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INTRODUCTION

Computational Fluid Dynamics is one of the great challenges in todays supercomput-
ing. To solve high resolution problems cost-effectively, the use of massively parallel
processing systems will become necessary. MLET is a finite-volume solution procedure
for the 3-D Navier-Stokes equations developed at the Universitat der Bundeswehr in
Munich and is modified here to examine flow problems with active boundary control.
To perform calculations with MLET for Reynolds numbers of interest, three dimen-
sional grids with a couple of million cells are necessary. Running problems of this size
leads to very large turnaround times in existing production environments. With the
availability of the CRAY T3D at the ZIB® in Berlin the authors expected a much better
performance of the MLET code, after being properly implemented on this massively
parallel system.

This paper describes the transfer of the vector version of MLET to a Massively Parallel
Processing (MPP) system. The numerical solution method for the nonstationary 3-D
Navier-Stokes equation based on a spatial finite volume discretization and its parallel
modification is described briefly. The parallelization strategy is discussed, followed by
a description of the domain decomposition and the message passing tools.

The results of a backward facing step problem, using a grid with in excess of 11 million
points, are shown as isoline plots. The same example is used to show the performance
and scaleability of MLET for MPP as well as parallel vector systems.

1. THE MATHEMATICAL MODEL AND THE SOLUTION METHOD

The basic equations to describe laminar as well as turbulent (DNS or LES) incompress-
ible flow problems are the Navier-Stokes equations:
ou
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and the continuity equation:

Vi = 0 . (2)

3Konrad-Zuse-Zentrum fiir Informationstechnik



Equations (1) and (2) may be discretized in spatial dimensions by a finite volume
method on staggered grids for the velocity components u; (¢ = (uy,uz,us)) and the

pressure p. v is the effective or molecular viscosity and f is a body force vector.
The finite volume discretization results in a system of ode’s for the velocity components
at every grid point:

iy,
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with the restriction Vj - 4, = 0. The approximation is conservative and is of second
order (O(h?)). The time integration is done either by a leapfrog method or an Adams-
Bashforth method. Thus, we have to solve in every time step the equation system:

@ttt — i,
% = —6Vupitt , V@t =0, (4)
where 1), is a given result of an estimation by a predictor step, 7 is the time step and
(3 is a constant depending on the time integration method used (in the case of the

Adams-Bashforth method 3 = 1, see also [1]).

The equations (4) are equivalent to the equation:

1 5
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is then given by an explicit fill-in step following (4). Thus, (@}, pi*!) can be
found either iteratively or by the solution of a Poisson equation for p"*! followed by

an explicit fill-in step to get w"**

—n+1
Up

. Both possibilities are implemented in the sequential
codes (see [1],[2]). In our parallel code implementation the iterative solution method to
get (Tt pitl) is realized as a solver for the equation system (4). The parallelization

of the solution of the system (5) is now under consideration.

2. THE PRINCIPLES OF PARALLELIZATION

MLET is a 3-D CFD code using a regular grid. Domain decomposition has been used
to parallelize the code. A grouping has been done in the X- and Y-directions while the
Z-direction remains local. Figure 1 shows the distribution of the problem to different
Processing Elements (PE’s).

With a two dimensional domain decomposition it is much easier to adapt the problem
size to the number of PE’s. For example, on an MPP with 256 PE’s, the number of cells
must be a multiple of 16 in the X- and Y-directions. In the case of a one-dimensional
domain decomposition the number of cells in one direction must be a multiple of the
number of PE’s.

The iterative solver for the equation system (4) is a pressure velocity iteration method
described in [1]. The method is of the form (for simplification, the subscript h of @ and
p to mark grid functions is not written in the following formulas)

pi=pi+Cép (6)
Uy, ‘= Uy, + n 5p ) (7)
ui, , ==ui,_, —nop (8)
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Figure 1: Domain decomposition

with ¢ = 1,2, ..., N as the subscript of the X-direction. o0p is a linear function of the
divergence of the current cell (V}, - @},), which means ép is a function of the actual

values of uy,, uy,_,, ug,, uz;_;, uz, and uz,_,. For the Y- and the Z-directions we have

analogous iteration formulas.
With the formulas above, which have to be calculated for every cell, we have a con-

flict at the interface between the subdomains of two neighbouring PE’s. The original

k

step-by-step iteration is a sequential one and means that the most recent value of uq,,
is needed to get uy,_,.

This recurrency leads to a conflict at the boundaries because a PE cannot begin with
the calculation before the previous one has finished the calculation of all its u values.
To eliminate the recurrency of this algorithm, the computation is done in two passes,
first for the odd cells and in the second stride for the even. This chessboard-like it-
eration allows us to do synchronized iterations in subdomains with an interchange of
boundary values between an odd (black) and an even (white) iteration stride. This
modification of the iteration algorithm allows us to work in parallel, because in the
first iteration pass on every PE only “old” information of neighbouring PE’s is needed.
In the second pass the “new” values of the neighbouring PFE’s are available because of
the interchange of boundary values done between the two iteration strides.

Other modifications of the numerical solution method are not necessary for the parallel
implementation of the method. The modification of the iteration method was validated
in the sequential code on the Y-MP.

