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In this paper a solution method for the pressure Poisson equation which follows from the spatial and

time discretization of the nonstationary Navier-Stokes equation for an incompressible uid based on

an algebraically de�ned multigrid method will be described. The method is used to compute and to

investigate the ow �eld around a cylinder and will be used for Large Eddy Simulations.

0. Introduction

The mathematical modelling of laminar and

turbulent ows requires robust and e�cient nu-

merical methods for solving the Navier-Stokes

equations. The aim of the discussed mathe-

matical and numerical modelling is to develop

and to investigate special techniques for the solu-

tion of algebraic equation systems resulting from

discretization over O-type grids and rectangular

grids.

We have investigated the low Reynolds number

ow around single cylinders and groups of cylin-

ders with a 2D calculation method for the un-

steady incompressible Navier{Stokes equation in

the primitive variable formulation.

The ful�lment of the continuity equation at every

time step we get by an iterative method (pres-

sure velocity correction of SMAC, PISO et cetera

type). This method gives su�cient good results

(in sense of time e�ciency) for the 2D modelling

with a resolution of the spatial computation re-

gion of nearly 30.000 { 50.000 grid points.

For the case of LES or DNS modelling of ow

around cylinders we have to solve problems with

more then 1.000.000 grid points. Instead of

the above discussed pressure velocity correction

method we use more direct methods to ful�l the

continuity equation at every time step that means

we use a Poisson equation to realize the continuity

equation for an incompressible uid. This is the

entry point of the application of e�cient solution

methods for a special class of equation systems

with sparse matrices.

The rate of convergence and computation times

of the used solution methods are compared to

those of other often used pressure velocity iter-

ation methods.

1. Some remarks on the mathematical

model and the practical background

The unsteady Navier-Stokes equations for an

incompressible uid are of the form
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is given. ~u and p stand for the velocity �eld and

the modi�ed pressure (pressure over density), �

is the kinematic viscosity,
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the solution must ful�l

the inow and no-slip boundary conditions
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and suitable outow boundary conditions shortly

summarized as
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where ~x is the direction of the inow velocity u

1

.

Related to the continuity equation (2) it is nesse-

cary to hold the condition

Z

�

~n � ~ud = 0 (6)

for the boundary values. The condition (6) means

that the inow mass uxes over the boundary are

equal to the outow mass uxes.

The pde system (1){(6) describes the nonsteady

3D ow and we are interested in the investigation

of the structure of vortices in the wake region of

a circular cylinder.

In the case of the LES we have to consider in-

stead of the equation system (1)-(2) the equation

system for the overlined resolved values of the ve-

locity and the pressure
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with the SGS stress of the form
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For the subgrid scale modelling of �

ij

the SGS-

models of Smagorinski and Germano are under

discussion.

It's written below u and p for resolved velocity

and � for the sum of the SGS-viscosity and the

molecular viscosity in the case of LES-modelling.

The special application �elds of the mathemat-

ical model (1){(5) require the use of a cylinder

symmetrical coordinate system. Thus we have to

consider the equations (1) and (2) in the ('; r; z)-

coordinate system. We understand now the ve-

locity vector as ~u = (u; v; w) = (u

'

; u

r

; u

z

).

2. Principle of spatial and time

discretization of the pde system

The spatial discretization of (1) and (2) was

made by a �nite volume method. We use four

staggered grids for the three velocity components

and the pressure. Using the Gauss integral theo-

rem we get by integration over a volume element

of the '-grid the following approximation for the

'-component of the impulse transport equation

(1) for the u-velocity component
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In the equation (10) we use the notation
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and so on. For the r-velocity component follows

from the integration of the second component of

the impuls transfer equation over a volume ele-

ment of the r-grid
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For the z-velocity component we get by integra-

tion over the volume element of the z-grid an

equation similar to (10) and (11). A more de-

tailed formulation of the spatial discretization is

given in [1].

