
A Parallel Domain Decomposition Algorithm

for 3D Turbulence Modeling

G. B�arwol� H. Schwandt

TU Berlin, Hermann-F�ottinger-Institut TU Berlin, Fachbereich Mathematik

Berlin, Germany Berlin, Germany

Abstract

In this paper we present a parallel procedure for the solution of large

laminar and turbulent
ow problems. The Navier-Stokes equations

for an incompressible
uid are treated by �nite volume method.

The momentum equations are discretized in time explicitly. By a

domain decomposition strategy we obtain a highly parallel method

which scales well on massively parallel systems. The resulting linear

subsystems are solved by a modi�ed iterative method based on a

red-black ordering. We describe the parallelization strategy and its

implementation in several parallel environments. Numerical results

from several vector and parallel computers are included.

Keywords: turbulence, Navier-Stokes equations, domain decomposition, parallel methods

1 Introduction

The numerical simulation of three-dimensional turbulent
ow is one of the great chal-

lenges in Computational Fluid Dynamics. In addition to the obvious mathematical

problems the treatment of realistic problems requires the solution of extremely large

systems of equations resulting from the discretization of the underlying time-dependent

nonlinear PDE in three space dimensions. Both the arithmetic complexity and the me-

mory requirement of numerical solution procedures approach or even exceed the limits

of modern supercomputing. In this paper we present a �nite volume method for the

numerical solution of the nonstationary 3D Navier-Stokes equations. The starting point

for our work have been an approach and its numerical realization in a code MLET both

developed at the Universit�at der Bundeswehr in Munich [1]. In an interdisciplinary

research project this approach will be developed further under several aspects. The ul-

timate goal consists in the modeling of turbulent shear
ow by a large eddy simulation

(LES, see [4], e.g.). Direct numerical simulation (DNS) will be used where applicable

for comparisons. In the present context we focus on the parallelization of the method

which is indispensable in view of the enormous numerical complexity. To perform cal-

culations for realistical Reynolds numbers, three dimensional grids with many millions

of cells are necessary. Running problems of this size leads to very large turnaround

times (weeks or months) in existing production environments.

In this paper we describe as a �rst step a simple but e�cient domain decomposition

method which leads to highly parallel numerical algorithms. The parallelization strat-

egy is governed by the need that any code developed from the solution method should

be reasonably portable. On the one hand, one aim of the current work consists in the

development of parallel methods which are intended to be tested in di�erent parallel

computing environments. On the other hand, the
uid physical problems of the project

are treated at several sites. Therefore, the adaption to di�erent computing environ-

ments like vector computers and parallel systems ranging from workstation clusters to

parallel vector systems and massively parallel computers using (virtual) shared memory

or message passing strategies should be feasible with a tolerable amount of work.

The paper is organized as follows. In section 2 we brie
y describe the mathema-

tical model and the principles of the (sequential) solution method. In section 3 we

describe the physical background for a reference problem. The numerical solution of

this problem gives a good insight into the complexity of a realistical application. In

section 4 we describe the domain decomposition method and the general principles of

parallelization applied in this context. In section 5 we report the performance results

of several numerical experiments on Cray vector computers and the Cray MPP system

T3D using message passing. In the conclusion we give an outlook on future work.

2 The mathematical model and the solution

method

The basic equations for the description of laminar as well as turbulent incompressible

ow problems are the Navier-Stokes equations

@u

i

@t

+

@

@x

j

(u

i

u

j

) = �

@p

@x

i

+

@S

ij

@x

j

; i; j = 1; 2; 3; (1)

and the continuity equation

@u

j

@x

j

= 0 (2)

on a domain
�[0; T];
 � IR

3

; T > 0; with appropriate initial and boundary conditions.

Equations (1) and (2) may be discretized in space dimensions by a �nite volume method

on staggered grids for the velocity components ~u = (u; v; w) = (u

1

; u

2

; u

3

), the pressure

p and the strain rate tensor S

ij

=

�

2

(

@u

i

@x

j

+

@u

j

@x

i

). � is the e�ective or molecular viscosity.