To exchange boundary information between the subdomains “explicit shared memory
message passing” has been used. This way of communication takes into account the
global address space of the T3D and allows communication between PE’s with high
bandwidth and little latency.

All communication is done in a set of communication subroutines to allow an easy port
to other message passing methods like, for example, PVM. Most of the subroutines
can be used without any changes in the parallel code. We have to modify only those
routines which handle the setting of the boundary conditions, because it has to be
decided if a boundary of a PE subdomain is a real boundary of the original global
integration domain or not. Further routines which are responsible for the computation
of global sums and global maxima must be modified.

Strategies which use a virtual global memory concept like Cray’s FORTRAN extension



Type | NPES | PEx*PEy | Iteration time | Mflops | Fact or
[sec] C90
C90 1 4380 338 1.0
C90 | 4 1323 1119 3.31
T3D | 32 8*4 3433 431 1.27
T3D | 64 8*8 1737 852 2.52
T3D | 128 16*8 873 1695 5.01
T3D | 256 16*16 458 3195 9.56
T3D | 512 32*16 345 4291 12.69

Table 1: Performance and scaleability of MLET

CRAFT have the advantage of fewer modifications to the code. Especially the han-
dling of boundaries is done implicitly, i.e. the developers do not have to take care of
boundary values. The payoff is a performance degradation because the use of shared
arrays requires more global access of data than exchanging boundaries via message
passing.

Every PE handles the restart and plot files according to its domain. Simple pre- and
postprocessing steps have been implemented which split the global files into domains
and vice versa before and after running a T3D program.

3. THE PERFORMANCE AND SCALEABILITY

The performance of the parallel version of MLET is shown for a reference job. This
performance is also compared with single and multiple CPU versions on a CRAY C90.

The reference job computes 100 time steps of a FV-grid with 11083776 cells. The
dimension of the problem is 516x132x164. An equation system with approximately 45
million unknowns has to be solved for every time step. The solver uses an average of
25 iterations.

Gflops

C90 4CPUs

C90 1CPU
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Figure 2: Performance of MLET

Table 1 shows the runtime and performance of the reference jobs on different config-
urations of a T3D and C90. In case of the T3D, the grouping information, i.e. the
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number of PE’s in the X- and Y-directions is also shown. Huge CFD problems are not
only very computationally intensive, they also need a huge amount of memory. The
test job requires approximately 1.3 gigabytes of memory.

To show the performance and scaleability of the parallel version of MLET, several runs
of a three-dimensional backward facing step flow problem with periodic boundary con-
ditions (reference job) have been done on different numbers of PE’s. Comparison of
these runs with the sequential CRAY C90 version is shown in Figure 2.

4. THE RESULTS OF THE SOLVED REFERENCE PROBLEM

The geometry of the flow region is rectangular backward-facing step channel. The
Reynolds number calculated using the step height is approximately equal to 3000. In
the spanwise direction periodic boundary conditions are used. The inflow profile is a
block profile with u; = u, = 1 and uy = us = 0. At the bottom of the channel the
no-slip boundary condition is assumed. At the top of the region boundary conditions
like g—g = 0 with the outer normal vector 7z are used. The outflow boundary condition
is set to g—g = 0.

The structured grid consists of 516 cells in the X-direction, 132 cells in the Y-direction
(spanwise) and 164 cells in the Z-direction. This fine grid allows us to perform a DNS
and thus a subgrid-scale model is not necessary.

To get a good first and second order statistic (@, u; u;, and so on) we need a few hun-

dred thousand flow realizations or instantaneous flow fields or time steps respectively.

Figure 3: velocity isolines of uy, t = 180
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Figure 4: velocity isolines of uy, t = 180

Using 64 PE’s on the CRAY T3D a production chain for the problem described above
takes about 600 hours CPU, which was achieved in two months. Due to the amount
of memory required, the reference job could not run on the Y-MP production envi-
ronment. Smaller problems with approximately 2 million grid points took about 10
months on the Y-MP.

The figures 3 and 4 show results of the backward facing s tep problem as isoline plots
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of an instantaneous velocity field and the mean velocity field (statistic of first order)
in an X-Z cut (symmetry plane, near bottom region).

This problem is a part of a parameter study to control the magnitude of the recircula-
tion region behind the separation edge by blowing with a prescribed frequency.

5. CONCLUSION

This paper has shown the implementation of the MLET code on a massively parallel
system. Using domain decomposition, a scalable version has been created which allows
the use of the MPP system in connection with comfortable pre- and postprocessing
steps transparent to the user.

The development of the parallel algorithm and its implementation results in a perfor-
mance which allows the solution of large problems, for example flow problems with
higher Reynolds numbers and very fine grids to resolve all important flow structures,
on the T3D systems. Due to memory and CPU restrictions, it was impossible to handle
these kinds of problems on existing vector production environments. Comparing the
performance of the T3D with vector computers show that 9 PE’s are equivalent to 1
Y-MP CPU and 25 PE’s are equivalent to 1 C90 CPU.

The whole port of the code has been accomplished in 4 weeks. The parallel version
of MLET is now used for production runs on the T3D for the modeling of turbulent
flows on grids with more than 11,000,000 cells and a very fine time resolution to realize
periodic stimulations of approximately 50 Hz of the flow over the boundary conditions.
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