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1. Introdution

During the growth of rystals rystal defets were observed under some onditions of the growth devie. As a result

of experiments a transition from the twodimensional ow regime of a rystal melt in axisymmetri zone melting

devies to an unsteady threedimensional behavior of the veloity and temperature �eld was found experimentally.

This behavior leads to striations as undesirable rystal defets.

To avoid suh rystal defets it is important to know the parameters, whih guarantee a stable steady twodimensional

melt ow during the growth proess.

There are several possibilities for parameter �nding. In this paper optimization problems will be disussed. From

the experiment and the pratial rystal prodution proess it is known that an unsteady behavior of the melt and

vortiies near the uid-solid-interphase derease the rystal quality. Thus it makes sense to look for example for (i)

ows, whih are nearly steady and (ii) ows, whih have only a small vortiity in a ertain region of the melt zone.

This leads to traking type optimization problems (i) with funtionals like
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and problems with optimization funtionals of the form
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~u is the veloity vetor �eld in the melt and ~u is the state, whih we want to have, �



is the ontrol temperature on the

ontrol boundary �



. The melt ow is desribed by the Navier-Stokes equation with the Boussinesq-approximation

for the inuene of natural onvetion oupled with the onvetive heat ondution equation. In addition to the

thermal e�ets the solutal onvetion an be onsidered optional by a di�usion equation.

2. Mathematial model

The rystal melt is desribed by the Navier-Stokes equation for an inompressible uid using the Boussinesq approx-

imation oupled with the onvetive heat ondution equation and the di�usion equation. Heat ondutivity and

visosity depend on the temperature. Beause of the axisymmetri situation of the melting zone we write down the

equations in ylindial oordinates. Thus we have the governing equations
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in the ylindrial melt zone (height H , radius R). u; v; w and p are the primitive variables of the veloity vetor and

the pressure, � and � denote the density and the temperature, Pr is the Prandtl number, g is the body fore and q

stands for an energy soure.

For the veloity no slip boundary onditions are used. At the interfaes between the solid material and the uid

rystal melt we have for the temperature inhomogenous Dirihlet data, i.e. the melting point temperature. On the



heated oat of the ampulla the experimentators gave us measured temperatures but we need Neumann onditions

to desribe the heating proedure physially orretly. The boundary onditions are of the form

u = v = w = 0 on the whole boudary; (8)
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for r = 1; 0 � z � 2�; ' 2 (0; 2�); (this is the ontrol boundary �



) (9)

� = 0; for 0 � r � 1; z = 0; z = 2�; ' 2 (0; 2�); (10)

The initial state was assumed as the neutral position of the rystal melt (~v = 0) and a temperature �eld, whih

solves the non onvetive heat ondution equation with the given temperature boundary onditions.

A threedimensional �nite volume ode is used for the numerial solution of the above desribed non linear initial

boundary value problem.

The material properties and the dimensionless parameters for the investigated rystal lose the initial boundary

value problem for the desription of the melt ow.

3. Optimization

For the alulus of optimization and the derivation of an optimization system we use the mathematial model in

artesian oordinates, whih reads as
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~u is the veloity vetor and 


T

= 
� (0; T ) is the onsidered time ylinder. For the boundary onditions we have
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where � = �



[ �

d

is the boundary of the spatial region 
 � IR

3

, on whih the problem lives, and �

T

= �� (0; T ).

�



is the ontrol boundary and �

d

is the Dirihlet part of the boundary. For T = 0 we have the initial ondition

~u = 0 and a temperature �eld, whih solves the non onvetive heat ondution equation with the given temperature

boundary onditions � = �

0

on 
.

