
Parallelization of a Finite-Volume Navier-Stokes solver

on a T3D massively parallel system

G. B�arwol�

�

, K. Ketelsen

��

and F. Thiele

�

�

TU Berlin, Sekr. HF 1-Hermann-F�ottinger-Institut

Stra�e des 17. Juni 135

D-10623 Berlin, Germany

��

CRAY Research GmbH

Riesstrasse 25

D-80992 Munich, Germany

INTRODUCTION

Computational Fluid Dynamics is one of the great challenges in todays supercomput-

ing. To solve high resolution problems cost-e�ectively, the use of massively parallel

processing systems will become necessary. MLET is a �nite-volume solution procedure

for the 3-D Navier-Stokes equations developed at the Universit�at der Bundeswehr in

Munich and is modi�ed here to examine ow problems with active boundary control.

To perform calculations with MLET for Reynolds numbers of interest, three dimen-

sional grids with a couple of million cells are necessary. Running problems of this size

leads to very large turnaround times in existing production environments. With the

availability of the CRAY T3D at the ZIB

3

in Berlin the authors expected a much better

performance of the MLET code, after being properly implemented on this massively

parallel system.

This paper describes the transfer of the vector version of MLET to a Massively Parallel

Processing (MPP) system. The numerical solution method for the nonstationary 3-D

Navier-Stokes equation based on a spatial �nite volume discretization and its parallel

modi�cation is described briey. The parallelization strategy is discussed, followed by

a description of the domain decomposition and the message passing tools.

The results of a backward facing step problem, using a grid with in excess of 11 million

points, are shown as isoline plots. The same example is used to show the performance

and scaleability of MLET for MPP as well as parallel vector systems.

1. THE MATHEMATICAL MODEL AND THE SOLUTION METHOD

The basic equations to describe laminar as well as turbulent (DNS or LES) incompress-

ible ow problems are the Navier-Stokes equations:

@~u

@t

+r � ~u~u = �rp+r(�r~u) +

~

f ; (1)

and the continuity equation:

r � ~u = 0 : (2)

3

Konrad-Zuse-Zentrum f�ur Informationstechnik

1

Equations (1) and (2) may be discretized in spatial dimensions by a �nite volume

method on staggered grids for the velocity components u

i

(~u = (u

1

; u

2

; u

3

)) and the

pressure p. � is the e�ective or molecular viscosity and

~

f is a body force vector.

The �nite volume discretization results in a system of ode's for the velocity components

at every grid point:

@~u

h

@t

+r

h

� ~u

h

~u

h

= �r

h

p

h

+r

h

(�r

h

~u

h

) +

~

f

h

; (3)

with the restriction r

h

� ~u

h

= 0. The approximation is conservative and is of second

order (O(h

2

)). The time integration is done either by a leapfrog method or an Adams-

Bashforth method. Thus, we have to solve in every time step the equation system:

~u

n+1

h

�

~

~u

h

�

= ��r

h

p

n+1

h

; r

h

� ~u

n+1

h

= 0 ; (4)

where

~

~u

h

is a given result of an estimation by a predictor step, � is the time step and

� is a constant depending on the time integration method used (in the case of the

Adams-Bashforth method � = 1, see also [1]).

The equations (4) are equivalent to the equation:

��

h

p

n+1

h

= �

1

��

r

h

�

~

~u

h

: (5)

~u

n+1

h

is then given by an explicit �ll-in step following (4). Thus, (~u

n+1

h

; p

n+1

h

) can be

found either iteratively or by the solution of a Poisson equation for p

n+1

followed by

an explicit �ll-in step to get ~u

n+1

. Both possibilities are implemented in the sequential

codes (see [1],[2]). In our parallel code implementation the iterative solution method to

get (~u

n+1

h

; p

n+1

h

) is realized as a solver for the equation system (4). The parallelization

of the solution of the system (5) is now under consideration.

2. THE PRINCIPLES OF PARALLELIZATION

MLET is a 3-D CFD code using a regular grid. Domain decomposition has been used

to parallelize the code. A grouping has been done in the X- and Y -directions while the

Z-direction remains local. Figure 1 shows the distribution of the problem to di�erent

Processing Elements (PE's).

