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Abstract

Due to the implementation of numerical solution algorithms for the

nonstationary Navier-Stokes equations of an incompressible uid on mas-

sively parallel computers iterative methods are of special interest.

A red-black pressure velocity iteration which allows an e�cient par-

allelization based on a domain decomposition [3] will be analyzed in this

paper.

We prove the equivalence of the pressure-velocity-iteration (PUI) by

Chorin/Hirt/Cook [1][2] with a SOR-iteration to solve a poisson equation

for the pressure. We show this on a 2D rectangle with some special outow

boundary conditions and Dirichlet data for the velocity elsewhere. This

equivalence allows us to prove the convergence of that iteration scheme.

We also discuss the stablity of the occuring discrete Laplacian in discrete

Sobolev spaces.

1 Introduction

In the sequel the 2D consideration is used only for reasons of simplicity. The

results of the paper can be generalised for the 3D case.

On the rectangle 
 = [a; b]� [c; d] the nonstationary, incompressible Navier-

Stokes equations (NSE) are given:

u

t

+ (u � r)u = �rp+ ��u

r � u = 0 (1)

On �

D

= fag � [c; d]

S

fc; dg � [a; b] we have Dirichlet-data for u and on the

outow �

out

= fbg�]c; d[ we use a natural boundary condition of [5] or [6]:

u = u

D

on �

D

(2)

�

@u

@x

= p� �p on �

out

(3)

@v

@x

= 0 on �

out

(4)
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If a solution p 2 H

1

(
) of (1) exists, it is unique, since

Z

d

c

p(b; y)dy = �

Z

d

c

@u

@x

dy + (d� c)�p = (5)

��

Z

d

c

@v

@y

dy + (d� c)�p = �(v(b; d)� v(b; c)) + (d� c)�p

In [2] Hirt and Cook developed an iteration method modifying an idea of Chorin

[1] to solve (1) using a time integration scheme of the following kind:

u

k+1

� u

k

�

+ (u

k

� r)u

k

= �rp

k+1

+ ��u

k

(6)

r � u

k+1

= 0 (7)

For the spatial discretization a staggered mesh with mesh sizes

1

l

j

;

1

h

i

is used.

v

m;1

� � � v

m;n

v

0;1

� � � v

0;n

v

1;1

v

1;n

u

0;m

.

.

.

u

0;1

u

1;m

u

1;1

u

n;m

u

n;1

p

m;1

p

m;n

p

1;1

p

1;n

p

i;j

1

h

i

1

l

j

It is well known, that the size of the time-step � is restricted by the following

conditions

�� �maxfh

2

; l

2

g � 1 (8)

� �maxfu � lg; � �maxfv � hg � 1 (9)

using a scheme (6). Especially (8) seems to be the crucial restriction. To over-

come (8) time integration schemes, which treat the di�usive term ��u implicitly

were developed. Recent investigations [13] have shown, that in turbulent ows

�maxfv � hg can be of the same order of magnitude as ��maxfl

2

; h

2

g.

2 The p� u-iteration

To derive the discretization of (6) the following approximations are used:

div

ij

u = h

i

(v

ij

� v

i�1j

) + l

j

(u

ij

� u

ij�1

) (10)

@p

@x

ij

= L

j

(p

ij+1

� p

ij

) ;

@p

@y

ij

= H

i

(p

i+1j

� p

ij

) (11)
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where 1=L

j

:= 1=2(1=l

j+1

+ 1=l

j

) and 1=H

j

:= 1=2(1=h

j+1

+ 1=h

j

). Let

u

k+1

; p

k+1

be discretized by u; p , then the linear system according to (6) reads

�

A G

D 0

��

u

p

�

=

�

f

g

�

where g 2 Im(D) (12)

A is a slight modi�cation of I because of (3). This form is not the basis of PUI.

For simplicity we denote the iteration sublevel for the computation of u

k+1

; p

k+1

by u

;s

; p

;s

. Then PUI is given by

� start:

p

;0

= any initial guess, e.g. p

k

(13)

u

;0

= u

k

� �(u

k

� r)u

k

� �rp

;0

+ ���u

k

(14)

� do for each cell

ij

�p

;s+1

=: p

;s+1

� p

;s

= �!

