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1. Introdu
tion

During the growth of 
rystals 
rystal defe
ts were observed under some 
onditions of the growth devi
e. As a result

of experiments a transition from the twodimensional 
ow regime of a 
rystal melt in axisymmetri
 zone melting

devi
es to an unsteady threedimensional behavior of the velo
ity and temperature �eld was found experimentally.

This behavior leads to striations as undesirable 
rystal defe
ts.

To avoid su
h 
rystal defe
ts it is important to know the parameters, whi
h guarantee a stable steady twodimensional

melt 
ow during the growth pro
ess.

There are several possibilities for parameter �nding. In this paper optimization problems will be dis
ussed. From

the experiment and the pra
ti
al 
rystal produ
tion pro
ess it is known that an unsteady behavior of the melt and

vorti
ies near the 
uid-solid-interphase de
rease the 
rystal quality. Thus it makes sense to look for example for (i)


ows, whi
h are nearly steady and (ii) 
ows, whi
h have only a small vorti
ity in a 
ertain region of the melt zone.

This leads to tra
king type optimization problems (i) with fun
tionals like
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and problems with optimization fun
tionals of the form
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~u is the velo
ity ve
tor �eld in the melt and ~u is the state, whi
h we want to have, �




is the 
ontrol temperature on the


ontrol boundary �




. The melt 
ow is des
ribed by the Navier-Stokes equation with the Boussinesq-approximation

for the in
uen
e of natural 
onve
tion 
oupled with the 
onve
tive heat 
ondu
tion equation. In addition to the

thermal e�e
ts the solutal 
onve
tion 
an be 
onsidered optional by a di�usion equation.

2. Mathemati
al model

The 
rystal melt is des
ribed by the Navier-Stokes equation for an in
ompressible 
uid using the Boussinesq approx-

imation 
oupled with the 
onve
tive heat 
ondu
tion equation and the di�usion equation. Heat 
ondu
tivity and

vis
osity depend on the temperature. Be
ause of the axisymmetri
 situation of the melting zone we write down the

equations in 
ylindi
al 
oordinates. Thus we have the governing equations
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in the 
ylindri
al melt zone (height H , radius R). u; v; w and p are the primitive variables of the velo
ity ve
tor and

the pressure, � and � denote the density and the temperature, Pr is the Prandtl number, g is the body for
e and q

stands for an energy sour
e.

For the velo
ity no slip boundary 
onditions are used. At the interfa
es between the solid material and the 
uid


rystal melt we have for the temperature inhomogenous Diri
hlet data, i.e. the melting point temperature. On the



heated 
oat of the ampulla the experimentators gave us measured temperatures but we need Neumann 
onditions

to des
ribe the heating pro
edure physi
ally 
orre
tly. The boundary 
onditions are of the form

u = v = w = 0 on the whole boudary; (8)

� = �




for r = 1; 0 � z � 2�; ' 2 (0; 2�); (this is the 
ontrol boundary �




) (9)

� = 0; for 0 � r � 1; z = 0; z = 2�; ' 2 (0; 2�); (10)

The initial state was assumed as the neutral position of the 
rystal melt (~v = 0) and a temperature �eld, whi
h

solves the non 
onve
tive heat 
ondu
tion equation with the given temperature boundary 
onditions.

A threedimensional �nite volume 
ode is used for the numeri
al solution of the above des
ribed non linear initial

boundary value problem.

The material properties and the dimensionless parameters for the investigated 
rystal 
lose the initial boundary

value problem for the des
ription of the melt 
ow.

3. Optimization

For the 
al
ulus of optimization and the derivation of an optimization system we use the mathemati
al model in


artesian 
oordinates, whi
h reads as
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~u is the velo
ity ve
tor and 


T

= 
� (0; T ) is the 
onsidered time 
ylinder. For the boundary 
onditions we have
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d

is the boundary of the spatial region 
 � IR

3

, on whi
h the problem lives, and �

T

= �� (0; T ).

�




is the 
ontrol boundary and �

d

is the Diri
hlet part of the boundary. For T = 0 we have the initial 
ondition

~u = 0 and a temperature �eld, whi
h solves the non 
onve
tive heat 
ondu
tion equation with the given temperature

boundary 
onditions � = �

0

on 
.

The use of formal Lagrange parameters te
hnique with respe
t to the fun
tional of type (1) means the 
onsideration

of the Langrange fun
tional
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moment and energy stand for the left sides of the equations (11) and (13), and for example for < ~�;moment >
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we have
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~�, �, � and � are Lagrange parameters and it's 
lear, that

L(~u; p; �; �




; ~�; �; �; �) = J(~u; �




) ;

if ~u; p; � is a solution of the above des
ribed thermal 
oupled boundary value problem. We will not dis
uss the

fun
tional analyti
al aspe
ts of the used Lagrange method, i.e. fun
tion spa
es, smoothness properties et
. A very

good overview over the fun
tional analyti
al ba
kground and the fundation of the optimization of Navier-Stokes

problems is developed in M. Hinze [2000℄.

To �nd 
andidates ~u(�




) and �




, whi
h minimize the fun
tional (1) we have to analyze the ne
essary 
onditions
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Let us have a 
loser look at the 
ondition (19). For J

~u

~u we �nd

J
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Using the rules of integration by parts from (23)-(25) and (19) we get for all test ve
tor fun
tions ~u
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with the boundary 
ondition

~� = 0 on �� (0; T ); (27)

and the �nal 
ondition
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 : (28)

The ne
essary 
ondition (20) gives for all test fun
tions ~p the equation
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or after the integration by parts for all test fun
tions

~

� we get the equation

��

t

�

1

Pr

��� (~u � r)� = ��

�

~g � ~� in 


T

; (30)

with the boundary 
ondition

� = 0 on �

T

; (31)

and the �nal 
ondition

�(T ) = 0 in 
 ; (32)

and the 
hoi
e of � as

� =

1

Pr

��

�n

on �




� (0; T ) :

The evaluation of the 
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Now we 
an summarize and the fully optimization system 
onsists of



� the forward model with the Boussinesq equations (11),(12),(13), the boundary 
onditions (14),(15),(16) and

the given initial state for the velo
ity �eld ~u, the pressure p and the temperature �, and

� the adjoint model with the equations (26),(29),(30),(33), the boundary 
onditions (27),(31),(34) and the �nal


onditions (28),(32) for the adjoint variables ~�, �, � and the 
ontrol �




.

The global existen
e of a solution of the forward problem is well known (see Ladyzhenskaya [1969℄, Constantin, Foias

[1988℄). In three dimensions only the lo
al uniqueness of the forward solution 
ould be shown. Hinze [2000℄ has

shown the existen
e and uniqueness of a solution of the adjoint model. For the used minimization fun
tionals (1)

and (2) Hinze has shown the positive de�niteness of the Hessian
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and with this result we have a suÆ
ient se
ond order optimality 
ondition.

4. Optimization with in�nite degrees of freedom vs. optimization of �nite parameters

In our 
on
ept we look for a boundary 
ontrol �




, whi
h has in�nite degrees of freedom. The prize we have to pay

for this is high, be
ause the very 
ompli
ated optimization system 
onsisting of the forward and the adjoint system,

whi
h is hard to solve. Other 
on
epts (for example Gunzburger et al. [2002℄) look for spe
ial 
ontrol fun
tions,

whi
h depend only of a few parameters. This restri
tion gives the possibility to minimize a given fun
tional in the


ase of two parameters by a Newton method, and for one Newton iteration the forward problem must be solved

three times.

Be
ause of the more general 
on
ept a result �




of the presented optimization strategy will be optimal in a more

general sense, than pres
ribed temperature pro�les, whi
h depend only of one or two parameters. But the easier

implementation of the method, presented in Gunzburger et al. [2002℄, makes it to a valuable optimization tool.

5. Numeri
al solution method

The optimization system (11)-(16) and (26)-(34) is now under 
onsideration for a numeri
al solution. The Navier-

Stokes equation and the 
onve
tive heat 
ondu
tion equation are solved with a �nite volume method (B�arwol� [1994,

1995, 1997℄).