With a two dimensional domain decomposition it is much easier to adapt the problem

size to the number of PE's. For example, on an MPP with 256 PE's, the number of cells

must be a multiple of 16 in the X- and Y -directions. In the case of a one-dimensional

domain decomposition the number of cells in one direction must be a multiple of the

number of PE's.

The iterative solver for the equation system (4) is a pressure velocity iteration method

described in [1]. The method is of the form (for simpli�cation, the subscript h of ~u and

p to mark grid functions is not written in the following formulas)

p

i

:= p

i

+ � �p ; (6)

u

1

i

:= u

1

i

+ � �p ; (7)

u

1

i�1

:= u

1

i�1

� � �p ; (8)

2

y

x

z

Figure 1: Domain decomposition

with i = 1; 2; :::; N as the subscript of the X-direction. �p is a linear function of the

divergence of the current cell (r

h

� ~u

h

), which means �p is a function of the actual

values of u

1

i

, u

1

i�1

, u

2

j

, u

2

j�1

, u

3

k

and u

3

k�1

. For the Y - and the Z-directions we have

analogous iteration formulas.

With the formulas above, which have to be calculated for every cell, we have a con-

ict at the interface between the subdomains of two neighbouring PE's. The original

step-by-step iteration is a sequential one and means that the most recent value of u

1

n

is needed to get u

1

n+1

.

This recurrency leads to a conict at the boundaries because a PE cannot begin with

the calculation before the previous one has �nished the calculation of all its u values.

To eliminate the recurrency of this algorithm, the computation is done in two passes,

�rst for the odd cells and in the second stride for the even. This chessboard-like it-

eration allows us to do synchronized iterations in subdomains with an interchange of

boundary values between an odd (black) and an even (white) iteration stride. This

modi�cation of the iteration algorithm allows us to work in parallel, because in the

�rst iteration pass on every PE only \old" information of neighbouring PE's is needed.

In the second pass the \new" values of the neighbouring PE's are available because of

the interchange of boundary values done between the two iteration strides.

Other modi�cations of the numerical solution method are not necessary for the parallel

implementation of the method. The modi�cation of the iteration method was validated

in the sequential code on the Y-MP.

To exchange boundary information between the subdomains \explicit shared memory

message passing" has been used. This way of communication takes into account the

global address space of the T3D and allows communication between PE's with high

bandwidth and little latency.

All communication is done in a set of communication subroutines to allow an easy port

to other message passing methods like, for example, PVM. Most of the subroutines

can be used without any changes in the parallel code. We have to modify only those

routines which handle the setting of the boundary conditions, because it has to be

decided if a boundary of a PE subdomain is a real boundary of the original global

integration domain or not. Further routines which are responsible for the computation

of global sums and global maxima must be modi�ed.

Strategies which use a virtual global memory concept like Cray's FORTRAN extension

3

Type NPES PE

X

*PE

Y

Iteration time Mops Fact or

[sec] C90

C90 1 4380 338 1.0

C90 4 1323 1119 3.31

T3D 32 8*4 3433 431 1.27

T3D 64 8*8 1737 852 2.52

T3D 128 16*8 873 1695 5.01

T3D 256 16*16 458 3195 9.56

T3D 512 32*16 345 4291 12.69

Table 1: Performance and scaleability of MLET

CRAFT have the advantage of fewer modi�cations to the code. Especially the han-

dling of boundaries is done implicitly, i.e. the developers do not have to take care of

boundary values. The payo� is a performance degradation because the use of shared

arrays requires more global access of data than exchanging boundaries via message

passing.

Every PE handles the restart and plot �les according to its domain. Simple pre- and

postprocessing steps have been implemented which split the global �les into domains

and vice versa before and after running a T3D program.

3. THE PERFORMANCE AND SCALEABILITY

The performance of the parallel version of MLET is shown for a reference job. This

performance is also compared with single and multiple CPU versions on a CRAY C90.

The reference job computes 100 time steps of a FV-grid with 11083776 cells. The

dimension of the problem is 516x132x164. An equation system with approximately 45

million unknowns has to be solved for every time step. The solver uses an average of

25 iterations.