�

@divu

@p

ij

�

�1

div

ij

u

;s;s+1=2

(15)

u

;s+��

ij

= u

;s+�

ij

� �p

;s+1

� L

j

; u

;s+��

ij�1

= u

;s+�

ij�1

+ �p

;s+1

� L

j�1

v

;s+��

ij

= v

;s+�

ij

� �p

;s+1

�H

i

; v

;s+��

i�1j

= v

;s+�

i�1j

+ �p

;s+1

�H

i�1

(16)

� until maxfdiv

ij

u

;s+�

g � "

tol

During one iteration each velocity value is updated twice. If there are no further

informations about the order of the unknowns, the sublevel

;s;s+1=2;s+1

is not

clear. This problem is solved in section 3. ! is a relaxation parameter and

B

ij

:= �

@divu

@p

ij

, which is derived in the following:

Substitution of u

ij

; u

i;j�1

; v

ij

; v

i1�j

in (10) by the discrete version of (6) leads

to

div

ij

u = h

i

(

@p

@y

ij

+ f

v;ij

�

@p

@y

i�1j

� f

v;i�1j

) +

l

j

(

@p

@x

ij

+ f

u;ij

�

@p

@x

ij�1

� f

u;ij�1

) (17)

for inner cells. Substitution of

@p

@x

;

@p

@x

by (11), one obtains

@div

ij

u

@p

ij

= h

i

(�H

i

+ 0� (�H

i�1

)� 0) + l

j

(L

j

+ 0� (�L

j�1

)� 0) (18)

3 Convergence of PUI

Now the cells

ij

and p

ij

are ordered in a red-black manner. We denote the

p-values of the black cells by p

0

and those of the red cells by p

1

respectivly.
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Lemma 3.1. The red-black version of PUI restricted to the p-values is a red-

black SOR iteration for the solution of

F � p := DA

�1

G � p = �g +DA

�1

f =:

~

f (19)

Proof. P

01

is a permutation matrix, which transforms the p-values from the

original order to the red-black order.

�

p

0

p

1

�

= P

01

� p (20)

Thus the restriction operatorsR

i

p = p

i

become R

0

= (I

0

j 0)P

01

, R

1

= (0 j I

1

)P

01

.

Since each red cell is surrounded only by black cells, PUI reads as

p

;s+1

0

= p

;s

0

+R

0

!E

�1

(Du

;s

� g)

u

;s+1=2

= A

�1

(f �GP

T

01

(p

;s+1

0

; p

;s

1

))

p

;s+1

1

= p

;s

1

+R

1

!E

�1

(Du

;s+1=2

� g)

u

;s+1

= A

�1

(f �GP

T

01

(p

;s+1

0

; p

;s+1

1

)) (21)

E is diagonal-matrix, which consists of B

ij

. Because of (13) we have

Au

;0

+Gp

;0

= f , thus u

;s

; u

;s+1=2

can be substituted in (21)

p

;s+1

0

= p

;s

0

+R

0

!E

�1

(�DA

�1

Gp

;s

� g +DA

�1

f)

p

;s+1

1

= p

;s

1

+R

1

!E

�1

(�DA

�1

GP

T

01

(p

;s+1

0

; p

;s

1

)� g +DA

�1

f) (22)

If E

!

= Diag(F ) , then (22) and

F

01

:=

�

D

0

M

1

M

0

D

1

�

:= P

01

� F � P

T

01

(23)

especially

E

01

:=

�

D

0

0

0 D

1

�

:= P

01

�Diag(F ) � P

T

01

(24)

would imply

p

;s+1

0

= p

;s

0

+ !(I

0

j 0)P

01

P

T

01

E

�1

01

(�P

01

FP

T

01

P

01

p

;s

+ P

01

~

f)

= p

;s

0

+ !(I

0

j 0)E

�1

01

(�F

01

(p

;s

0

; p

;s

1

) + P

01

~

f)

