 
onditions non homogeneous

velo
ity boundary 
onditions in
uen
e also the melt 
ow. Thus the 
ontrol of


ertain boundary 
onditions is a possibility to optimize the pro
ess with the aim

of rea
hing 
ow and temperature �elds whi
h guarantee desirable results of the

melting pro
ess.

We will dis
uss this optimization with partial di�erential equations for the prob-

lem of 
rystal melts with the aim of having single 
rystals without defe
ts in the

result of the melting pro
ess.

This leads to tra
king type optimization problems with a fun
tional like
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u is the velo
ity ve
tor �eld in the melt and u is the state, whi
h we want to

have, �




is the 
ontrol temperature on the 
ontrol boundary �




.

2 Mathemati
al model

The 
rystal melt is des
ribed by the Navier-Stokes equation for an in
ompress-

ible 
uid using the Boussinesq approximation 
oupled with the 
onve
tive heat


ondu
tion equation and the di�usion equation. Heat 
ondu
tivity and vis
os-

ity depend on the temperature. Be
ause of the axisymmetri
 situation of the

melting zone we write down the equations in 
ylindi
al 
oordinates. Thus we

have a Boussinesq equation system in 
ylindri
al 
oordinates for the velo
ity

u = (u; v; w), the pressure p and the temperature �.

For the velo
ity no slip boundary 
onditions are used. But in the 
ase of rotating


rystals and 
ru
ibles we have in the 
ir
umferential dire
tion inhomogeneous

velo
ity boundary 
onditions given by rotation numbers. At the interfa
es be-

tween the solid material and the 
uid 
rystal melt we have for the temperature

inhomogeneous Diri
hlet data, i.e. the melting point temperature. On the heated


oat (
ontrol boundary) of the ampulla the experimentators gave us measured



temperatures and we will look further for optimal pro�les during the optimiza-

tion. The initial state was assumed as the neutral position of the 
rystal melt

(v = 0) and a temperature �eld, whi
h solves the non 
onve
tive heat 
ondu
-

tion equation with the given temperature boundary 
onditions. The material

properties and the dimensionless parameters for the investigated 
rystal 
lose

the initial boundary value problem for the des
ription of the melt 
ow.

3 Optimization

For the 
al
ulus of optimization and the derivation of an optimization system

we start with the Boussinesq equation system for the velo
ity ve
tor u and the

temperature � in the spa
e time 
ylinder 


T

= 
 � (0; T ). For the boundary


onditions we have

u = u

g

on � � (0; T ); � = �




on �


T

; and � = 0 on �

d

� (0; T ); (2)

where � is the boundary of the spatial region 
 � IR

3

, on whi
h the problem

lives, and �




is the 
ontrol boundary, �

d

is the Diri
hlet part of the boundary

and �


T

= �




� (0; T ). That means in this paper our interest is fo
ussed on the

temperature boundary 
ontrol. For t = 0 we have the initial 
ondition u = 0 and

a temperature �eld, whi
h solves the non 
onve
tive heat 
ondu
tion equation

with the given temperature boundary 
onditions � = �

0

on 
.

The use of formal Lagrange parameters te
hnique with respe
t to the fun
tional

of type (1) means the 
onsideration of the Langrange fun
tional
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mo and en stand for the left sides of the impulse and energy balan
e. The

Lagrange fun
tional means the obje
tive of the optimization
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the restri
tions i.e. the weak formulation of the o

uring partial di�erential equa-

tions
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and the 
ondition for the boundary 
ontrol
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using the Lagrange parameters �, �, � and �.

We will not dis
uss the fun
tional analyti
al aspe
ts of the used Lagrangemethod,

i.e. fun
tion spa
es, smoothness properties et
. A very good overview over the

fun
tional analyti
al ba
kground and the fundation of the optimization of Navier-

Stokes problems is developed in [2℄.

To �nd 
andidates u(�




) and �




, whi
h minimize the fun
tional (1) we have to

analyze the ne
essary 
onditions
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i.e. the Fre
het derivative of the Lagrange fun
tional equal to zero. The eval-

uation of the ne
essary optimality 
ondition gives the equation for the adjoint

velo
ity

��

t

���+ (ru)

t

�� (u � r)�+r� = �(u� u)� �r� in 


T

; (3)

with the boundary 
ondition and the �nal 
ondition

� = 0 on � � (0; T ); and �(T ) = 0 in 
 ; (4)

and the equation

�div � = 0 in 


T

: (5)

For the adjoint temperature � we get
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with the boundary 
ondition and the �nal 
ondition

� = 0 on � � (0; T ) ; and �(T ) = 0 in 
 ; (7)

and with the 
hoi
e of the free � as � =

1
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�n

on �
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we get for the 
ontrol the

equation
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with the time boundary 
onditions

�




t

(0) = �




t

(T ) = 0 : (9)

The optimality system 
onsists of the forward model with the Boussinesq equa-

tion system and the boundary 
onditions (2) and the given initial state for the

velo
ity �eld u, the pressure p and the temperature �, and the adjoint model

with the equations (3),(5),(6),(8), and the 
onditions (4),(7),(9) for the adjoint

variables �, �, � and the 
ontrol �




.



