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1. Introduction

During the growth of crystals crystal defects were observed under some conditions of the growth device. As a result
of experiments a transition from the twodimensional flow regime of a crystal melt in axisymmetric zone melting
devices to an unsteady threedimensional behavior of the velocity and temperature field was found experimentally.
This behavior leads to striations as undesirable crystal defects.

To avoid such crystal defects it is important to know the parameters, which guarantee a stable steady twodimensional
melt flow during the growth process.

There are several possibilities for parameter finding. In this paper optimization problems will be discussed. From
the experiment and the practical crystal production process it is known that an unsteady behavior of the melt and
vorticies near the fluid-solid-interphase decrease the crystal quality. Thus it makes sense to look for example for (i)
flows, which are nearly steady and (ii) flows, which have only a small vorticity in a certain region of the melt zone.
This leads to tracking type optimization problems (i) with functionals like
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and problems with optimization functionals of the form
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i is the velocity vector field in the melt and @ is the state, which we want to have, . is the control temperature on the
control boundary I'.. The melt flow is described by the Navier-Stokes equation with the Boussinesg-approximation
for the influence of natural convection coupled with the convective heat conduction equation. In addition to the
thermal effects the solutal convection can be considered optional by a diffusion equation.

2. Mathematical model

The crystal melt is described by the Navier-Stokes equation for an incompressible fluid using the Boussinesq approx-
imation coupled with the convective heat conduction equation and the diffusion equation. Heat conductivity and
viscosity depend on the temperature. Because of the axisymmetric situation of the melting zone we write down the
equations in cylindical coordinates. Thus we have the governing equations
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in the cylindrical melt zone (height H, radius R). u,v,w and p are the primitive variables of the velocity vector and
the pressure, p and 6 denote the density and the temperature, Pr is the Prandtl number, g is the body force and ¢
stands for an energy source.

For the velocity no slip boundary conditions are used. At the interfaces between the solid material and the fluid
crystal melt we have for the temperature inhomogenous Dirichlet data, i.e. the melting point temperature. On the



heated coat of the ampulla the experimentators gave us measured temperatures but we need Neumann conditions
to describe the heating procedure physically correctly. The boundary conditions are of the form
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The initial state was assumed as the neutral position of the crystal melt (7 = 0) and a temperature field, which
solves the non convective heat conduction equation with the given temperature boundary conditions.

A threedimensional finite volume code is used for the numerical solution of the above described non linear initial
boundary value problem.

The material properties and the dimensionless parameters for the investigated crystal close the initial boundary
value problem for the description of the melt flow.

3. Optimization

For the calculus of optimization and the derivation of an optimization system we use the mathematical model in
cartesian coordinates, which reads as
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@ is the velocity vector and Q7 = Q x (0,T) is the considered time cylinder. For the boundary conditions we have
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where I' = I', U Ty is the boundary of the spatial region Q C IR®, on which the problem lives, and I'r =T x (0,T).
I, is the control boundary and I'y is the Dirichlet part of the boundary. For T" = 0 we have the initial condition
# = 0 and a temperature field, which solves the non convective heat conduction equation with the given temperature
boundary conditions 6 = 6, on (.

The use of formal Lagrange parameters technique with respect to the functional of type (1) means the consideration
of the Langrange functional
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moment and energy stand for the left sides of the equations (11) and (13), and for example for < ji, moment >q.,.
we have

< fl,moment >q.= / [ + (Z- V)T — AT+ Vp — p(0)g] - fdQdt . (18)
Qr

i, &, k and x are Lagrange parameters and it’s clear, that
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if i@, p, 0 is a solution of the above described thermal coupled boundary value problem. We will not discuss the
functional analytical aspects of the used Lagrange method, i.e. function spaces, smoothness properties etc. A very
good overview over the functional analytical background and the fundation of the optimization of Navier-Stokes
problems is developed in M. Hinze [2000].

To find candidates @(6.) and 6., which minimize the functional (1) we have to analyze the necessary conditions
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Let us have a closer look at the condition (19). For Jz@ we find

The term < ji, momentz >q, means the derivative of the Navier-Stokes equation, i.e.
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The discussion of the term < k,energyz >q, gives
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Using the rules of integration by parts from (23)-(25) and (19) we get for all test vector functions @
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or after the integration by parts for all test functions 6 we get the equation
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with the boundary condition
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and the final condition
k(T)=0 in Q,

and the choice of y as
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with the time boundary conditions
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Now we can summarize and the fully optimization system consists of
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e the forward model with the Boussinesq equations (11),(12),(13), the boundary conditions (14),(15),(16) and
the given initial state for the velocity field i, the pressure p and the temperature 6, and

e the adjoint model with the equations (26),(29),(30),(33), the boundary conditions (27),(31),(34) and the final
conditions (28),(32) for the adjoint variables fi, &, x and the control 6..