= p

;s

0

+ !D

�1

0

(�D

0

p

;s

0

�M

1

p

;s

1

+ (P

01

~

f)

0

) (25)

p

;s+1

1

= p

;s

1

+ !(0 j I

1

)P

01

P

T

01

E

�1

01

(�P

01

FP

T

01

(p

;s+1

0

; p

;s

1

) + P

01

~

f)

= p

;s

1

+ !(0 j I

1

)E

�1

01

(�F

01

(p

;s+1

0

; p

;s

1

) + P

01

~

f)

= p

;s

1

+ !D

�1

1

(�M

1

p

;s+1

0

�D

1

p

;s

1

+ (P

01

~

f)

1

) (26)

- the red-black SOR iteration for (19). The proof for E = Diag(DA

�1

G) is

presented at the end of the next section.
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3.1 Evaluation of F := DA

�1

G and DA

�1

f

For simplicity the Dirichlet-values v

m;:

are treated together with u

m;:

as un-

knowns. Then the de�nition of A;G; f ensures v

m;:

= v

D

(x

j

; d). The natural

boundary condition is discretized by

u

:;n

� u

:;n�1

� 1=(l

n

�)p

:;n

= �1=(l

n

�)�p (27)

To keep the matrices A;G;D managable, their components are equiped whith

the following indices: for example D

ij

; u

kl

denotes the coe�cient of u

kl

for com-

putation of div

ij

and G

u

ij

;kl

is the coe�cient of p

kl

in the momentum equation

for u

ij

. Thus:

D

ij;u

kl

= �

ik

(�

jl

� �

j�1l

)l

j

D

ij;v

kl

= (�

ik

� �

i�1k

)h

i

�

jl

A

u

ij

;u

kl

= �

ik

(�

jl

� �

jn

�

ln�1

)

A

v

ij

;v

kl

= �

jl

�

ik

A

u

ij

;v

kl

= A

v

ij

;u

kl

= 0

1=�G

u

ij

;kl

= �

ik

((�

j+1l

� �

jl

)(1� �

jn

)L

j

+ ��

jl

�

jn

)

1=�G

v

ij

;kl

= (�

i+1k

� �

ik

)(1� �

im

)H

i

�

jl

(28)

B where � = �

1

��l

n

from (27).

We start with the computation of A

�1

.

A

�1

u

ij

;u

kl

= �

ik

(�

jl

+ �

jn

�

ln�1

)

A

�1

v

ij

;v

kl

= �

jl

�

ik

A

�1

u

ij

;v

kl

= A

v

ij

;u

kl

= 0 (29)

Proof:

(A

�1

A)

u

ij

;u

kl

=

X

r;s

h

A

�1

u

ij

;u

rs

A

u

rs

;u

kl

+A

�1

u

ij

;v

rs

A

v

rs

;u

kl

i

=

X

r;s

[�

ir

(�

js

+ �

jn

�

sn�1

)A

u

rs

;u

kl

+ 0 � 0]

=

X

s

(�

js

+ �

jn

�

sn�1

)A

u

is

;u

kl

= A

u

ij

;u

kl

+ �

jn

A

u

in�1

;u

kl

= �

ik

[�

jl

� �

jn

�

ln�1

+ �

jn

(�

n�1l

� �

n�1n

�

ln�1

)]

= �

ik

�

jl

(30)

The computations for

(A

�1

A)

u

ij

;v

kl

= (A

�1

A)

v

ij

;u

kl

= 0 and (A

�1

A)

v

ij

;v

kl

= �

ik

�

jl
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are of the same kind.

