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Abstract: The current pandemic is a great challenge for several research areas. In addition to virology
research, mathematical models and simulations can be a valuable contribution to the understanding of
the dynamics of the pandemic and can give recommendations to physicians and politicians. Based on
actual data of people infected with COVID-19 from the European Center for Disease Prevention
and Control (ECDC), input parameters of mathematical models will be determined and applied.
These parameters will be estimated for the UK, Italy, Spain, and Germany and used in an SIR-type
model. As a basis for the model’s calibration, the initial exponential growth phase of the COVID-19
pandemic in the named countries is used. Strategies for the commencing and ending of social and
economic shutdown measures are discussed.

Keywords: mathematical epidemiology; SIR-type model; model parameter estimation; non-pharmaceutical
intervention; dynamical systems; COVID-19/SARS-CoV2

1. Introduction

COVID-19 is a recent emerging disease caused by the emerging coronavirus. As there is no
immunity to this virus, the spread of the disease has been rampant worldwide. As no serious vaccine
or medication exists, it is necessary to look for effective non-pharmaceutical interventions to control
the pandemic. Here, I use an SIR-type model to understand and analyze the COVID-19 pandemic
with the aim of stopping or reducing the spread of the COVID-19 virus.

The dynamic development of sub-populations of susceptible (S), infected (I), and recovered
(R) people in a certain region—for example, the population of a country or a part of a federation—
depending on non-pharmaceutical interventions is the aim of the modeling. Deterministic models are
discussed. These are simple but effective for describing the progression of the pandemic. They are able
to fit the description of the average infection dynamics in macroscopic sub-populations only1.

The main scope of this paper is the investigation of certain lockdown measures to flatten the
curve of infected people over time and of the appropriate strategies for returning from lockdown to
normality. To find appropriate model parameters, real data of the early stages of the pandemic are
analyzed. Suggestions about favorable points in time at which to commence with lockdown measures
based on the acceleration rate of infections conclude the paper.

There are also more complex deterministic models, which include sub-populations other than S,
I, and R (see [1,2]), but these models have dynamic properties similar to those of the basic SIR model.
On the other hand, additional data, which are not available, are needed for the extension of the basic
model. This why I can perform the investigations on the basis of the SIR model without a loss of
generality with respect to the aim of this paper.

1 A finer resolution of the pandemic is possible with stochastic agent-based models, which will not be discussed in this paper.

Systems 2020, 8, 24; doi:10.3390/systems8030024 www.mdpi.com/journal/systems

http://www.mdpi.com/journal/systems
http://www.mdpi.com
http://dx.doi.org/10.3390/systems8030024
http://www.mdpi.com/journal/systems
https://www.mdpi.com/2079-8954/8/3/24?type=check_update&version=2


Systems 2020, 8, 24 2 of 12

It is necessary to remark that the considered SIR model is not able to describe the full asymptotic
behavior of a pandemic, as is done in [3]. In addition, the role of super-spreaders, investigated in [4]
and [5], cannot be described with the basic macroscopic SIR model.

2. The Mathematical SIR Model

First, I note one important presupposition for the model. I suppose that the distribution of the
included sub-populations is equal, i.e., the density is approximately constant. This is a very strict
supposition, but this is acceptable, for example, for cities and congested urban areas like New York or
the Ruhr area in Germany. At the beginning of the pandemic, exponential growth of the number of
infected people is supposed.

In the so-called SIR model of Kermack and McKendrick [6], I denotes the infected people,
S denotes the susceptible people, and R denotes the recovered people. It is a deterministic model.
I constrain the investigations to the species I, S, and R only. The dynamics of infections and recoveries
can be approximated by the following system of ordinary differential equations:

dS
dt

= −κβ
S
N

I (1)

dI
dt

= κβ
S
N

I − γI (2)

dR
dt

= γI . (3)

β represents the number of others that one infected person encounters per unit time (per day).
γ is the reciprocal value of the typical time from infection to recovery. N is the total number of people
involved in the epidemic disease, and N = S + I + R. κ is equal to one in the case of an undisturbed
pandemic without any interventions or lockdowns. Later, I will specify κ as a function to describe
lockdown measures.