The global existence of a solution of the forward problem is well known (see Ladyzhenskaya [1969], Constantin, Foias
[1988]). In three dimensions only the local uniqueness of the forward solution could be shown. Hinze [2000] has
shown the existence and uniqueness of a solution of the adjoint model. For the used minimization functionals (1)
and (2) Hinze has shown the positive definiteness of the Hessian J” (6,) of

J(0.) == J(@8.),6.) ,

and with this result we have a sufficient second order optimality condition.

4. Optimization with infinite degrees of freedom vs. optimization of finite parameters

In our concept we look for a boundary control 6., which has infinite degrees of freedom. The prize we have to pay
for this is high, because the very complicated optimization system consisting of the forward and the adjoint system,
which is hard to solve. Other concepts (for example Gunzburger et al. [2002]) look for special control functions,
which depend only of a few parameters. This restriction gives the possibility to minimize a given functional in the
case of two parameters by a Newton method, and for one Newton iteration the forward problem must be solved
three times.

Because of the more general concept a result 6. of the presented optimization strategy will be optimal in a more
general sense, than prescribed temperature profiles, which depend only of one or two parameters. But the easier
implementation of the method, presented in Gunzburger et al. [2002], makes it to a valuable optimization tool.

5. Numerical solution method

The optimization system (11)-(16) and (26)-(34) is now under consideration for a numerical solution. The Navier-
Stokes equation and the convective heat conduction equation are solved with a finite volume method (Bérwolff [1994,
1995, 1997]).

If we have axisymmetric conditions we can transform the adjoint equations into a cylindrical coordinate system.
Using the adjoint divergence condition div i = 0 we can write the adjoint equations in the following quasi conservative
form. We express the adjoint velocity ji by

i=(uv,w)

in the cylindrical coordinate system with the radial component p, the azimutal component v and the z-component
w and we get from (26)
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From equation (30) we get for the adjoint temperature &
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Equation (38) is a convective heat conduction equation and the discretization can be done like those in Barwolff
[1997]. In the equations (35)-(37) the terms

(ViD)tji and kVo

are not known from the classical Navier-Stokes equations. Using a staggered grid finite volume method, v and u
live at the same gridpoints, also v and v, w and w, and @ and k. Let us discuss the first component of (Vi)!ji and



kV0, we get in a canonical way
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The solution of the discretized system (11)-(16) and (26)-(34) is difficult and expensive, because of the opposite
time direction of the forward system (11)-(16) and the adjoint system (26)-(34). That means we know the forward
solution @, 6 on the whole time interval [0, T] to get the adjoint solution fi, x and vice versa.

If we have discretized the time interval [0,T] by Z timesteps and the dimensions of the spatial discretizations
are N, M and P a direct solution of the whole system means the solution of an algebraic equation system with
2Z x N x M x P x 10 equations. Iterative methods of the form

i) choose a suitable start value of i, 6,

)
ii) solve the adjoint problem and get [ii, &, 8.](, 8)
iii) solve the forward problem and get [, 8](6.)

)

iv) until convergence, go to ii),

are under consideration, but such algorithms are also very expensive if one needs some iteration steps.
Quite another and a realizable algorithm will be discussed in the next section.

6. Suboptimal control

The starting point for suboptimal or instantanous control is a time discretization of the Boussinesqu equation system,
i.e. in the case of an Euler backward time discretization with the time step parameter
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where the upper index o means the values at the actual time level. Quantities without an index are considered at
the new time level. The Euler backward time discretization of the heat conduction equation leads to
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Now we look for a control 8, which minimizes the functional
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With J,(6,) := J,(@(85),85) = min! for @ as a solution of the boundary value problem (41)-(46) for a control 8, we

have a stationary optimization problem per time step and with a sequence of such problems we will get a suboptimal
control 65 over the time period [0, T]. The optimality system per time step we get on the same way, which we used



in the above discussed time-dependend case.
For the adjoint variables fi, £. k and the control 65 we get for the Lagrange function
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analyzing the nessecery condition VL = 0 the adjoint system
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The advantage of this technique is obvious, because we have to solve per time step only a small stationary optimiza-
tion problem. The results of Hinze [2001] showed the efficiency of the suboptimal or instantanous control strategy in
the case of isothermic flows and it could be shown, that suboptimal controls are very effective compared to optimal

controls, i.e. the value of the J(f,) was only 10% higher than .J(f.) in the case of a boundary controlled backward
facing step.

7. Conclusion

With the Langrange parameter technique it’s possible to derive an optimization system for a given functional, which
solution gives an optimal control. The numerical solution of the fully time-depend optimization system is not possible
for realistic configurations yet.

Suboptimal strategies with the used linearizations of (41) and (44) lead to a sequence of time-independend stationary
optimization problems, which bring suboptimal results near the optimal control. The developed strategies are now
applied to the above discussed crystal melt problem in two and three dimensions.
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