Now C = DA

�1

is given by:

(DA

�1

)

ij;u

kl

=

X

r;s

(D

ij;u

rs

A

�1

u

rs

;u

kl

+D

ij;v

rs

A

�1

v

rs

;u

kl

)

=

X

r;s

(�

ir

(�

js

� �

j�1s

)l

j

A

�1

u

rs

;u

kl

+ 0)

= l

j

X

s

(�

js

� �

j�1s

)A

�1

u

is

;u

kl

= l

j

(A

�1

u

ij

;u

kl

� (1� �

j1

)A

�1

u

ij�1

;u

kl

)

= l

j

�

ik

(�

jl

+ �

jn

�

ln�1

� (1� �

j1

)�

j�1l

) (31)

(DA

�1

)

ij;v

kl

=

X

r;s

(D

ij;u

rs

A

�1

u

rs

;v

kl

+D

ij;v

rs

A

�1

v

rs

;v

kl

)

=

X

r;s

(0 + �

js

(�

ir

� �

i�1r

)h

i

�

rk

�

jl

)

= h

i

(�

ik

� �

i�1k

)�

jl

(32)

Thus F becomes:

1

�

F

ij;kl

=

1

�

X

r;s

[C

ij;u

rs

G

u

rs

;kl

+ C

ij;v

rs

G

v

rs

;kl

]

=

X

r;s

[l

j

�

ir

(�

js

� �

j�1s

+ �

jn

�

sn�1

)G

u

rs

;kl

+ h

i

(�

ir

� �

i�1r

)�

js

G

v

rs

;kl

]

= l

j

X

s

(�

js

� �

j�1s

+ �

jn

�

sn�1

)G

u

is

;kl

+ h

i

X

r

(�

ir

� �

i�1r

)G

v

rj

;kl

= l

j

(G

u

ij

;kl

� (1� �

j1

� �

jn

)G

u

ij�1

;kl

) + h

i

(G

v

ij

;kl

� (1� �

i1

)G

v

i�1j

;kl

) (33)

For 1 � i; k � m and 1 � j; l � n we have

1

�

F

ij;kl

=

�l

j

(L

j

+ (1� �

j1

)L

j�1

)� h

i

((1� �

im

)H

i

+ (1� �

i1

)H

i�1

)

for i = k;j = l < n (34)

l

n

�� h

i

((1� �

im

)H

i

+ (1� �

i1

)H

i�1

) for i = k;j = l = n (35)

l

j

L

j

for i = k;l = j + 1

(1� �

jn

� �

j1

)l

j

L

j�1

for i = k;l = j � 1

h

i

H

i

for k = i+ 1;l = j

h

i

H

i�1

for k = i� 1;l = j

0 elsewhere.
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To get an idea of F , we consider the lexicographic order of the p-values

p = (p

1;1

; ::; p

1;n

; ::::; p

m;1

; ::; p

m;n

)

F

lex

=

0

B

B

B

B

B

@

B

1

h

1

H

1

I

h

2

H

1

I B

2

h

2

H

2

I

.

.

.

.

.

.

.

.

.

h

m�1

H

m�2

I B

m�1

h

m�1

H

m�1

I

h

m

H

m�1

I B

m

1

C

C

C

C

C

A

(36)

with

B

i

=

0

B

B

B

B

B

@

B

i;11

l

1

L

1

l

2

L

1

B

i;22

l

2

L

2

.

.

.

.

.

.

.

.

.

l

n

L

n�1

B

i;n�1;n�1

l

n�1

L

n�1

0 B

i;nn

1

C

C

C

C

C

A

(37)

Remark 3.2. The asserted identity of E and Diag(F

lex

) is clear. For j < n

one has to substitute the momentum equation (4-#boundaries of the cell with

Dirichlet-data)-times , which leads to (34). For j = n (27) and (2-#boundaries

of the cell with Dirichlet-data)-times the momentum equation is used, which

coincides with (35).

3.2 Analysis of the red-black SOR Iteration

To show the convergence we need some auxiliary results, which are proved in

the sequel. We denote by J(A) , H(A;!) the iteration matrices of the Jacobi

and SOR iteration as far as they exist for A.

Lemma 3.3. Let A be, such that J(A) exists, P be a permutation matrix for

� (Pe

i

= e

�(i)

) and E be a nonsingular diagonal matrix. Then J(PAP

T

) =

PJ(A)P

T

and J(EAE

�1

) = EJ(A)E

�1

. Especially J(PAP

T

) , J(EAE

�1

)

exist and have the same spectrum as J(A).