Now we integrate the continuity equation (2)

over the volume elements of the pressure-grid and

when we represent the values of the velocity by

the values at the center of the boundary elements

of the volume elements we will have the following



discretization of the continuity equation
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If we denote the FV-discretization of r and r�

by r

h

and r

h

� we can summarize the the FV-

approximation of (1) and (2) to
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The equation system (13)-(14) closed by the dis-

cretization of the boundary conditions (4)-(5) is

now to integrate by time with the initial velocity

�eld (3).

The time discretization of this system we do by

a two stage semiimplicit splitting method for the

equation (13).

~

~u� ~u

�

+ �

1

r

h

�

~

~u

~

~u+ (1� �

1

)r

h

� ~u~u = �r

h

p (15)

+�

2

r

h

� (�r

h

~

~u) + (1 � �

2

)r

h

� (�r

h

~u) +

~

f;

~u

n+1

�

~

~u

�

+r

h

(p

n+1

� p) = 0; (16)

r

h

� ~u

n+1

= 0: (17)

� is the time step, �

1;2

are weighting factors.

Quantities with the upper index n + 1 are taken

at the (n+ 1)th time level, quantities without an

index are values at the nth time level,

~

~u stands

for a predicted velocity between nth and (n+1)th

time level.

If we suppose that the equation (15) was solved -

in the case �

1

= �

2

= 0 the prediction of

~

~u is an

explicit procedure - we have to determine ~u

n+1

and � p

n+1

= p

n+1

� p by solving the equation

system (16)-(17).

A way to by{pass the unpleasant equation system

(16)-(17) is the solution of the Poisson equation
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at every time level. As the result of putting equa-

tion (16) into (17) for boundary volume elements

we will have for the Poisson equation (18) bound-

ary conditions of Neumann{type, that means that

the sum of o� diagonal elements of every row is

equal to the negative value of the diagonal entry,

and we will have a non regular coe�cient matrix

A for determination of �p

n+1

.

The Matrix A is of type (n3d; n3d) where n3d ist

the number of volume elements of the pressure

grid. The analytic property of pressure choice

from a manifold by �xing the value p

0

at an ar-

bitrary point corresponds with the property of A

that the rank of A is equal to n3d� 1.

For the solvability of (18) this means that the

discrete integral over the right hand side must be

vanish or
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The solvability condition (19) is ful�lled if we

have a conservative approximation of the conti-

nuity equation. This we will show now.

The de�nition of conservativity of approximation

of (2) is given by
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The right hand side of (21) is zero since it is the

approximation of the ux condition (6).

In our cylinder coordinate system the equation

(18) is of the symmetric form
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for inner grid points (i; j; k) of the pressure grid.

For boundary points of the pressure grid the equa-

tion (22) must be cut in a natural way.



3. Some remarks to the choice of

boundary conditions for the velocity �eld

On the inow boundary we work with a given

velocity ~u

1

. In the case of LES we must take

~u

1

from the experiment or by �ltering of suit-

able DNS data, for example those of Kleiser et

al. [2] of channel ow simulation.

We've noted above that the boundary values of

the velocity must ful�l the conditions (6) or (19)

because of the balance of inow and outow mass

uxes resp. the solvability condition for the equa-

tion (18). Following this a prediction rule for the

normal component of the velocity on the outow

boundary is given for example by
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Together with a linear extrapolation of the tan-

gential velocity component, that means for exam-

ple
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we have boundary conditions which ful�l the re-

quired conditions (6), (19) and work very well.

4. The solution of the

pressure Poisson equation

For regularization of A we set the pressure at

one grid point constant by multiplying the corre-

sponding diagonal entry of A and the right hand

b side by a large number. This way of regulariza-

tion from A to A

0

and b to b

0

secures the symme-

try of the coe�cient matrix and the equation sys-

tem structure as a very important supposition for

the possibility of multigrid preconditioning and

we can solve the regularized equation system

A

0

�p = b

0

(25)

by a cg{method with preconditioning.

In the case of cartesian or curvilinear rectangu-

lar grids the matrix A

0

has seven non zero diago-

nals (in 2D{case �ve non zero diagonals) and it is

possible to use preconditioners which use the aris-

ing rectangular or quadrilateral grid structure. In

the Institute of applied Analysis and Stochastics,

there exist multigrid and ILU decompositon codes

[3] which can be used for this purpose.

