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1 Introdution

In several mathematial models of engineeering proesses the Boussinesq equa-

tion system ours. Espeially for melting proesses the heating by the reali-

sation of ertain boundary onditions is responsible for the resulting ow and

temperature �eld. Beside the thermal boundary onditions non homogeneous

veloity boundary onditions inuene also the melt ow. Thus the ontrol of

ertain boundary onditions is a possibility to optimize the proess with the aim

of reahing ow and temperature �elds whih guarantee desirable results of the

melting proess.

We will disuss this optimization with partial di�erential equations for the prob-

lem of rystal melts with the aim of having single rystals without defets in the

result of the melting proess.

This leads to traking type optimization problems with a funtional like
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u is the veloity vetor �eld in the melt and u is the state, whih we want to

have, �



is the ontrol temperature on the ontrol boundary �



.

2 Mathematial model

The rystal melt is desribed by the Navier-Stokes equation for an inompress-

ible uid using the Boussinesq approximation oupled with the onvetive heat

ondution equation and the di�usion equation. Heat ondutivity and visos-

ity depend on the temperature. Beause of the axisymmetri situation of the

melting zone we write down the equations in ylindial oordinates. Thus we

have a Boussinesq equation system in ylindrial oordinates for the veloity

u = (u; v; w), the pressure p and the temperature �.

For the veloity no slip boundary onditions are used. But in the ase of rotating

rystals and ruibles we have in the irumferential diretion inhomogeneous

veloity boundary onditions given by rotation numbers. At the interfaes be-

tween the solid material and the uid rystal melt we have for the temperature

inhomogeneous Dirihlet data, i.e. the melting point temperature. On the heated

oat (ontrol boundary) of the ampulla the experimentators gave us measured



temperatures and we will look further for optimal pro�les during the optimiza-

tion. The initial state was assumed as the neutral position of the rystal melt

(v = 0) and a temperature �eld, whih solves the non onvetive heat ondu-

tion equation with the given temperature boundary onditions. The material

properties and the dimensionless parameters for the investigated rystal lose

the initial boundary value problem for the desription of the melt ow.

3 Optimization

For the alulus of optimization and the derivation of an optimization system

we start with the Boussinesq equation system for the veloity vetor u and the

temperature � in the spae time ylinder 


T

= 
 � (0; T ). For the boundary

onditions we have
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where � is the boundary of the spatial region 
 � IR

3

, on whih the problem

lives, and �



is the ontrol boundary, �

d

is the Dirihlet part of the boundary

and �

T

= �



� (0; T ). That means in this paper our interest is foussed on the

temperature boundary ontrol. For t = 0 we have the initial ondition u = 0 and

a temperature �eld, whih solves the non onvetive heat ondution equation

with the given temperature boundary onditions � = �

0

on 
.

The use of formal Lagrange parameters tehnique with respet to the funtional

of type (1) means the onsideration of the Langrange funtional
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mo and en stand for the left sides of the impulse and energy balane. The

Lagrange funtional means the objetive of the optimization
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the restritions i.e. the weak formulation of the ouring partial di�erential equa-

tions
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and the ondition for the boundary ontrol
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using the Lagrange parameters �, �, � and �.

We will not disuss the funtional analytial aspets of the used Lagrangemethod,

i.e. funtion spaes, smoothness properties et. A very good overview over the

funtional analytial bakground and the fundation of the optimization of Navier-

Stokes problems is developed in [2℄.

To �nd andidates u(�



) and �



, whih minimize the funtional (1) we have to

analyze the neessary onditions
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i.e. the Frehet derivative of the Lagrange funtional equal to zero. The eval-

uation of the neessary optimality ondition gives the equation for the adjoint

veloity
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with the boundary ondition and the �nal ondition
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and the equation

�div � = 0 in 


T

: (5)

For the adjoint temperature � we get

��

t

�

1

Pr

��� (u � r)� = ��

�

g � � in 


T

; (6)

with the boundary ondition and the �nal ondition
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equation
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with the time boundary onditions
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The optimality system onsists of the forward model with the Boussinesq equa-

tion system and the boundary onditions (2) and the given initial state for the

veloity �eld u, the pressure p and the temperature �, and the adjoint model

with the equations (3),(5),(6),(8), and the onditions (4),(7),(9) for the adjoint

variables �, �, � and the ontrol �



.



4 To the numerial solution method

The optimization system is now under onsideration for a numerial solution.

The Boussinesq equation system is solved with a �nite volume method [1℄. In

the present ase of axisymmetri onditions we an transform the adjoint equa-

tions into a ylindrial oordinate system. Using the adjoint divergene ondition

div� = 0 we an write the adjoint equations in the following quasi onservative

form. For adjoint veloity � = (�; �; !) in the ylindrial oordinate system with

the radial omponent �, the azimuthal omponent � and the z-omponent ! we

get from (3) for example for �
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From equation (6) we get for the adjoint temperature �
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Equation (11) is a onvetive heat ondution equation and the disretization

an be done like those in [1℄. In the equation (10) and the equations for �,

! the terms (ru)

t

� and �r� are not known from the lassial Navier-Stokes

equations and they will by disretized in a anonial way for staggered grids. The

solution of the disretized Boussinesq equation system and the equations for �,

! and � (3) is diÆult and expensive, beause of the opposite time diretion of

the forward system and the adjoint system. That means we know the forward

solution u; � on the whole time interval [0; T ℄ to get the adjoint solution �; �

and vie versa. If we have disretized the time interval [0; T ℄ by Z timesteps and

the dimensions of the spatial disretizations are N , M and P a diret solution

of the whole system means the solution of an algebrai equation system with

2Z �N �M � P � 10 equations. Iterative methods of the form

i) hoose a suitable start value of u; �,

ii) solve the adjoint problem and get [�; �; �



℄(u; �)

iii) solve the forward problem and get [u; �℄(�



)

iv) until onvergene, go to ii),

are realized and we will now disuss the results of the proposed method.

5 Results of the optimzation

In the table 1 the used geometrial and material parameters for the rystal

(Bi

0:25

Sb

0:75

)

2

Te

2

, a omposition of bismuth point �fty antimony one point

�fty telurium two, are summarized ([1℄). We onsider the temperature boundary

ontrol of the the zone melting method. The melting zone (integration region


) is shown in �gure 1. For the temperature we have the boundary onditions



parameter symbol value

radius of the ampulla R 0.004 m

height of the ampulla H 0.016 m

melting point temperature �

s

613 K

thermal di�usivity a 0.44000e-05

m

2

s

kinemati visosity � 0.36310e-06

m

2

s

thermal expansion oeÆient � 0.96000e-04 K

�1

Table 1. Parameters of (Bi

0:25

Sb

0:75

)

2

Te

2

-melt and of the melt geometry
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For t = 0 we start with a given temperature pro�le �
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H
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)Æ�. The veloity

�eld u, whih we want to reah is a typial twodimensional toroidal ow and We

onsider a time interval [0; T ℄ = [0; 4 seonds℄ with Z = 60 time steps of 0:0661

seonds. For the spatial disretization we use 20� 25 �nite volumes. The �gures

2 and 3 show the result of the optimization. As a threedimensional testproblem

we onsider the above disussed zone melting on�guration. The aim of the

optimization is to reah a veloity �eld u = 0. This an arti�ial but a good test

ase. The size of the spatial disretization of [0; 2�℄x[0; R℄x[0; H ℄ is 20� 20� 30.

We onsider the time interval [0; T ℄ = [0; 4 seonds℄ with Z = 60 time steps of

0:0661 seonds. The �gure 4 shows the ontrol temperature �



('; z) at the time

t = T on �



and the development of the funtional values during The �gures

4 shows the twodimensionality of the ontrol temperature �



, whih does not

depend on the angle '.
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Fig. 4. optimal ontrol in the 3d ase

6 Conlusion

With the Lagrange parameter tehnique it's possible to derive an optimization

system for a given funtional, whih solution gives an optimal ontrol. The nu-

merial examples of the omplete time-depend 2.5d optimization system show

the possibility of the pratial optimization of a thermal oupled ow problem

in the rystal growth �eld. The results show the possibility of boundary ontrol

espeially in the ase of the zone melting tehnique. Based on the results the pro-

posed strategies it is now possible to do a fully 3d optimization. It is neessary

to ontinue numerial experiments to investigate if the optimization during a

boundary ontrol only will be suessful tehnology. There are some experienes

with other optimization problems whih show the eÆieny of volume ontrol,

if there is a possibility of the prodution of volume fores (for example by a

magneti �eld).

Aknowledgements

The presented tehniques and the resulting optimization systems are based on

the results of a lose ooperation with Prof. Dr. Miheal Hinze, Dres-

den/Berlin and I have to thank him very muh.

Referenes

1. B

�

arwolff, G., K

�

onig, F. and G. Seifert: Thermal buoyany onvetion

in vertial zone melting on�gurations, ZAMM 77 (1997) 10

2. Hinze, M.: Optimal and instantaneous ontrol of the instationary Navier-Stokes

equations, habilitation thesis, Berlin, August 2000 (available on the webpage

http:\\www.math.tu-dresden.de\~hinze)

3. Hinze, M.: Optimization of the Navier-Stokes equation, Adjoints workshop,

Dein/Czeh Republi, September 2001

4. Constantin, P. and C. Foias: Navier-Stokes Equations, The University of

Chiago Press, 1988