Proof. Let A = L+D+R , PAP

T

=

~

L+

~

D+

~

R be the classical decompositions.

Then

~

D = PDP

T

, since PDP

T

= P (d

1

e

1

; ::; d

n

e

n

)P

T

=

(d

1

e

�(1)

; ::; d

n

e

�(n)

)P

T

=

0

B

@

d

�

�

1(1)

e

T

�

�

1(1)

.

.

.

d

�

�

1(n)

e

T

�

�

1(n)

1

C

A

P

T

= (d

�

�1

(1)

e

1

; ::; d

�

�1

(n)

e

n

)

(38)

The diagonalD is mapped to a diagonal, which has to be the diagonal of PAP

T

.

Thus

J(PAP

T

) = �(PDP

T

)

�1

(PAP

T

� PDP

T

) =

�PD

�1

P

T

P (A�D)P

T

= PJ(A)P

T

(39)
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The proof for

~

D = EDE

�1

= D is of the same type.

Another usefull statement is

Lemma 3.4. Let A be a symmetric,real matrix with A

ii

< 0. Then the spec-

trum of J(A) is real.

Proof. For A = L+D +R we have J(A) = �D

�1

(L+R)

!

= (�D)

�1

(L+R).

Since �D � 0, W := (�D)

1=2

(�D)

�1

(L+R)(�D)

�1=2

=

(�D)

�1=2

(L+R)(�D)

�1=2

is a real, symmetric matrix.

Now the main theorem of this section is given:

Theorem 3.5. For F

lex

we have

1. F

lex

is reducible

2. F

lex

has only real eigenvalues

3. J(F

lex

) has only real eigenvalues

4. �(J(F

lex

)) < 1

Proof. To start the proof we transform F

lex

by a permutation matrix to F

�

.

Let F

lex

= (F

1

; :::; F

m�n

), then P is that permutation matrix, that 'moves' the

last columns of each block column to the right. Multiplication of P

T

from the

left moves the last row of each block row down.

F

�

:= P

T

F

lex

P =

0

B

B

B

B

B

B

B

@

~

B

1

h

1

H

1

I M

1

h

2

H

1

I

~

B

2

h

2

H

2

I M

2

.

.

.

.

.

.

.

.

.

.

.

.

~

B

m�1

h

m�1

H

m�1

I M

m�1

h

m

H

m�1

I

~

B

m

M

m

0 : : : 0 C

1

C

C

C

C

C

C

C

A

(40)

and

C =

0

B

B

B

B

@

C

11

h

1

H

1

h

2

H

1

C

22

.

.

.

.

.

.

.

.

.

h

m�1

H

m�1

h

m

H

m�1

C

mm

1

C

C

C

C

A

(41)
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where C

ii

= l

n

� � (1 � �

i1

)h

i

H

i�1

� (1 � �

im

)h

i

H

i

and

~

B

i

2 M(n � 1) ;

M

i

2M(n� 1;m)

~

B

i

=

0

B

B

B

B

@

~

B

i;11

l

1

L

1

l

2

L

1

~

B

i;22

.

.

.

.

.

.

.

.

.

l

n�2

L

n�2

l

n�1

L

n�2

~

B

i;n�1;n�1

1

C

C

C

C

A

; M

i

= l

n�1

L

n�1

0

B

B

B

@

0

.

.

.

0

e

T

i

1

C

C

C

A

(42)

where

~

B

i;jj

= �l

j

(L

j

+(1��

j1

)L

j�1

)�h

i

((1��

im

)H

i

+(1��

i1

)H

i�1

) see (34)

For simplicity we set

F

�

=:

�

~

F M

0 C

�

(43)

A later remark dicusses the reducibility. Since

det(F

�

� �I) = det(

~

F � �I)det(C � �I) (44)

and

J(F

�

) =

�

J(

~

F ) M

�

0 J(C)

�

; (45)

the eigenvalues of F

�

f,J(F

�

)g and thus F

lex

f,J(F

lex

)g are the eigenvalues of

~

F f,J(

~

F ) g or C f,J(C)g.