The currently available empirical data suggest that the coronavirus infection typically lasts for
some 14 days. This means that γ = 1/14 ≈ 0.7.

The choice of β is more complicated and will be considered in the following.
The equation system (1)–(3) belongs to the mathematical category of dynamical systems.

3. The Estimation of β Based on Real Data

I used the European Center for Disease Prevention and Control [7] to obtain data on the people
infected with COVID-19 for the period from 31 January 2019 to 8 April 2020.

At the beginning of the pandemic, the quotient S/N was nearly equal to 1. In addition, at the
early stage, no one had yet recovered. Thus, I can describe the early regime using the ordinary
differential equation

dI
dt

= βI

with the solution
I(t) = I0 exp(βt) . (4)

The logarithm of (4) leads to
log I(t) = log I0 + βt .

Based on the table of logarithms of the infected people versus time, (tj, log Ij), j = 1, . . . , k, I look
for I0 and β which minimize the function

L(I0, β) =
k

∑
j=1

[log I0 + βtj − log Ij]
2 . (5)
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The solution of this linear optimization problem is trivial, and it is available in most computer algebra
systems as a ”black box” of the logarithmic–linear regression.

Figure 1 shows the results for the same periods as above for Spain and the UK2.

(a) (b)

Figure 1. Course of the pandemic; β-value from the logarithmic–linear regression. (a) Results for Spain
(31 January 2020 to 20 March 2020); (b) Result of the UK (30 January 2020 to 20 March 2020).

Figure 1 shows that the logarithmic–linear regression implies unsatisfactory results. It must be
said that the evaluated β-values are related to the stated period. For the logarithmic–linear regression
method, I guessed the respective periods for every country through a visual inspection of the graphs
of the infected people versus time.

Instead of the above-used table of logarithmic values, the table (tj, Ij), j = 1, . . . , k is used with
the aim of a better approximation. I am looking for periods in the spreadsheets of infected people per
day where the course can be described by a function of type (4).

Choosing a period [t1, tk] for a certain country, I search for the minimum of the function

F(I0, β) =
k

∑
j=1

[I0 exp(βtj)− Ij]
2 ,

i.e.,
min

(I0,β)∈R2
F(I0, β) . (6)

I solved this non-linear minimum problem with the damped Gauss–Newton method. The results
of the above-discussed logarithmic–linear method for β and α proved as good starting iterations for the
Gauss–Newton method. I found the subsequent results for the considered countries. Thereby, I chose
these periods for the countries with the aim of approximating the infection’s progression with a good
quality. Figure 2 shows the graphs and the evaluated parameters for Germany and Spain.

I found some information on the parameters of Italy in [8]—for example, β = 0.25—and I presume
that this is a result of the logarithmic–linear regression by the Italian health administration.

A deeper look at the real data shows that the exponential behavior of the dynamic of the number
of infected people was found only in the very beginning of the pandemic. In the German hotspot of
Bavaria, I found the result β = 0.22658 for the period from 24 February to 20 April 2020 with non-linear
regression. With the logarithmic–linear approach, I found a quite similar value, β = 0.23.

2 The numbers of more than 4-digits at the ordinate of the following figures should be understand as numbers with a comma
in the middle, for example 10,000 should be understand as 10,000 and so on.
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(a) (b)

Figure 2. Results from 31 January 2020 to 20 March 2020. (a) German results; (b) Spanish results.

In conclusion, I can state that the estimation of the parameter β is complicated but successful in
most of the considered countries and regions. The results of the solution of the minimum problem (6)
to evaluate β are, in most cases, better than the results of the minimization of function (5) with respect
to the fitting of the real data.

To illustrate the different quality and quantity of the β estimation, I use Italy as an example in
Figure 3.

(a) (b)

Figure 3. Italian results (from 31 January 2020 to 20 March 2020). (a) Results of Italy with the β-value from
the logarithmic–linear regression; (b) Results of Italy with the β-value from the non-linear minimization.