If we have a discretization of a ow around a cir-

cular cylinder in the (�; r; z){coordinate system

we get a cyclic matrix with nine non zero diago-

nals because of the existence of a coupling plane

f('; r; z) j ' = 0 and ' = 2�g

or periodic boundary conditions in the '-

direction

�p ('; r; z) = �p (' + 2�; r; z):

If we consider the ow around an in�nitly long

circular cylinder we usually assume periodicity in

the z-direction with a period length l

z

and we

have also in z-direction periodic boundary condi-

tions like

�p ('; r; z) = �p ('; r; z + l

z

)

or we can say that

f('; r; z) j z = 0 and z = l

z

g

is a "coupling" plane. In such a case the ma-

trix A

0

is cyclic in two directions and there exist

eleven non zero diagonals.

There have been no codes at hand which are able

to manage this grid structure, so for the �rst in-

vestigations we choosed the following approach

which allows to use the rectangular grid precon-

ditioners in this case, too. We have a matrix split-

ting

A

0

= L �N (26)

where N consists of the sign reversed o�-diagonal

entries across the coupling planes and thus is pos-

itive. L is irreducibly diagonally dominant, has

nonpositive o� diagonal entries and a positive

main diagonal, so it is anM -matrix. This implies

that (26) is a regular splitting, and the iterative

method (instead of �p we write now x)
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i
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converges to the solution of (25) [4]. So, for in-

stance, one can iteratively invert L in each step

of (27), a procedure we had in mind at the �rst

stages of our code developement, which indeed

did converge.



A more e�cient procedure is the following. The

convergence of (27) for the symmetric problem

(25) and the symmetric matrix L suggests that

there exists a spectral equivalence (written here

as matrix inequality)
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in moderate regions. If now B is a sym-

metric positive de�nite preconditioner for L with
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From this follows the convergence of the precon-

ditioned Richardson method
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i
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for solving (25). But because of the symmetry of

the matrix and the preconditioners it is better to

use a preconditioned conjugate gradient method.

As the preconditioner B

�1

among others it was

used one step of a multigrid method to solve

Ly = r

after [5]. This is a semi-algebraic multigrid

method which works on rectangular resp. quadri-

lateral meshes. So it is well �tted to the dis-

cretization described by (22). Up to now, this

method has been implemented for two- and three-

dimensional rectangular grids, so it in fact can be

used in the sense described above.

The comparison of the time e�ciency of the de-

scribed cg/mg-method with a �ll in procedure of

a solver for banded matrices shows only small dif-

ferences between the two solution methods if we

have at least �ve grid levels. Because of round o�

errors in the case of the use of elimination meth-

ods for banded matrices it is nessecary to predict

a correction by solving the equation system with

the residuum as the right hand side. Thus the

cg/mg-method is much more e�cient then elimi-

nation method.

The methods using the pressure Poisson equation

(18) are especially in the beginning of the non-

stationary solution process to prefer the above

mentioned pressure-velocity correction methods

of SMAC or PISO type.

Essential reserves of time e�ciency we expect in

an genuine O-grid implementation which would

have the same structure and should result in a

large improvement of the covergence rates.

5. Some results of the ow calculation

The �gures (2)-(6) of the next page of this pa-

per show some velocity �elds of the time develop-

ment (2D) of vortex structures in the wake region

of a circular cylinder for Re = 1:000 with a spa-

tial grid of (129� 129) nodes. For the computed

30.000 time steps we need approximatly 500' on

a 16 Mops workstation.

The 3D version of the method is just validated for

low Re numbers and a ('; r; z)-grid of (65,65,65)

nodes and numerical LES expirements will be pre-

pared.
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Figure 1: part of the spatial grid (129� 45)

Figure 2: part of velocity �eld, t = 1001 � �

Figure 3: part of velocity �eld, t = 15001 � �



Figure 4: part of velocity �eld, t = 17001 � �

Figure 5: part of velocity �eld, t = 18001 � �

Figure 6: part of velocity �eld, t = 19001 � �


