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BOUNDARY CONTROL OF SEMICONDUCTOR MELTS

GÜNTER BÄRWOLFF∗ AND MICHAEL HINZE†

Abstract. In the present paper we investigate optimal boundary control of semiconductor melts.
The flow is governed by the Boussinesq approximation of the Navier-Stokes system. The control goal
consists in tracking of a prescribed flow field. As control action we consider Dirichlet boundary
control. The first order optimality conditions of the underlying optimal control problems represent a
coupled system consisting of the Boussinesq equations, an backward in time adjoint equation, and a
boundary value problem for the boundary control temperature. Numerically we solve this system by
damped Picard iteration and present results for a threedimensional model problem in a cylindrical
configuration.
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1. Introduction and motivation. During the growth of crystals in axisym-
metric zone melting devices the transition from the twodimensional flow regime to an
unsteady threedimensional behavior of the velocity and temperature field is observed
in experiments under certain conditions of the growth device. This behavior leads to
so called striations which from the crystal quality point of view should be avoided
during the growth process. To avoid such crystal defects it is important to figure out
those parameters, which guarantee a stable steady twodimensional melt flow during
the growth process. There are several possibilities to determine these parameters. In
the present work an optimization approach will be discussed.

From experiments and practical crystal production processes it is known that
unsteady behavior of the melt and vorticies near the fluid-solid-interphase decrease
the crystal quality. From the optimization point of view it therefore makes sense to
gain

(i) flows, which are nearly steady, and/or
(ii) flows, which only have small vorticity in a certain region of the melt zone.

In a mathematical setting the goal in (i) may be achieved by minimizing tracking-type
functionals of the form

J(~u, θc) =
1

2

∫ T

0

∫

Ω

|~u − ~u|2 dΩdt +
α

2

∫ T

0

∫

Γc

(θ2
c + θ2

ct
) dΩdt,(1)

whereas goal (ii) may be related to minimal values of vorticity-type functionals of the
form

J(~u, θc) =
1

2

∫ T

0

∫

Ω

|curl~u|2 dΩdt +
α

2

∫ T

0

∫

Γc

(θ2
c + θ2

ct
) dΩdt .(2)

Above, ~u denotes the flow velocity vector field in the melt, and ~u the desired state,
which represents a physically favourable flow situation. The function θc denotes the
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temperature flux on the wall of the crucible and serves as control variable on the
control boundary Γc. Both cost functionals contain two parts; the first part provides
the mathematical formulation of the control gain, and the second part weighs the
control cost.

2. Mathematical model. The flow in the crystal melt is gouverned by the
Boussinesq approximation of the Navier-Stokes system for the velocity ~u = (u, v, w),
the pressure p and the temperature θ;







~ut + (~u · ∇)~u − ∆~u + ∇p − Gr θ ~g = 0 on ΩT ,

−div ~u = 0 on ΩT ,

θt + ~u · ∇θ − 1

Pr
∆θ − f = 0 on ΩT .

(3)

Here ~g = (0, 0, 1) and ΩT = Ω×(0, T ) denotes the space-time cylinder with cylindrical
melt zone of height H and radius R. Furthermore, Gr denotes the Grashof number,
and Pr the Prandtl number. Since in the present work we are mainly interested in
control via boundary temperatures the absence of external forces is assumed.

System (3) is supplied with temperature boundary conditions of third kind on
the crucible walls (which form the control boundary Γc), and Dirichlet boundary
conditions at the remaining parts Γd of the boundary. For the flow Dirichlet boundary
conditions are prescribed on the whole boundary Γ. More precisely we set







u = ud, v = vd, w = wd on ΓT ,

λ ∂θ
∂n

+ ã(θ − θ0) = θc on the control boundary ΓcT ,

θ = θd on ΓdT ,

(4)

with the boundary time cylinders ΓT = Γ × [0, T ], ΓcT = Γc × [0, T ] and ΓdT = Γd ×
[0, T ]. θ0 is some environmental temperature and λ, ã denote physical constants. It is
convenient to rewrite the boundary condition on Γc in the form a ∂θ

∂n
+bθ = θc on ΓcT ,

with appropriate coefficients a, b which may not vanish simultaneously. We note that
it is possible to include via ud, vd, wd certain crystal and crucible rotations, as it is
common in the case of Czochralski growth. In the case of zone melting techniques
one would require ~u = ~0.