In the sequel we write the equations (1) and (2) in the short operator form

@~u

@t

+K(~u) = �rp +D(~u) ; (3)

and

r � ~u

h

= 0 : (4)

The space discretization is done by a �nite volume method on staggered grids. The

details of this discretization method are described in [1] and [6]. Four staggered �nite

volume grids are used to discretize the three components of the momentum equation and

the continuity equation. For convenience, we describe as an example the discretization

of the continuity equation. Let

h

be the grid for the continuity equation and c

ijk

a

grid-cell. We integrate the equation (2) over c

ijk

and, applying the Gauss theorem (5),

we get

Z

c

ijk

@u

j

@x

j

d c

ijk

=

Z

c

ijk

r � ~u d c

ijk

=

Z

(c

ijk

)

~u � ~n d
(c

ijk

) = 0 ; (5)

where ~n denotes the outer normal vector and
(c

ijk

) the boundary of c

ijk

. In the case of

a regular quadrilateral cell c

ijk

, we approximate the values of ~u�~n on the cell boundaries

by values at the centers representing the mean values of the areas of the boundary faces,

and from (5) we get the �nite volume discretization

u

i+

1

2

;j;k

� u

i�

1

2

;j;k

�x

i

+

v

i;j+

1

2

;k

� v

i;j�

1

2

;k

�y

j

+

w

i;j;k+

1

2

� w

i;j;k�

1

2

�z

k

= 0 ;

shortly described as

r

h

� ~u

h

= 0 : (6)

Figure 1 illustrates the position of the velocity components on the vertices of a the

�nite volume cell c

ijk

.

e

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

e

u

i�

1

2

;j;k

w

i;j;k+

1

2

w

i;j;k�

1

2

v

i;j+

1

2

;k

v

i;j�

1

2

;k

u

i+

1

2

;j;k

Figure 1: �nite volume discretization of a cell c

ijk

Summarizing the results of the �nite volume discretization we get the following

system of ode's for the velocity components at every grid point:

@~u

h

@t

+K

h

(~u

h

) = �r

h

p

h

+D

h

(~u

h

) ; (7)

with the restriction r

h

� ~u

h

= 0. K

h

, r

h

p

h

and D

h

are the discrete operators resulting

from the �nite volume discretization of the convective terms, the pressure gradient and

the viscous terms of the momentum equation.

The discretization is of second order (O(h

2

)). It is conservative in the sense that the

mass, the momentum and the kinetic energy are conserved by the �nite volume form of

the model equations. The time integration is carried out either by a leapfrog method

or an Adams-Bashforth method. Thus, we have to solve in every time step the system

of equations

~u

n+1

h

�

~

~u

h

�

= ��r

h

�p

n+1

h

; r

h

� ~u

n+1

h

= 0 ; (8)

where �p

n+1

h

= p

n+1

h

� p

n

h

and where

~

~u

h

is a result from an explicit predictor step. � is

the time step and � is a constant depending on the time integration method. In the

case of a leapfrog method we get

~

~u

h

from the equation

~

~u

h

� ~u

n�1

h

2�

+K

h

(~u

n

) = r

h

p

n

h

+D

h

(~u

n�1

) (9)

with � = 2 (see also [1]). For the Adams-Bashforth method we note

~

~u

h

� ~u

n

h

�

+ 2K

h

(~u

n

)�K

h

(~u

n�1

) = r

h

p

n

h

+ 2D

h

(~u

n

)�D

h

(~u

n�1

) (10)

with � = 1. Thus, both time integration methods are explicit and of second order.

The di�erentiation of the equations (8) yields

��

h

�p

n+1

h

= �

1

��

r

h

�

~

~u

h

: (11)

There are two alternatives for the determination of the approximations (~u

n+1

h

; p

n+1

h

)

in every time step. They can be found either by the solution of a Poisson equation

(11) for p

n+1

h

followed by an explicit �ll-in step to get ~u

n+1

h

from (8) or iteratively.