4 To the numeri
al solution method

The optimization system is now under 
onsideration for a numeri
al solution.

The Boussinesq equation system is solved with a �nite volume method [1℄. In

the present 
ase of axisymmetri
 
onditions we 
an transform the adjoint equa-

tions into a 
ylindri
al 
oordinate system. Using the adjoint divergen
e 
ondition

div� = 0 we 
an write the adjoint equations in the following quasi 
onservative

form. For adjoint velo
ity � = (�; �; !) in the 
ylindri
al 
oordinate system with

the radial 
omponent �, the azimuthal 
omponent � and the z-
omponent ! we

get from (3) for example for �
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From equation (6) we get for the adjoint temperature �
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Equation (11) is a 
onve
tive heat 
ondu
tion equation and the dis
retization


an be done like those in [1℄. In the equation (10) and the equations for �,

! the terms (ru)

t

� and �r� are not known from the 
lassi
al Navier-Stokes

equations and they will by dis
retized in a 
anoni
al way for staggered grids. The

solution of the dis
retized Boussinesq equation system and the equations for �,

! and � (3) is diÆ
ult and expensive, be
ause of the opposite time dire
tion of

the forward system and the adjoint system. That means we know the forward

solution u; � on the whole time interval [0; T ℄ to get the adjoint solution �; �

and vi
e versa. If we have dis
retized the time interval [0; T ℄ by Z timesteps and

the dimensions of the spatial dis
retizations are N , M and P a dire
t solution

of the whole system means the solution of an algebrai
 equation system with

2Z �N �M � P � 10 equations. Iterative methods of the form

i) 
hoose a suitable start value of u; �,

ii) solve the adjoint problem and get [�; �; �




℄(u; �)

iii) solve the forward problem and get [u; �℄(�




)

iv) until 
onvergen
e, go to ii),

are realized and we will now dis
uss the results of the proposed method.

5 Results of the optimzation

In the table 1 the used geometri
al and material parameters for the 
rystal

(Bi

0:25

Sb

0:75

)

2

Te

2

, a 
omposition of bismuth point �fty antimony one point

�fty telurium two, are summarized ([1℄). We 
onsider the temperature boundary


ontrol of the the zone melting method. The melting zone (integration region


) is shown in �gure 1. For the temperature we have the boundary 
onditions



parameter symbol value

radius of the ampulla R 0.004 m

height of the ampulla H 0.016 m

melting point temperature �

s

613 K

thermal di�usivity a 0.44000e-05

m

2

s

kinemati
 vis
osity � 0.36310e-06

m

2

s

thermal expansion 
oeÆ
ient � 0.96000e-04 K

�1

Table 1. Parameters of (Bi

0:25

Sb

0:75

)

2

Te

2

-melt and of the melt geometry

� = �




for r = R; 0 � z � H;' 2 (0; 2�); (
ontrol boundary �




)

� = �

s

; for 0 � r � R; z = H; � = �

s

; for 0 � r � R; z = 0:

For t = 0 we start with a given temperature pro�le �




= �


0

on �




and with

�

s

= 613K, Æ� = 25K for �


0

we have �


0

(z) = �

s

+4

z

H

(1�

z

H

)Æ�. The velo
ity

�eld u, whi
h we want to rea
h is a typi
al twodimensional toroidal 
ow and We


onsider a time interval [0; T ℄ = [0; 4 se
onds℄ with Z = 60 time steps of 0:0661

se
onds. For the spatial dis
retization we use 20� 25 �nite volumes. The �gures

2 and 3 show the result of the optimization. As a threedimensional testproblem

we 
onsider the above dis
ussed zone melting 
on�guration. The aim of the

optimization is to rea
h a velo
ity �eld u = 0. This an arti�
ial but a good test


ase. The size of the spatial dis
retization of [0; 2�℄x[0; R℄x[0; H ℄ is 20� 20� 30.

We 
onsider the time interval [0; T ℄ = [0; 4 se
onds℄ with Z = 60 time steps of

0:0661 se
onds. The �gure 4 shows the 
ontrol temperature �




('; z) at the time

t = T on �




and the development of the fun
tional values during The �gures

4 shows the twodimensionality of the 
ontrol temperature �




, whi
h does not

depend on the angle '.
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Fig. 1. Physi
al domain for the

zone melting growth
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Fig. 4. optimal 
ontrol in the 3d 
ase

6 Con
lusion

With the Lagrange parameter te
hnique it's possible to derive an optimization

system for a given fun
tional, whi
h solution gives an optimal 
ontrol. The nu-

meri
al examples of the 
omplete time-depend 2.5d optimization system show

the possibility of the pra
ti
al optimization of a thermal 
oupled 
ow problem

in the 
rystal growth �eld. The results show the possibility of boundary 
ontrol

espe
ially in the 
ase of the zone melting te
hnique. Based on the results the pro-

posed strategies it is now possible to do a fully 3d optimization. It is ne
essary

to 
ontinue numeri
al experiments to investigate if the optimization during a

boundary 
ontrol only will be su

essful te
hnology. There are some experien
es

with other optimization problems whi
h show the eÆ
ien
y of volume 
ontrol,

if there is a possibility of the produ
tion of volume for
es (for example by a

magneti
 �eld).
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