The use of formal Lagrange parameters tehnique with respet to the funtional of type (1) means the onsideration

of the Langrange funtional
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moment and energy stand for the left sides of the equations (11) and (13), and for example for < ~�;moment >
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we have
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~�, �, � and � are Lagrange parameters and it's lear, that

L(~u; p; �; �



; ~�; �; �; �) = J(~u; �



) ;

if ~u; p; � is a solution of the above desribed thermal oupled boundary value problem. We will not disuss the

funtional analytial aspets of the used Lagrange method, i.e. funtion spaes, smoothness properties et. A very

good overview over the funtional analytial bakground and the fundation of the optimization of Navier-Stokes

problems is developed in M. Hinze [2000℄.

To �nd andidates ~u(�



) and �



, whih minimize the funtional (1) we have to analyze the neessary onditions
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Let us have a loser look at the ondition (19). For J
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Using the rules of integration by parts from (23)-(25) and (19) we get for all test vetor funtions ~u
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with the boundary ondition
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and the �nal ondition
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The neessary ondition (20) gives for all test funtions ~p the equation
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or after the integration by parts for all test funtions
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� we get the equation
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with the time boundary onditions
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Now we an summarize and the fully optimization system onsists of



� the forward model with the Boussinesq equations (11),(12),(13), the boundary onditions (14),(15),(16) and

the given initial state for the veloity �eld ~u, the pressure p and the temperature �, and

� the adjoint model with the equations (26),(29),(30),(33), the boundary onditions (27),(31),(34) and the �nal

onditions (28),(32) for the adjoint variables ~�, �, � and the ontrol �



.

The global existene of a solution of the forward problem is well known (see Ladyzhenskaya [1969℄, Constantin, Foias

[1988℄). In three dimensions only the loal uniqueness of the forward solution ould be shown. Hinze [2000℄ has

shown the existene and uniqueness of a solution of the adjoint model. For the used minimization funtionals (1)

and (2) Hinze has shown the positive de�niteness of the Hessian
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and with this result we have a suÆient seond order optimality ondition.

4. Optimization with in�nite degrees of freedom vs. optimization of �nite parameters

In our onept we look for a boundary ontrol �



, whih has in�nite degrees of freedom. The prize we have to pay

for this is high, beause the very ompliated optimization system onsisting of the forward and the adjoint system,

whih is hard to solve. Other onepts (for example Gunzburger et al. [2002℄) look for speial ontrol funtions,

whih depend only of a few parameters. This restrition gives the possibility to minimize a given funtional in the

ase of two parameters by a Newton method, and for one Newton iteration the forward problem must be solved

three times.

Beause of the more general onept a result �



of the presented optimization strategy will be optimal in a more

general sense, than presribed temperature pro�les, whih depend only of one or two parameters. But the easier

implementation of the method, presented in Gunzburger et al. [2002℄, makes it to a valuable optimization tool.

5. Numerial solution method

The optimization system (11)-(16) and (26)-(34) is now under onsideration for a numerial solution. The Navier-

Stokes equation and the onvetive heat ondution equation are solved with a �nite volume method (B�arwol� [1994,

1995, 1997℄).

If we have axisymmetri onditions we an transform the adjoint equations into a ylindrial oordinate system.

Using the adjoint divergene ondition div ~� = 0 we an write the adjoint equations in the following quasi onservative

form. We express the adjoint veloity ~� by

~� = (�; �; !)

in the ylindrial oordinate system with the radial omponent �, the azimutal omponent � and the z-omponent
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From equation (30) we get for the adjoint temperature �
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Equation (38) is a onvetive heat ondution equation and the disretization an be done like those in B�arwol�

[1997℄. In the equations (35)-(37) the terms
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are not known from the lassial Navier-Stokes equations. Using a staggered grid �nite volume method, u and �

live at the same gridpoints, also v and �, w and !, and � and �. Let us disuss the �rst omponent of (r~u)

t

~� and



�r�, we get in a anonial way

(�u

r

+ �v

r

+ !w

r

)

i+1=2jk

� (39)

�

i+1=2jk

[(u

i+3=2jk

+ u

i+1=2jk

)� (u

i+1=2jk

+ u

i�1=2jk

)℄=(2�x

i+1=2

)