Both possibilities have been considered in [1],[2]. In the present context, we restrict the

discussion to the iterative solution of a linear system of equations of the form

0

B

B

B

@

E

x

�

0

�

0 �C

x

�

0 E

y

�

0 �C

y

�

0

�

0 E

z

�C

z

D

x

D

y

D

z

�

0

1

C

C

C

A

0

B

B

B

@

u

n+1

h

v

n+1

h

w

n+1

h

�p

n+1

h

1

C

C

C

A

=

0

B

B

B

@

r

u

r

v

r

w

r

p

1

C

C

C

A

: (12)

The system of equations (12) constitutes the matrix form of (8). E

x

; E

y

and E

z

are

diagonal matrices, C

x

; C

y

and C

z

are sparse matrices resulting from the discretization

of the r

h

operator. Analogously, D

x

; D

y

and D

z

are sparse matrices resulting from

the discretization of the r

h

�. The components r

u

, r

v

, r

w

and r

p

on the righthand side

depend on

~

~u

h

and on the boundary conditions.

3 The
uid physical background and a reference

problem

The
uid physical background can be brie
y described as follows. The principal goal of

the present work consists in the development of a conceptual and algorithmic framework

for numerical simulations of turbulent
ow with high resolutions either not using any

turbulence model (Direct Numerical Simulation) or using subgrid scale models (Large

Eddy Simulation). The practical aim of the current simulation of a backward facing

step problem consists in the investigation of a possible reduction of the the drag or of the

energy loss (reduction of the production of turbulence energy, decreasing of recirculation

zones) by special manipulations of the
ow (acoustic manipulations/loudspeaker, other

forms of blowing or suction of boundary or shear layers) and, in particular, the reduction

of the recirculation zone behind the step. A parameter study is carried out in order to

investigate the behavior of the
ow depending on the amplitude of the manipulation

disturbances with a �xed frequency.

As a reference model, we consider a rectangular backward-facing step channel. The

acoustic manipulation is realized with disturbance (loudspeaker in front of the sepe-

ration edge with 50 Hz). The Reynolds number calculated using the step height is

approximately equal to 3000. In the spanwise direction periodic boundary conditions

are used. The in
ow pro�le is a block pro�le with u

1

= u

x

= 1 and u

2

= u

3

= 0. At

the bottom of the channel the no-slip boundary condition is assumed. At the top of the

region boundary conditions like

@~u

@~n

= 0 with the outer normal vector ~n are used. The

out
ow boundary condition is set to

@~u

@x

= 0.

The structured grid consists of 516 cells in the X-direction, 132 cells in the Y -

direction (spanwise) and 164 cells in the Z-direction. This �ne grid allows us to perform

a DNS and thus a subgrid-scale model is not necessary. This reference example is,

therefore, suitable for future comparisons of LES and DNS.

The �gures 2 and 3 show results for the backward facing step problem as isoline

plots of an instantaneous velocity �eld and the mean velocity �eld (statistic of �rst

order) in an X-Z cut (symmetry plane, near bottom region).

Figure 2: velocity isolines of u

1

, t = 180

Figure 3: velocity isolines of u

1

, t = 180

In order to postprocess the results for a comparison with the results of practical

experiments smooth �rst and second order statistic (~u, u

i

0

u

j

0

, and other) are necessary.

For the latter we need a few hundreds of thousands
ow realizations or instantaneous

ow �elds or time steps respectively. We, therefore, have to choose the dimensionless

constant T for the time interval approximately four times larger than the dimensionless

length of the channel, i.e. in the present example T = 60. Using 64 processors on a

CRAY T3D a chain of production jobs for the above problem takes about 600 CPU

hours, which was achieved in two months. Due to the large amount of required main

memory, the reference job could not run on the available Cray Y-MP4/464. Simulations

of smaller problems with approximately 2 million grid points took about 10 months on

a Cray Y-MP using the original MLET code. At present, we run a problem with 10

8

grid points. As this problem requires about 15 GB of main memory, 256 processors are

needed on a Cray T3D, i.e. almost the whole memory of the available environment.