If we have axisymmetri
 
onditions we 
an transform the adjoint equations into a 
ylindri
al 
oordinate system.

Using the adjoint divergen
e 
ondition div ~� = 0 we 
an write the adjoint equations in the following quasi 
onservative

form. We express the adjoint velo
ity ~� by
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in the 
ylindri
al 
oordinate system with the radial 
omponent �, the azimutal 
omponent � and the z-
omponent

! and we get from (26)
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From equation (30) we get for the adjoint temperature �
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Equation (38) is a 
onve
tive heat 
ondu
tion equation and the dis
retization 
an be done like those in B�arwol�

[1997℄. In the equations (35)-(37) the terms

(r~u)

t

~� and �r�

are not known from the 
lassi
al Navier-Stokes equations. Using a staggered grid �nite volume method, u and �

live at the same gridpoints, also v and �, w and !, and � and �. Let us dis
uss the �rst 
omponent of (r~u)
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�r�, we get in a 
anoni
al way
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The solution of the dis
retized system (11)-(16) and (26)-(34) is diÆ
ult and expensive, be
ause of the opposite

time dire
tion of the forward system (11)-(16) and the adjoint system (26)-(34). That means we know the forward

solution ~u; � on the whole time interval [0; T ℄ to get the adjoint solution ~�; � and vi
e versa.

If we have dis
retized the time interval [0; T ℄ by Z timesteps and the dimensions of the spatial dis
retizations

are N , M and P a dire
t solution of the whole system means the solution of an algebrai
 equation system with

2Z �N �M � P � 10 equations. Iterative methods of the form

i) 
hoose a suitable start value of ~u; �,

ii) solve the adjoint problem and get [~�; �; �




℄(~u; �)

iii) solve the forward problem and get [~u; �℄(�




)

iv) until 
onvergen
e, go to ii),

are under 
onsideration, but su
h algorithms are also very expensive if one needs some iteration steps.

Quite another and a realizable algorithm will be dis
ussed in the next se
tion.

6. Suboptimal 
ontrol

The starting point for suboptimal or instantanous 
ontrol is a time dis
retization of the Boussinesqu equation system,

i.e. in the 
ase of an Euler ba
kward time dis
retization with the time step parameter �
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where the upper index o means the values at the a
tual time level. Quantities without an index are 
onsidered at

the new time level. The Euler ba
kward time dis
retization of the heat 
ondu
tion equation leads to
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tional
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) = min! for ~u as a solution of the boundary value problem (41)-(46) for a 
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we

have a stationary optimization problem per time step and with a sequen
e of su
h problems we will get a suboptimal


ontrol �

s

over the time period [0; T ℄. The optimality system per time step we get on the same way, whi
h we used



in the above dis
ussed time-dependend 
ase.

For the adjoint variables ~�, �. � and the 
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we get for the Lagrange fun
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analyzing the nesse
ery 
ondition rL = 0 the adjoint system
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The advantage of this te
hnique is obvious, be
ause we have to solve per time step only a small stationary optimiza-

tion problem. The results of Hinze [2001℄ showed the eÆ
ien
y of the suboptimal or instantanous 
ontrol strategy in

the 
ase of isothermi
 
ows and it 
ould be shown, that suboptimal 
ontrols are very e�e
tive 
ompared to optimal


ontrols, i.e. the value of the

^

J(�

s

) was only 10% higher than

^

J(�




) in the 
ase of a boundary 
ontrolled ba
kward

fa
ing step.

7. Con
lusion

With the Langrange parameter te
hnique it's possible to derive an optimization system for a given fun
tional, whi
h

solution gives an optimal 
ontrol. The numeri
al solution of the fully time-depend optimization system is not possible

for realisti
 
on�gurations yet.

Suboptimal strategies with the used linearizations of (41) and (44) lead to a sequen
e of time-independend stationary

optimization problems, whi
h bring suboptimal results near the optimal 
ontrol. The developed strategies are now

applied to the above dis
ussed 
rystal melt problem in two and three dimensions.
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