4. Numerical Computations for Germany and Spain

I disclaim qualitative mathematical considerations like existence and uniqueness of solutions of
the dynamical system of (1)–(3) and concentrate my interest on practical application and numerical
experiments. The numerical solution of the ordinary differential equation system of the modified SIR
model was done with a Runge–Kutta integration method of the fourth order. The independence of the
time discretization of the solution method was tested by a systematic time-grid refinement. At the end,
I found that time-steps of half a day could be used. For all of the following computations, the β results
of the solution of the non-linear minimization problem are used.

With the choice of a β-value of 0.215 (see Figure 2a)—which is evaluated on the basis of the real
data from the ECDC—and γ = 0.07, one gets the progress of the pandemic’s dynamics, pictured in
Figure 4a (I0 denotes the initial value of the I species, that is, 31 January 2020. Imax stands for
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the maximum of I. The total number N for Germany is guessed to be 70 million). R0 is the basis
reproduction number of persons infected by the transmission of a pathogen from an infected person
during the infectious time (R0 = β/γ), shown in the following figures3. For the early 30 days, I found
a β-value of 0.36 for China/Wuhan. This shows that the German situation with β = 0.215 and R0 ≈ 3
is moderate compared to the Chinese situation with the values β ≈ 0.36 and R0 ≈ 5. I have to mention
that these values vary compared to those found by other authors, but the relationships between the
German and the Chinese values are similar.

(a) (b)

Figure 4. One-year results of Germany and Spain; S—green, I—red, R—blue. (a) German progression
over one year, starting at the end of January 2020; (b) Spanish progression over one year, starting at the
end of January 2020.

The data from the ECDC, the data from the German Robert Koch Institute, and the data from
the Johns Hopkins University ([9]) are not really correct; thus, I have to reasonably assume that there
are a number of unknown cases. It is guessed in [10] that the data cover only 15% of the real cases.
Considering this, I obtained slightly changed results, and in the subsequent computations, I will
include an estimated number of unknown cases in the initial values of I.

I use the β-value 0.249 (see Figure 3) and γ = 0.07 for Spain, and I get the run pictured in Figure 4.
N is set to 40 million.

Let me now discuss the case of strict social distancing. To do this, I reduce the β-values after a few
days to β = 0.14 for both Germany and Spain.

The results in Figure 5 compared to the results without the reduction of β (Figure 4) show the
consequences. The climax of the number of infected people moved to the autumn of the year with
hard inconveniences for the population, but the wanted flattening was achieved.

To investigate the influence and sensitivity of the simulation results with the parameter β and
the number N (sum of infected, susceptible, and recovered people), I used the German data and a
variation of these data. In Figure 6b, I see that variation of the amount N leads, more or less, to a
proportional scaling4. The variation of β showed a non-monotone and non-linear influence of β on the
results, pictured in Figure 6a.

3 The values of R0 in all of the following figures are applied to the β-value of the beginning of the pandemic.
4 N = 12 million is the population of Bavaria.
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(a) (b)

Figure 5. German and Spanish results over one year; S—green, I—red, R—blue. (a) German
progression over one year with reduced β, starting at the end of January 2020; (b) Spanish progression
over one year with reduced β, starting at the end of January 2020.

(a) (b)

Figure 6. One year runs depending on β and N. (a) German succession of one year depending on a
β-variatio; (b) Result of one year depending on N (β = 0.215).

5. Looking for Other Strategies of a Temporary Lockdowns and Extensive Social Distancing

In all countries concerned by the COVID-19 pandemic, a lockdown of social life has been discussed.
In Germany, the lockdown started on 16 March 2020. The effects of social distancing to decrease the
infection rate can be modeled by a modification of the SIR model. Now, I consider κ in the equation
system (1)–(3) as a time-dependent function (instead of κ = 1 in the original SIR model).

κ is a function with values in [0, 1]. For example,

κ(t) =

{
0.5 for t0 ≤ t ≤ t1

1 for t > t1, t < t0

indicates a reduction of the infection rate of 50% in the period [t0, t1] (∆t = t1 − t0 is the duration of
the temporary lockdown in days). A good choice of t0 and tk will be complicated.
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If I respect the chosen starting day of the German lockdown, 16th of March 2020 (this conforms to
the 46th day of the relational year started at the end of January 2020), and I work5 with

κ(t) =

{
0.2 for 46 ≤ t ≤ 76
1 for t > 76, t < 46,

then I get the result pictured in Figure 7a.

(a) (b)

Figure 7. Results with lockdowns; S—green, I—red, R—blue; 30 days lockdown, starting on 16 March
2020. (a) German progression over one year, starting at the end of January 2020; (b) Spanish progression
over one year, starting at the end of January 2020.

The numerical tests showed that a very early start of the lockdown, resulting in a reduction of
the infection rate β, causes the typical Gaussian curve to be delayed by I; however, the amplitude
(maximum value of I) does not really change.

It is known from other pandemics, such as the Spanish flu ([11,12]) or the swine flu, that the
development of the number of infected people looks like a Gaussian curve. The interesting points
in time are those where the acceleration of the numbers of infected people increases or decreases,
respectively.

These are the points in time where the curve of I changes from a convex to a concave behavior or
vice versa. The convexity or concavity can be controlled by the second derivative of I(t).

Let us consider Equation (2). By differentiation of (2) and the use of (1), I get

d2 I
dt2 =

β

N
dS
dt

I +
β

N
S

dI
dt
− γ

dI
dt

= − β

N

2
SI2 + (

βS
N
− γ)(

βS
N
− γ)I

= [(
βS
N
− γ)2 − (

β

N
)2SI]I .

With that, the I-curve will change from convex to concave if the relation

(
βS
N
− γ)2 − (

β

N
)2SI < 0⇐⇒ I >

( βS
N − γ)2N2

β2S
(7)

5 I will understand 20% of normality by a lockdown, this means κ = 0.2.
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is valid. The switching time follows

t0 = min
t
{t > 0, I(t) > (

βS(t)
N
− γ)2N2)/(β2S(t))} . (8)

A lockdown starting at t0 (assigning β∗ = κβ, κ ∈ [0, 1[) up to a point in time t1 = t0 +∆t, with ∆t

as the duration of the lockdown in days, will be denoted as a dynamical lockdown (for t > t1, β∗ is
reset to the original value β).

t0 indicates the point in time up to which the growth rate increases and after which it decreases.
Figure 8a shows the result of such a computation of a dynamical 30-days lockdown. I obtained t0 = 108
(κ = 0.2). The result is significant. In Figure 9a, a typical behavior of d2 I

dt2 is plotted (in Figure 9b, d2 I
dt2 in

the dynamical lockdown case).

(a) (b)

Figure 8. Results over one year; S—green, I—red, R—blue. (a) German progression over one year,
starting at the end of January 2020, dynamical lockdown; (b) Spanish progression over one year,
starting at the end of March 2020, dynamical lockdown.

(a) (b)

Figure 9. Typical history of the second derivatives of I. (a) History of the second derivative of I;
(b) History of the second derivative of I with dynamical lockdown.

The result of a dynamical 30-day lockdown for Spain is shown in Figure 8b, where I found
t0 = 106 (κ = 0.2).
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Data from China and South Korea suggest that the group of infected people with an age of 70 or
more is of a magnitude of 10%. This group has a significantly higher mortality rate than the rest of
the infected people. Thus, I can presume that, as a high-risk group, α = 10% of I must be especially
sheltered and possibly medicated very intensively.

Figure 10a shows the German time history of the above-defined high-risk group with a dynamical
lockdown with κ = 0.2 compared to the regime without social distancing. The maximum number
of infected people decreases from approximately 1.7 million people to 0.8 million in the case of the
lockdown (30-day lockdown).

This result proves the usefulness of a lockdown or strict social distancing during an epidemic
disease. I observe a flattening of the infection curve as requested by politicians and health professionals.
With strict social distancing for a limited time, one can save time to find vaccines and time to improve
the possibilities of helping high-risk people in hospitals.

(a) (b)

Figure 10. History of the high-risk groups depending on a dynamical lockdown. (a) German history;
(b) Spanish history.

To see the influence of social distancing, I look at the Spanish situation without a lockdown and
with a dynamical lockdown of 30 days in Figure 10b (κ = 0.2) for the 10% that includes high-risk people.

The computations with the SIR model show that the limited social distancing with a lockdown
will be successful with a start after a time greater or equal to t0, found by the evaluation of the second
derivative of I (formula (8)). If the limited lockdown is started at a time less then t0, the effect of such
social distancing is not significant.

Bavaria is one of the origins of the German pandemic and is still under strict observation.
Therefore, I will consider the simulation results for this German hotspot. I use β = 0.215 and
N = 12 million as parameters. In Figure 11 the results for one year without and with lockdowns
are shown.

In Figure 12a, the consequences of a 40-day social distancing/dynamical lockdown for the
development of the number of high-risk infected people are shown. Because of the increasing number
of infected people after the 40-day lockdown, I simulated a step-wise return to normality. After the
40-day lockdown, two 40-day periods follow with 60% and 80% of normality, respectively. The result
of this simulation is shown in Figure 12b.
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(a) (b)

Figure 11. Bavarian one-year results; S—green, I—red, R—blue. (a) Bavarian one-year progression
without lockdown; (b) Bavarian one-year progression with lockdown.

(a) (b)

Figure 12. Bavarian one-year results for the high-risk people. (a) Bavarian one-year progression.
(b) Bavarian one-year progression, with the green curve representing the step-wise return to normality.

The results for Bavaria with the considered step-wise lockdown can be passed to other regions
or countries with pandemics. Such a strategy should be preferred instead of a complete return to
normality after rigorous social distancing.

If I write (2) of the SIR model in the form

dI
dt

= (κβ
S
N
− γ)I,

I realize that the number of infected people decreases if

κβ
S
N
− γ < 0⇐⇒ S < N

γ

κβ
(9)

is complied with. The relation (9) shows that there are possibilities for the reduction of infected people
to be inverted and the medical burden to be reduced.

(a) The first possibility to decrease the number of infected people is the reduction of the infection
rate κβ. This can be achieved through strict lockdowns, social distancing at appropriate times,
or rigid sanitary measures.
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(b) The second way consists of the reduction of the stock of the species S. This can be achieved
through immunization or vaccination.

(c) The isolation of high-risk people (70 years and older) is another possibility for the reduction
of the number of infected people. In addition, positive tests for antibodies reduce the stock of
susceptible persons.

If there is quantitative information on the isolation of infected people through quarantine, the SIR
model can be extended by a species X, which quantifies symptomatic and quarantined infected people.
This was considered in [2] for the Chinese province of Hubei.

6. Discussion and Conclusions

In this paper, I used a modified SIR model to describe the progression of the COVID-19 pandemic.
I find that the timing of the lockdown is crucial in the progression of a pandemic. It could be shown
that a very early start of limited social distancing measures of a period of ∆t days leads only to a
displacement of the climax of the pandemic, but not really to an efficient flattening of the curve of the
number of infected people.

The intervention measures are more efficient, and one can observe a descent in the number
of infected people if the social distancing is started beyond the dynamical lockdown time t0.
However, in this case, a second bump of the curve of infected people will also occur. A stepwise
return to normality turned out to be the most efficient way to overcome the climax of a pandemic.

For the calibration of the SIR model, i.e., the evaluation of the parameter β, the non-linear
regression comes up with significantly better results than the log–linear regression. This is evident
with the comparison of the graphs of the evaluated exponential functions.

It must be noted again that the parameters β and κ were guessed very roughly. In addition,
the percentage representing the group of high-risk people, α, is possibly overestimated. Depending on
the capabilities and performance of the health systems of the respective countries, those parameters
may look different. The interpretation of κ as a random variable is thinkable, too.

I have to point to the second bump in the progression of the number of infected people as an
important issue of limited lockdowns. This must be respected in all decisions of physicians and
politicians in connection with the handling of the pandemic. The simulations for Bavaria pictured in
Figure 12 show that there are return strategies that can reduce further ramps of the progression of the
number of infected people.

In conclusion, it must be said that the results of the simulations using the SIR model describe,
in a way, the worst case. A lot of interventions made by politicians and physicians can disturb the
progression of the pandemic in a positive way. However, not all measures and interventions can be
described by SIR-type models. This allows the conjecture that the real pandemic will be weaker than
the simulation results of the model.
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