4 The parallelization

The original (sequential) version of MLET [1] uses a simple scheme for the pressure

velocity iteration for the solution of the system of equations (8). The velocities are

updated sequentially cell by cell: for the update of the velocity component u; v; w,

resp., of the cell c

i;j;k

that of the cells c

i�1;j;k

, c

i;j�1;k

, c

i;j;k�1

, resp., must be available.

In the case of cells like c

0;j;k

or c

i;0;k

boundary conditions are used.

This process is in some sense similar to a single step or Gauss-Seidel like procedure.

This method has been chosen for the current implementation because, on the one hand,

of the necessity of a rapidly available production code. On the other hand, this method

can be competitive as experience has shown that in each time step the iteration can be

stopped after a small number of steps in the current applications.

The updating of cell c

i;j;k

can be roughly described by the following code fragment.

update_cell(i,j,k) :

dp = delta_p(i,j,k)

p(i,j,k) = p(i,j,k) + dp

u(i,j,k) = u(i,j,k) + du(dp)

u(i-1,j,k) = u(i-1,j,k) - du(dp)

v(i,j,k) = v(i,j,k) + dv(dp)

v(i,j-1,k) = v(i,j-1,k) - dv(dp)

w(i,j,k) = w(i,j,k) + dw(dp)

w(i,j,k-1) = w(i,j,k-1) - dw(dp)

The variable dp is de�ned by

dp = �[

@r

h

� ~u

h

@p

h

]

�1

r

h

� ~u

h

; (13)

where

@r

h

�~u

h

@p

h

depends only on grid parameters (see also [5], [6]). du, dv and dw are

proportional to dp. We note

du(dp) = �dp=�x

i

; dv(dp) = �dp=�y

j

and dw(dp) = �dp=�z

k

:

The pressure correction dp = �p

h

is proportional to the divergence of the velocity

�eld and will be updated using the actual velocity components from (13).

One step of the iteration in any of the time steps can now be expressed by the

following loop. For simplicity we do not discuss the updating of the non-Dirichlet

boundary conditions.

do i=1, N_x

do j=1, N_y

do k=1, N_z

update_cell(i,j,k)

In each time step, the iteration is stopped if the condition

max

1�i�N

x

;1�j�N

y

;1�k�N

z

j(�p

h

)

i;j;k

j � � (14)

is ful�lled. In the vector version of MLET [1], the k-loop is splitted into two loops with

stride 2 due to the recurrrence in the update of w

i;j;k

; w

i;j;k�1

.

The parallelization is based on a domain decomposition. Although we have to treat

a three dimensional problem we de�ne a two dimensional domain decomposition in the

x- and y-coordinates. On the one hand this simpli�es the communication, on the other

hand we keep the subproblem size �xed in one (z) dimension. This can be useful in

view of an optimization for a single CPU of a parallel system: we maintain a rather

large length of inner loops, i.e. a large vector length (which is important in the case of

vector or RISC processors) independently of the number of processors. For simplicity

we assume a regular grid and
 to be a cube of dimension N

x

� N

y

� N

z

cells. We

further assume a two dimensional processor topologie with P

x

� P

y

processors. We

partion
 into P

x

� P

y

cubes. For simplicity, we assume that P

x

and P

y

divide N

x

and

N

y

, resp. Then each cube is of size N

x

=P

x

�N

y

=P

y

�N

z

. Figure 4 illustrates the above

partition.

y

x

z

Figure 4: domain decomposition

The partitioning introduces arti�cial boundaries in the x and y directions. Each

arti�cial boundary is a rectangle of size N

y

=P

y

�N

z

or N

y

=P

y

�N

z

in the x� z or the

y � z plane, resp. The partition is overlapping as the last (�rst) plane of a subdomain

is an arti�cial boundary plane of that subdomain and at the same time the �rst (last)

inner plane of the neighbouring subdomain. In this paper we only consider this minimal

overlap. It is, however, conceptually easy to de�ne larger overlaps. Figure 5 illustrates

the overlap principle for a two dimensional cut in the x � y plane for the case of four

subdomains.

