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1 Introduction

In several mathematical models of engineeering processes the Boussinesq equa-
tion system occurs. Especially for melting processes the heating by the reali-
sation of certain boundary conditions is responsible for the resulting flow and
temperature field. Beside the thermal boundary conditions non homogeneous
velocity boundary conditions influence also the melt flow. Thus the control of
certain boundary conditions is a possibility to optimize the process with the aim
of reaching flow and temperature fields which guarantee desirable results of the
melting process.

We will discuss this optimization with partial differential equations for the prob-
lem of crystal melts with the aim of having single crystals without defects in the
result of the melting process.

This leads to tracking type optimization problems with a functional like
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u is the velocity vector field in the melt and @ is the state, which we want to
have, 6. is the control temperature on the control boundary I.

2 Mathematical model

The crystal melt is described by the Navier-Stokes equation for an incompress-
ible fluid using the Boussinesq approximation coupled with the convective heat
conduction equation and the diffusion equation. Heat conductivity and viscos-
ity depend on the temperature. Because of the axisymmetric situation of the
melting zone we write down the equations in cylindical coordinates. Thus we
have a Boussinesq equation system in cylindrical coordinates for the velocity
u = (u,v,w), the pressure p and the temperature 6.

For the velocity no slip boundary conditions are used. But in the case of rotating
crystals and crucibles we have in the circumferential direction inhomogeneous
velocity boundary conditions given by rotation numbers. At the interfaces be-
tween the solid material and the fluid crystal melt we have for the temperature
inhomogeneous Dirichlet data, i.e. the melting point temperature. On the heated
coat (control boundary) of the ampulla the experimentators gave us measured



temperatures and we will look further for optimal profiles during the optimiza-
tion. The initial state was assumed as the neutral position of the crystal melt
(v = 0) and a temperature field, which solves the non convective heat conduc-
tion equation with the given temperature boundary conditions. The material
properties and the dimensionless parameters for the investigated crystal close
the initial boundary value problem for the description of the melt flow.

3 Optimization

For the calculus of optimization and the derivation of an optimization system
we start with the Boussinesq equation system for the velocity vector w and the
temperature € in the space time cylinder 27 = 2 x (0,7'). For the boundary
conditions we have

u=u, onlx(0,T), 6§=6, onl,p, and =0 onIyx(0,T)(2)

where I is the boundary of the spatial region 2 C IR?, on which the problem
lives, and I is the control boundary, Iy is the Dirichlet part of the boundary
and I'.y = I, x (0,T). That means in this paper our interest is focussed on the
temperature boundary control. For £ = 0 we have the initial condition © = 0 and
a temperature field, which solves the non convective heat conduction equation
with the given temperature boundary conditions 8 = 6y on (2.

The use of formal Lagrange parameters technique with respect to the functional
of type (1) means the consideration of the Langrange functional
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mo and en stand for the left sides of the impulse and energy balance. The
Lagrange functional means the objective of the optimization
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the restrictions i.e. the weak formulation of the occuring partial differential equa-
tions
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and the condition for the boundary control
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using the Lagrange parameters u, &, k and y.

We will not discuss the functional analytical aspects of the used Lagrange method,
i.e. function spaces, smoothness properties etc. A very good overview over the
functional analytical background and the fundation of the optimization of Navier-
Stokes problems is developed in [2].

To find candidates u(f.) and 6., which minimize the functional (1) we have to
analyze the necessary conditions

Lyt = Jyuiu+ < p,moy >0p — < &, divi >0, + < K,eNy >0,=0,
Lyp =<Vp,u>a.=0,

L =< —pggé,u >op + < K,eng >0, + < X,é >r.=0,
L0 = Jg.0c+ < =X, 0. >r.r=0,

i.e. the Frechet derivative of the Lagrange functional equal to zero. The eval-
uation of the necessary optimality condition gives the equation for the adjoint
velocity

—pp — Ap+ (Vu)'p— (u-VIp+VE=—(u—u)—«kV0 in Qr, (3)
with the boundary condition and the final condition
u=0 on I'x(0,7), and w(T)=0 in £, (4)

and the equation
—divp =0 in 2p. (5)

For the adjoint temperature k we get
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with the boundary condition and the final condition

k=0 on I'x(0,T), and x(T)=0 in £, (7)
and with the choice of the free x as x = P%, % on I.p we get for the control the
equation
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with the time boundary conditions
0, (0) = 6.,(T) =0. (9)

The optimality system consists of the forward model with the Boussinesq equa-
tion system and the boundary conditions (2) and the given initial state for the
velocity field u, the pressure p and the temperature 8, and the adjoint model
with the equations (3),(5),(6),(8), and the conditions (4),(7),(9) for the adjoint
variables u, £, k and the control 6.



4 To the numerical solution method

The optimization system is now under consideration for a numerical solution.
The Boussinesq equation system is solved with a finite volume method [1]. In
the present case of axisymmetric conditions we can transform the adjoint equa-
tions into a cylindrical coordinate system. Using the adjoint divergence condition
div p = 0 we can write the adjoint equations in the following quasi conservative
form. For adjoint velocity 4 = (i, v,w) in the cylindrical coordinate system with
the radial component p, the azimuthal component v and the z-component w we
get from (3) for example for p
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From equation (6) we get for the adjoint temperature

—nt—Pir[(rnr)r/r+n¢¢/r2+nzz]—(mm)r/r—(vn)w/r—(wn)z = —pggw . (11)

Equation (11) is a convective heat conduction equation and the discretization
can be done like those in [1]. In the equation (10) and the equations for v,
w the terms (Vu)!p and £V are not known from the classical Navier-Stokes
equations and they will by discretized in a canonical way for staggered grids. The
solution of the discretized Boussinesq equation system and the equations for v,
w and ¢ (3) is difficult and expensive, because of the opposite time direction of
the forward system and the adjoint system. That means we know the forward
solution u, 8 on the whole time interval [0,T] to get the adjoint solution w, K
and vice versa. If we have discretized the time interval [0,T] by Z timesteps and
the dimensions of the spatial discretizations are N, M and P a direct solution
of the whole system means the solution of an algebraic equation system with
27Z x N x M x P x 10 equations. Iterative methods of the form

i) choose a suitable start value of u, 8,
solve the adjoint problem and get [u, &, 0.](u, )
solve the forward problem and get [u,6](6.)

until convergence, go to ii),

)
ii)
iii)

)
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are realized and we will now discuss the results of the proposed method.

5 Results of the optimzation

In the table 1 the used geometrical and material parameters for the crystal
(Big.25Sbo.75)2Tea, a composition of bismuth point fifty antimony one point
fifty telurium two, are summarized ([1]). We consider the temperature boundary
control of the the zone melting method. The melting zone (integration region
£2) is shown in figure 1. For the temperature we have the boundary conditions



parameter symbol|value

radius of the ampulla R 0.004 m

height of the ampulla H 0.016 m

melting point temperature |6, 613 K

thermal diffusivity a 0.44000e-05 mTZ
kinematic viscosity v 0.36310e-06 =
thermal expansion coefficient|3 0.96000e-04 K~!

Table 1. Parameters of (Big.25Sbo.75)2Te2-melt and of the melt geometry

=06, for r=R,0<z<H, e (0,2r), (control boundary I)
=0, for 0<r<R,z=H, 0=0;, for 0<r<R,z=0.

For t = 0 we start with a given temperature profile 8, = 6,9 on I', and with
0, =613 K, 660 = 25 K for 6.0 we have 0.9(2) = 0, + 477 (1 — 77)d6. The velocity
field w, which we want to reach is a typical twodimensional toroidal flow and We
consider a time interval [0,7] = [0,4 seconds] with Z = 60 time steps of 0.0661
seconds. For the spatial discretization we use 20 x 25 finite volumes. The figures
2 and 3 show the result of the optimization. As a threedimensional testproblem
we consider the above discussed zone melting configuration. The aim of the
optimization is to reach a velocity field w = 0. This an artificial but a good test
case. The size of the spatial discretization of [0, 27]z[0, R]z[0, H] is 20 x 20 x 30.
We consider the time interval [0,7] = [0, 4 seconds] with Z = 60 time steps of
0.0661 seconds. The figure 4 shows the control temperature 6.(p, z) at the time
t =T on I, and the development of the functional values during The figures
4 shows the twodimensionality of the control temperature 6., which does not
depend on the angle ¢.
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Fig.1. Physical domain for the
zone melting growth Fig. 2. control on the boundary time cylinder
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Fig. 3. decreasing functional values dur-
ing the fixpoint iteration Fig. 4. optimal control in the 3d case

6 Conclusion

With the Lagrange parameter technique it’s possible to derive an optimization
system for a given functional, which solution gives an optimal control. The nu-
merical examples of the complete time-depend 2.5d optimization system show
the possibility of the practical optimization of a thermal coupled flow problem
in the crystal growth field. The results show the possibility of boundary control
especially in the case of the zone melting technique. Based on the results the pro-
posed strategies it is now possible to do a fully 3d optimization. It is necessary
to continue numerical experiments to investigate if the optimization during a
boundary control only will be successful technology. There are some experiences
with other optimization problems which show the efficiency of volume control,
if there is a possibility of the production of volume forces (for example by a
magnetic field).

Acknowledgements

The presented techniques and the resulting optimization systems are based on
the results of a close cooperation with PROF. DR. MICHEAL HINZE, Dres-
den/Berlin and T have to thank him very much.

References

1. BARWOLFF, G., KONIG, F. AND G. SEIFERT: Thermal buoyancy convection
in vertical zone melting configurations, ZAMM 77 (1997) 10

2. HINZE, M.: Optimal and instantaneous control of the instationary Navier-Stokes
equations, habilitation thesis, Berlin, August 2000 (available on the webpage
http:\\www.math.tu-dresden.de\~hinze)

3. HIiNzE, M.: Optimization of the Navier-Stokes equation, Adjoints workshop,
Decin/Czech Republic, September 2001

4. CONSTANTIN, P. AND C. Fo0IAS: Navier-Stokes Equations, The University of
Chicago Press, 1988