Next we show that,

~

F , C can be transformed to symmetric matrices via positive

diagonal matrices. The lemmas 3.3 and 3.4 then show that the eigenvalues have

to be real. Since the matrices

~

B

i

di�er only on the diagonal entries, there is one

diagonal matrix D = diag(d

1

; ::; d

n�1

), which transforms all

~

B

i

to symmetric

matrices.

D

~

B

i

D

�1

=

0

B

B

B

B

B

B

@

�

d

1

l

1

L

1

d

2

d

2

l

2

L

1

d

1

�

d

2

l

2

L

2

d

3

.

.

.

.

.

.

d

n�2

l

n�2

L

n�2

d

n�1

d

n�1

l

n�1

L

n�2

d

n�2

�

1

C

C

C

C

C

C

A

(46)

We set d

1

= 1, d

i

; i > 1 are de�ned recursivly. Since D

~

B

i

D

�1

shall be

symmetric, for n� 1 � j > 1

d

j

l

j

L

j�1

=d

j�1

= d

j�1

l

j�1

L

j�1

=d

j

, d

2

j

= d

2

j�1

l

j�1

l

j

, d

2

j

=

l

1

l

j

(47)

D � 0 transforms all

~

B

i

to symmetric matrices. C is of the same form as

~

B

i

,

thus it can be symmetrized in the same way.
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Now

~

F is symmetrized by

�

D = blockdiag(D

1

; :::; D

m

) where D

i

=

�

d

i

D, since

�

D

~

F

�

D

�1

=

0

B

B

B

B

B

@

D

1

~

B

1

D

�1

1

D

1

h

1

H

1

D

�1

2

D

2

h

2

H

1

D

�1

1

D

2

~

B

2

D

�1

2

D

2

h

2

H

2

D

�1

3

.

.

.

.

.

.

.

.

.

D

m�1

~

B

m�1

D

�1

m�1

D

m�1

h

m�1

H

m�1

D

�1

m

D

m

h

m

H

m�1

D

m

~

B

m

D

�1

m

1

C

C

C

C

C

A

(48)

We again set

�

d

1

= 1 and obtain from

�

d

i

h

i

H

i�1

=

�

d

i�1

=

�

d

i�1

h

i�1

H

i�1

=

�

d

i

,

�

d

2

i

=

�

d

2

i�1

h

i�1

h

i

,

�

d

2

i

=

h

1

h

i

(49)

the matrix

�

D.

The forth assertion is easy to prove:

~

F , C have the same sparsity pattern as the matrices of the discrete 1-/2-

dimensional Laplacian with Dirichlet data, which are well known to be unredu-

cible. Additionally they posses in all rows a weak diagonal dominance and in

some rows even a strong one. Thus

�(J(

~

F )); �(J(C)) < 1) �(J(F

�

)) = �(J(F

lex

)) < 1 (50)

Theorem 3.6. The red-black-SOR iteration for (19) converges for relaxation

parameters 0 < ! < 2.

Proof. The red-black-SOR iteration for (19) is an ordinary lexicographic SOR

iteration for the matrix F

01

from lemma 3.1. Due to its special form, F

01

is

ordered consistently. Lemma 3.3 carries statements of 3.5 concerning the eigen-

values of J(F

lex

) to the eigenavalues of J(F

01

). The famous Young theorem

([8], Satz 5.6.5) then proves all assertions.

Remark 3.7. F is the discrete operator of the 5-point stencil for the Laplacian

with Neumann conditions on �

D

. For �

out

the boundary condition reads

���

@

2

p

@x

2

� p = r:h:s (51)

Using the Poisson equation for the pressure we can substitute (51) by

+��

@

2

p

@y

2

� p = r:h:s on �

out

(52)

This is an ODE of Helmholtz type on �

out

with homogeneous boundary condi-

tions for

@p

@y

in @�

out

. This ODE has a unique solution under some assumptions

for the right hand side.
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3.3 Convergence for

@u

@x

= 0 on �

out

In this section we consider another often used boundary condition on �

out

@u

@x

= 0 on �

out

(53)

Using all notations of the previous sections we have � = 0.