Each processor updates all cells he has been assigned. At the arti�cial boundaries

he needs data from neighbouring processors. The above mentioned sequential pressure

velocity iteration cannot be parallelized. To eliminate the recurrencies, the computation

is carried out in two passes, the �rst for the \black" cells and the second for the \white"

cells. The following program fragment shows the this parallel code modi�cation of a

pressure velocity iteration step:

subdomain 1 subdomain 2

subdomain 3 subdomain 4

Figure 5: overlapping domain decomposition in the x� y plane

do i_x = 1,P_x

do j_y = 1, P_y parallel on P(ix,iy)

do i = (i_x-1)*N_x/P_x+1,i_x*N_x/P_x,2

do j = (j_y-1)*N_y/P_y+1,j_y*N_y/P_y,2

do k = 1,N_z

update_cell(i,j,k)

exchange_boundaries_y(v)

do j = (j_y-1)*N_y/P_y+2,j_y*N_y/P_y,2

do k = 1,N_z

update_cell(i,j,k)

exchange_boundaries_x(u)

do i = (i_x-1)*N_x/P_x+2,i_x*N_x/P_x,2

do j = (j_y-1)*N_y/P_y+1,j_y*N_y/P_y,2

do k = 1,N_z

update_cell(i,j,k)

exchange_boundaries_y(v)

do j = (j_y-1)*N_y/P_y+2,j_y*N_y/P_y,2

do k = 1,N_z

update_cell(i,j,k)

exchange_boundaries_x(u)

The subroutines exchange boundaries x and exchange boundaries ymanage the trans-

fer of the boundary information between two processors. Communication is essentially

restricted to these two routines (except for the test of the global convergence criterion).

Each call to exchange boundaries x and exchange boundaries y, resp., induces a transfer

of a hyperplane with N

x

=P

x

�N

z

values of u and N

y

=P

y

�N

z

values of v, resp. Although

we only need roughly half of that number of points (either \black" or \white" values),

we prefer to send the respective whole hyperplane for reasons of e�ciency. In message

passing implementations (see below) the sending of only the really needed values leads

to a stride of 2 in the messages and to rather complicated case distinctions.

The above considerations describe almost completely the relatively simple paralliza-

tion which we use as a basic version for future developments. Under the above condition

on the geometry and an ideal domain decomposition into equally sized subdomains we

obtain a perfect load balancing.

5 Implementation details and numerical results

The original MLET code [1] is a vector code. It can, therefore, be easily modi�ed

for multiprocessor systems with shared memory. In view of the intended very large

production runs on MPP systems, we prefer explicit message passing to (virtual) shared

memory models. The parallel code is organized according to an SPMD model, i.e. we

run the same program on each processor. As a consequence we can run the code on

any number of processors, i.e. also on one processor, without any modi�cation. Every

processor also handles restart and plot �les related to the data of his domain. Simple

pre- and postprocessing steps have been implemented which split the global �les into

domains and vice versa before and after running a parallel program.

We have implemented two parallel versions for explicit message passing on the Cray

T3D. The sequential code has been transformed for both in 4 weeks. Using conditional

compilation we can maintain several program versions (vector, PVM, shmem etc.) in

one general code.

In the shmem version message passing is carried out by the Cray speci�c shmem

routines. Instead of send and receive operations put and get routines are implemented

which read from and write directly into the memory of the respective other processor

without any synchronization. The latter is done where necessary by calls to a barrier

routine. In order to avoid cache inconsistencies, further routines
ushing the cache have

to be called.

The PVM version uses Cray PVM, a PVM version for the T3D. The user interface

widely corresponds principally to that of the common public domain version. Cray PVM

requires the SPMD model and does not allow for more than one process per processor.