0

1

2

3

4

32 64 128 256 512

G
flo

ps

Number of PE’s

C 90 4 CPU’s

C 90 1 CPU

Figure 2: Performance of MLET

Table 1 shows the runtime and performance of the reference jobs on di�erent con�g-

urations of a T3D and C90. In case of the T3D, the grouping information, i.e. the

4

number of PE's in the X- and Y -directions is also shown. Huge CFD problems are not

only very computationally intensive, they also need a huge amount of memory. The

test job requires approximately 1.3 gigabytes of memory.

To show the performance and scaleability of the parallel version of MLET, several runs

of a three-dimensional backward facing step ow problem with periodic boundary con-

ditions (reference job) have been done on di�erent numbers of PE's. Comparison of

these runs with the sequential CRAY C90 version is shown in Figure 2.

4. THE RESULTS OF THE SOLVED REFERENCE PROBLEM

The geometry of the ow region is rectangular backward-facing step channel. The

Reynolds number calculated using the step height is approximately equal to 3000. In

the spanwise direction periodic boundary conditions are used. The inow pro�le is a

block pro�le with u

1

= u

x

= 1 and u

2

= u

3

= 0. At the bottom of the channel the

no-slip boundary condition is assumed. At the top of the region boundary conditions

like

@~u

@~n

= 0 with the outer normal vector ~n are used. The outow boundary condition

is set to

@~u

@x

= 0.

The structured grid consists of 516 cells in the X-direction, 132 cells in the Y -direction

(spanwise) and 164 cells in the Z-direction. This �ne grid allows us to perform a DNS

and thus a subgrid-scale model is not necessary.

To get a good �rst and second order statistic (~u, u

i

0

u

j

0

, and so on) we need a few hun-

dred thousand ow realizations or instantaneous ow �elds or time steps respectively.

Figure 3: velocity isolines of u

1

, t = 180

Figure 4: velocity isolines of u

1

, t = 180

Using 64 PE's on the CRAY T3D a production chain for the problem described above

takes about 600 hours CPU, which was achieved in two months. Due to the amount

of memory required, the reference job could not run on the Y-MP production envi-

ronment. Smaller problems with approximately 2 million grid points took about 10

months on the Y-MP.

The �gures 3 and 4 show results of the backward facing s tep problem as isoline plots

5

of an instantaneous velocity �eld and the mean velocity �eld (statistic of �rst order)

in an X-Z cut (symmetry plane, near bottom region).

This problem is a part of a parameter study to control the magnitude of the recircula-

tion region behind the separation edge by blowing with a prescribed frequency.

5. CONCLUSION

This paper has shown the implementation of the MLET code on a massively parallel

system. Using domain decomposition, a scalable version has been created which allows

the use of the MPP system in connection with comfortable pre- and postprocessing

steps transparent to the user.

The development of the parallel algorithm and its implementation results in a perfor-

mance which allows the solution of large problems, for example ow problems with

higher Reynolds numbers and very �ne grids to resolve all important ow structures,

on the T3D systems. Due to memory and CPU restrictions, it was impossible to handle

these kinds of problems on existing vector production environments. Comparing the

performance of the T3D with vector computers show that 9 PE's are equivalent to 1

Y-MP CPU and 25 PE's are equivalent to 1 C90 CPU.

The whole port of the code has been accomplished in 4 weeks. The parallel version

of MLET is now used for production runs on the T3D for the modeling of turbulent

ows on grids with more than 11,000,000 cells and a very �ne time resolution to realize

periodic stimulations of approximately 50 Hz of the ow over the boundary conditions.

References

[1] Werner, H., Grobstruktursimulation der turbulenten Str�omung �uber eine quer-

liegende Rippe in einem Plattenkanal bei hoher Reynoldszahl, PhD thesis, TU

M�unchen 1991,

[2] B�arwol�, G. and Seifert, G., E�cient 2D and 3D Navier-Stokes solver, Proceedings

of the 5. ISCFD Sendai/Japan, 1993 (Ed. H. Daiguji)

6