Lemma 3.8. For � = 0 : Ker(F

lex

) = spanf1g

Proof. F

lex

� 1 = 0 is easy to see. With the representation (43) of F

�

follows

�

~

F M

0 C

�

�

�

x

F

x

C

�

= 0

) C � x

C

= 0) x

C1

= x

C2

) x

C2

= x

C3

:::) x

Cm�1

= x

Cm

(54)

thus dimKer(C) = 1.

~

F is nonsingular, which proves this lemma.

A conclusion of 3.8 is

Lemma 3.9. 1. �(J(F

01

)) = 1

2. J(F

01

) has only real eigenvalues

3. 1 and �1 are eigenvalues of J(F

01

) , the eigenspace of 1 is spanned by 1

and the eigenspace of �1 by e

01

:=

�

1

0

�1

1

�

Proof. Weak diagonal dominance of F

01

and the Gerschgorin theorem gives

�(J(F

01

)) � 1. Theorem 3.5 shows, that all eigenvalues are real.

F = L+D +R ; F � x = 0, �D

�1

(L+R) � x = x (55)

shows, that 1 is an eigenvalue and that the eigenspace is spanned by 1. F

01

is ordered consistently which shows that �1 is an eigenvalue, too ([10], Satz

8.3.12).

�J(F

01

) = �S

�1

�

0 D

�1

0

L

1

D

�1

1

L

0

0

�

S where S =

�

I

0

0

0 �I

1

�

(56)

Thus

Jx = �x, �Jx = x = S

�1

JSx, JSx = Sx, Sx = c � 1 (57)

e

01

:=

�

1

0

�1

1

�

spans the eigenspace of � = �1.

Now we are ready to show that the SOR-iteration converges in the sense of

damping all errors except the error that belongs to the global pressure level.

That means
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Lemma 3.10. The iteration converges to a solution of (19).

Proof. The consistent order of F

01

implies that there is the following relation

between the eigenvalues � of J(F

01

) and the eigenvalues � of H(F

01

; !)

�+ ! � 1 = �

p

�!� (58)

From 3.8 and 3.9 follows that for all eigenvalues � 6= �1 , j�j < 1 yields. Using

(58) one obtains for the corresponding eigenvalues of H � < 1 for 0 < ! < 2.

The corresponding eigenvalues of � = �1 are

�

1

= 1 ; �

2

= (1� !)

2

< 1 for 0 < ! < 2 (59)

A direct computation proves that only the pressure level remains unde�ned by

the iteration

(D + !L)

�1

((1� !)D � !R)x = x

, ((1� !)D � !R)x = (D + !L)x

, �!(L+D +R)x = 0 (60)

4 Stability of the spatial discretization

This section deals with the stability of the discrete Laplacian F

�

of the previous

section. In order to obtain statements concerning the regularity in the discrete

sobolev space H

1

h

(see [9], Chapter 9.2) we show the boundedness of (F

�

)

�1

;

(F

�

)

�T

. This implies the stability in the discrete space L

2

(=l

2

).

Lemma 4.1. If the grid stretching is bounded (

1

q

�

1

l

j+1

=

1

l

j

� q), then

k(F

�

)

�1

k

1

� maxf

q

q + 1

; ��g: (61)

Proof. (43) implies

(F

�

)

�1

=

�

~

F

�1

~

F

�1

MC

�1

0 C

�1

�

(62)

To prove the boundedness of (F

lex

)

�1

we show the boundedness of

~

F

�1

,

~

F

�1

MC

�1

and C

�1

.

�

~

F;�C are M-matrices, since

~

F �Diag(

~

F ); C �Diag(C); J(

~

F ); J(C) > 0 and �(J(�

~

F )); �(�J(C)) < 1. Ob-

viously

�C � 1 = �l

n

�1 =

1

��

1: (63)
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This proves kC

�1

k

1

� k��1k

1

= ��.