In contrast to public domain PVM a process runs on each processor automatically after

the start of the program, i.e. processes cannot and must not be spawned. Cray PVM is

highly optimized for the hardware of the T3D. In particular, the implementation of the

send and receive operations is based on calls to the above mentioned shmem get and

shmem put routines. Therefore, we cannot expect the PVM version to be more e�cient

than the shmem version which is optimal for the T3D. Nevertheless, the PVM version

is of great interest for the reason of the intended portability.

The performance of the parallel code is illustrated for a reference job derived from

the reference model described in section 3 (three dimensional backward facing step

ow problem with periodic boundary conditions). We consider a FV-grid with a size

of 516 � 132 � 164 or 11083776 cells, i.e. a system of equations with approximately

45 millions of unknowns has to be solved for every time step. We apply a domain

decomposition with minimal overlap. In the reference job the outer iteration is always

stopped after exactly 100 time steps. For the inner iteration which is controlled by

the convergence criterion (14) with � = 10

�4

we observed an average of 25 iterative

steps with a very small variation. The test job requires approximately 1.3 gigabytes

of main memory. Therefore, on a Cray T3D 32 processors are the minimal possible

con�guration.

Table 1 illustrates the performance of the parallel algorithm on several Cray systems:

T3D (Konrad-Zuse-Zentrum f�ur Informationstechnik (ZIB), Berlin, 256 processors, each

with 64 MB of main memory), J90 (ZIB, 16 processors, 4 GB of main memory), C90

(Cray Research, Eagan/Minn., 16 processors, 4 GB of main memory). For the T3D we

report results for the version using Cray speci�c shmem routines, for the J90 and the C90

runs we used the Cray shared memory autotasking concept for parallelization. For the

T3D we also note the 2D processor topology used in the respective test. The results show

that in this application 9 RISC processors of the T3D are roughly equivalent to one J90

vector CPU and 25 T3D processors are equivalent to one C90 vector CPU. Obviously

the C90 has the most powerful processor. The results show, however, that, only on an

MPP system like the Cray T3D the large speedups can be expected which are necessary

to make feasible the simulation of realistic, i.e. very large CFD problems. A signi�cantly

increasing number of processors seems to be more promising than the comparatively

slow development of the performance of vector processors. This assumption is only

valuable for codes like the one we discuss here which show reasonable speedup factors for

an increasing number of processors while the problem size is kept constant. Obviously

the e�ciency will degrade in this example for more than 16 processors on the J90 and

for more than 256 processors on the T3D. On the other hand, larger MPP systems like

a Cray T3D with 512 or 1024 processors would enable us to increase the problem size

accordingly, which would be the principally interesting case. All computing times are

wall clock times. The tests on the C90 and J90 have been carried out in dedicated

mode.

Table 1: performance on di�erent parallel systems

system #procs time t [sec] m
ops t

C90

=t S

p

= t

J90(1)

=t

J90 1 16428 92 0.27 1.00

J90 4 4173 357 1.03 3.94

J90 8 2244 673 1.95 7.32

J90 16 1390 1087 3.15 11.81

C90 1 4380 338 1.00

system #procs proc

X

� proc

Y

time t [sec] m
ops t

C90

=t S

p

= t

T3D(32)

=t

T3D 32 8 * 4 3329 443 1.31 1.00

T3D 64 8 * 8 1671 886 2.62 1.99

T3D 128 16 * 8 871 1700 5.03 3.82

T3D 256 16 *16 437 3387 10.02 7.61

The results from the T3D reveal a noticeable degradation of the e�ciency from 64

to 128 processors. This is most probably a cache coherence problem. In view of the

intended portability we did not perform any speci�c single CPU optimization.

Figure 6 illustrates again the development of the speedup on a T3D for an increasing

number of processors. As a reference the results for one and four CPU's on a C90 are

indicated.

0

1

2

3

4

32 64 128 256 512

G
flo

ps

Number of PE’s

C 90 4 CPU’s

C 90 1 CPU

Figure 6: speedup on the Cray T3D

The following Table 2 shows a comparison of the PVM and the shmem versions on

the T3D for several con�gurations.

Table 2: performance of the shmem versus the PVM version on the T3D

#proc proc

X

� proc

Y

shmem S

p

= PVM S

p

= t

PVM

=t

shmem

time t [sec] t

32

=t

proc

time t [sec] t

32

=t

proc

32 8 * 4 3329 1.00 3670 1.00 1.10

64 8 * 8 1671 1.99 1923 1.91 1.15

64 16 * 4 1675 1.99 1850 1.98 1.10

128 16 * 8 871 3.82 955 3.84 1.10

256 16 * 16 437 7.62 510 7.20 1.17

256 32 * 8 460 7.24 491 7.47 1.07

Due to the favourable relation of the computational complexity to the communica-

tion, the PVM overhead leads to a performance degradation of only 10% � 15%. The

dependence on the applied processor topology of 3%� 5% seems not to be signi�cant.

The PVM version seems to be a little bit more sensible to this aspect. The above PVM

results are based on the use of the \DataInPlace" option reading from and wrighting

directly in the memory of the respective other processor. Due to the mostly relatively

large messages this option has been slightly faster.

6 Conclusion

The parallelization of the MLET algorithm by domain decomposition presented in this

paper permits the treatment on MPP systems of large
ow problems with high Reynolds

numbers and very �ne grids resolving all important
ow structures. Due to memory and

CPU restrictions, it was impossible to handle problems of this complexity on existing

vector computers. The implementation of this algorithm can be adapted to various

parallel environments with a fair amount of work and has proved to be well scalable.

The code is frequently used for production runs on a Cray T3D for the modeling of

turbulent
ow on grids with more than 11,000,000 cells and a very �ne time resolution

to realize periodic stimulations of approximately 50 Hz of the
ow over the boundary

conditions.

The �nal version of the paper will include numerical results for a large sized problem

with 10

8

grid points of the backward facing step problem running on a Cray T3D with

256 processors. We will also report results of the reference test discussed in section 5

for code versions adapted for IBM workstation clusters and an IBM SP-2 under PVM

as well as for MPI implementations for both the IBM SP-2 and the Cray T3D.

The present status of our work yields a basic framework for future developments

which will include

� the treatment of other
ow problems like crystal melt
ows, i.e. Stefan problems

� the improvement of the iterative solver by possibly more adequate solvers, in

particular CG-methods or overlapping Schwarz type methods (multigrid versions

are under development at the Universit�at der Bundeswehr at Munich)

� the implementation of the alternative solution method mentioned in section 2

incorporating the solution of Poisson's equation.

Acknowledgment.

The authors are indebted to Cray Research, Inc., especially K. Ketelsen for the

very serious help to learn using the explicit message passing concept and the Konrad-

Zuse-Zentrum f�ur Informationstechnik (ZIB), Berlin, for the intensive support of the

numerical experiments.

References

[1] Werner, H.: Grobstruktursimulation der turbulenten Str�omung �uber eine quer-

liegende Rippe in einem Plattenkanal bei hoher Reynoldszahl, PhD thesis, TU

M�unchen, 1991,

[2] B�arwol�, G. and Seifert, G.: E�cient 2D and 3D Navier-Stokes solver, Proceedings

of the 5. ISCFD Sendai/Japan, 1993 (Ed. H. Daiguji).

[3] B�arwol�, G., Ketelsen, K. and Thiele, F.: Parallelization of a Finite-Volume Navier-

Stokes solver on a T3D massively parallel system, Proceedings of the 6. ISCFD Lake

Tahoe/USA, 1995 (Ed. M. Hafez).

[4] Akselvoll, K. and Moin, P.: Large eddy simulation of a backward facing step
ow,

Engineering Turbulence Modelling and Experiments 2, Elsevier Science Publishers,

Amsterdam, 1993 (Ed. W. Rodi and F. Martinelli).

[5] Chorin, A.: Numerical Solution of the Navier{Stokes Equation, Math. Comp., 22

(1968).

[6] B�arwol�, G.: Numerische Berechnung von Transportprozessen
uider Medien,

ZWG/AdW{Report 2/88, Berlin,1988.