+�

i+1=2jk

[(v

i+1j+1=2k

+ v

i+1j�1=2k

)� (v

ij+1=2k

+ v

ij�1=2k

)℄=(2�x

i+1=2

)

+!

i+1=2jk

[(w

i+1jk+1=2

+ w

i+1jk�1=2

)� (w

ijk+1=2

+ w

ijk�1=2

)℄=(2�x

i+1=2

)

with

�

i+1=2jk

= (�

ij+1=2k

+ �

i+1j+1=2k

+ �

ij�1=2k

+ �

i+1j�1=2k

)=4 and

!

i+1=2jk

= (!

i+1jk+1=2

+ !

i+1jk�1=2

+ !

ijk+1=2

+ !

ijk�1=2

)=4 ;

and

��

r

� 0:5(�

i+1jk

+ �

ijk

)[�

i+1jk

� �

ijk

℄=�x

i+1=2

: (40)

The solution of the disretized system (11)-(16) and (26)-(34) is diÆult and expensive, beause of the opposite

time diretion of the forward system (11)-(16) and the adjoint system (26)-(34). That means we know the forward

solution ~u; � on the whole time interval [0; T ℄ to get the adjoint solution ~�; � and vie versa.

If we have disretized the time interval [0; T ℄ by Z timesteps and the dimensions of the spatial disretizations

are N , M and P a diret solution of the whole system means the solution of an algebrai equation system with

2Z �N �M � P � 10 equations. Iterative methods of the form

i) hoose a suitable start value of ~u; �,

ii) solve the adjoint problem and get [~�; �; �



℄(~u; �)

iii) solve the forward problem and get [~u; �℄(�



)

iv) until onvergene, go to ii),

are under onsideration, but suh algorithms are also very expensive if one needs some iteration steps.

Quite another and a realizable algorithm will be disussed in the next setion.

6. Suboptimal ontrol

The starting point for suboptimal or instantanous ontrol is a time disretization of the Boussinesqu equation system,

i.e. in the ase of an Euler bakward time disretization with the time step parameter �
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where the upper index o means the values at the atual time level. Quantities without an index are onsidered at

the new time level. The Euler bakward time disretization of the heat ondution equation leads to
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have a stationary optimization problem per time step and with a sequene of suh problems we will get a suboptimal

ontrol �

s

over the time period [0; T ℄. The optimality system per time step we get on the same way, whih we used



in the above disussed time-dependend ase.

For the adjoint variables ~�, �. � and the ontrol �
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analyzing the nesseery ondition rL = 0 the adjoint system

~�� ��~�+r� = �(~u� ~u) in 
; (49)

��div ~� = 0 in 
; (50)

~� = 0 on �; (51)

��

�

Pr

��� �(~u

o

� r)� = ���

�

g! in 
; (52)

� = 0 on �; (53)

�

s

=

�

Pr

��

�n

on �



: (54)

The advantage of this tehnique is obvious, beause we have to solve per time step only a small stationary optimiza-

tion problem. The results of Hinze [2001℄ showed the eÆieny of the suboptimal or instantanous ontrol strategy in

the ase of isothermi ows and it ould be shown, that suboptimal ontrols are very e�etive ompared to optimal

ontrols, i.e. the value of the

^

J(�

s

) was only 10% higher than

^

J(�



) in the ase of a boundary ontrolled bakward

faing step.

7. Conlusion

With the Langrange parameter tehnique it's possible to derive an optimization system for a given funtional, whih

solution gives an optimal ontrol. The numerial solution of the fully time-depend optimization system is not possible

for realisti on�gurations yet.

Suboptimal strategies with the used linearizations of (41) and (44) lead to a sequene of time-independend stationary

optimization problems, whih bring suboptimal results near the optimal ontrol. The developed strategies are now

applied to the above disussed rystal melt problem in two and three dimensions.
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