The same type of proof is used for

~

F

�1

. Without loss of generality we assume

[a; b] = [0; 1], then for

w

ij

= w(x

j

) where w(x) = (1� x

2

)=2 and x

j

=

j�1

X

s=1

1

l

s

+

1

2l

j

(64)

we obtain (�

~

F �w)

j

=

= ��

j>1

l

j

L

j�1

(1� x

2

j�1

)=2 + (�

j>1

l

j

L

j�1

+ l

j

L

j

)(1� x

2

j

)=2

��

j<n�1

l

j

L

j

(1� x

2

j+1

)=2

= ��

j>1

l

j

L

j�1

(1� x

2

j�1

� 1 + x

2

j

)=2� l

j

L

j

((1� x

2

j+1

)�

j<n�1

� 1 + x

2

j

)=2

= ��

j>1

l

j

L

j�1

(x

j

� x

j�1

)(x

j�1

+ x

j

)=2� l

j

L

j

((1� x

2

j+1

)�

j<n�1

� 1 + x

2

j

)=2

= �l

j

=2(�

j>1

(x

j�1

+ x

j

)� l

j

L

j

((1� x

2

j+1

)�

j<n�1

� 1 + x

2

j

)=2

= l

j

=2 �

8

>

<

>

:

1

2l

1

+

1

l

1

+

1

l

2

for j = 1

1

2l

j+1

+

1

l

j

+

1

2l

j�1

for 1 < j < n� 1

� 1� x

n�2

=

1

l

n

+

1

l

n�1

+

1

2l

n�2

for j = n� 1

using the declaration �

j>1

= 1� �

j1

. Thus

k

~

F

�1

k

1

�

2q

q + 1

kwk

1

�

q

q + 1

: (65)

Using (40,42) a direct computation yields (�

~

F ) � 1 = M � 1. The M-matrix

property of �

~

F;�C shows

~

F

�1

MC

�1

� 0. Now we are �nished

k

~

F

�1

MC

�1

k

1

= k(�

~

F )

�1

M(�C)

�1

� 1k

1

=

k(�

~

F )

�1

M��1k

1

= ��k1k

1

= �� (66)

Lemma 4.2. Using all notations of the previous lemma and the following no-

tations p

h

:= max

i;r

h

r

h

i

; p

l

:= max

j;s

l

s

l

j

, then

k(F

�

)

�T

k

1

� maxfp

h

p

l

q

q + 1

; 2max

j

fl

j

g=l

1

��p

2

h

g: (67)

Proof. We use the matrices

�

D ; D

h

from lemma (3.5) which symmetrized

~

F ;

C, with

�

D

2

ij;ij

=

h

1

l

1

h

i

l

j

, D

2

h

i; i =

h

1

h

i

and the following notations are used:

~
w :=

2q

q+1

w ; pi := min

i;j

h

1

l

1

h

i

l

j

; pa := max

i;j

h

1

l

1

h

i

l

j

:

�

D

~

F

�

D

�1

= (

�

D

~

F

�

D

�1

)

T

,

�

D

2

~

F =

~

F

T

�

D

2

) (�

~

F )

T

�

D

2

~
w =

�

D

2

(�

~

F )
~
w �

�

D

2

1

Thus

(�

~

F )

�

D

2

~
w � pi1) k

~

F

�T

k

1

�

pa

pi

k ~wk

1

= p

h

p

l

q

q + 1
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The same steps for C

T

with (63) lead to kC

�T

k

1

� ��p

h

The last estimate comes from

(�C)

�T

M

T

(�

~

F )

�T

1 � (�C)

�T

M

T

�

D

2

1

pi

~
w =

w(x

n�1

)L

n�1

pi

(�C)

�T

m

X

i=1

h

1

h

i

e

i

�

w(x

n�1

)L

n�1

pi

max

i

h

1

h

i

��p

h

1 �

w(x

n�1

)L

n�1

pi

max

i

h

1

h

i

��p

h

1 �

2

pi

max

i

h

1

h

i

��p

h

1 = 2max

j

l

j

l

1

��p

2

h

1 (68)

Remark 4.3. If condition (8) is satis�ed, then one has for the L

2

h

stability

j(F

�

)

�1

j

0 0

�

p

p

h

p

l

q

q + 1

(69)
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