In the case of the Czochralski crystal growth technique with ud, vd, wd we have
the possibility to describe a certain crystal and crucible rotation. In the case of zone
melting flow ud equals zero. The initial state is assumed as the neutral position of
the crystal melt

~v = 0(5)

and an initial temperature field as a solution of the non convective heat conduction
equation

−
1

Pr
∆ θ = 0 in Ω, θ = θ0 on Γc, and θ = θd on Γd.(6)

The material properties and the dimensionless parameters for the investigated crystals
close the initial boundary value problem for the description of the melt flow. We
assume that prescribing Dirichlet boundary conditions on the walls of the crucible is
possible, so that Dirichlet boundary controls may be utilized as control mechanism, i.e.
a = 0, b = 1 in (4). The optimization goal then consists in finding an optimal boundary
heating strategy by adjusting the boundary temperature distributions. Once this
strategy is known, in a further step the methods developed in [1, 2] may be applied
to provide optimal heater locations by solving an appropriate inverse problem.
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3. Optimization. The optimization problem considered in the present work is
given by

(P)

{

min J(y, θc)
s.t.(3) − (6).

(7)

To derive the first order necessary optimality conditions for this optimization problem
we formally utilize the Lagrange technique. The related Lagrangian in the primitive
setting is given by

L(~u, p, θ, θc, ~µ, ξ, κ, χ) = J(~u, θc) + 〈~µ, ~ut + (~u · ∇)~u − ∆~u + ∇p − Gr θ ~g〉ΩT

−〈ξ, div ~u〉ΩT
+ 〈κ, θt + ~u · ∇θ −

1

Pr
∆θ − f〉ΩT

+ 〈χ, a
∂θ

∂n
+ bθ − θc〉ΓcT

,(8)

where 〈·, ·〉ΓcT
and 〈·, ·〉ΩT

denote appropriate duality pairings, and ~µ, ξ, κ and χ are
Lagrange parameters. For example for ~u, p and θ sufficiently regular one has

< ~µ, ~ut + (~u · ∇)~u − ∆~u + ∇p − Gr θ ~g >ΩT
=

∫

ΩT

[~ut + (~u · ∇)~u − ∆~u + ∇p − Gr θ ~g] · ~µ dΩ dt.

A precise functional analytic setting, also containing the convergence analysis of the
solution algorithms proposed in the subsequent sections will be given in a forthcoming
paper, see also [3, 4, 5].

The necessary optimality conditions for (P) are now given by

∇L = 0.

Assembling these conditions for the cost functions of (1) and (2) leads to the state
equations (3)-(6), together with the so called adjoint system



























































































−~µt − ∆~µ + (∇~u)t~µ − (~u · ∇)~µ + ∇ξ = −κ∇θ +

{

−(~u − ~u)
curl curl ~u

in ΩT ,

−div ~µ = 0 in ΩT

~µ = 0 on ΓT ,

~µ(T ) = 0 in Ω,

−κt −
1

Pr
∆κ − ~u · ∇κ = Gr~g · ~µ in ΩT ,

κ = 0 on ΓdT ,

a ∂κ
∂n

+ bκ = 0 on ΓcT ,

κ(T ) = 0 in Ω,

χ =

{

− 1

bPr
∂κ
∂n

if b 6= 0
1

aPr
κ if b = 0

on ΓcT ,

(9)

and the optimality conditions

α(−θctt
+ θc) = χ on ΓcT

θc(0) = θ0 on Γc,

θct
(T ) = 0 on Γc.

(10)

Here θ0 denotes a temperature distribution on Γc at the beginning of the melting
process.
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Alltogether, the necessary optimality conditions for problem (P) form a boundary
value problem for ~u, p, θ, ~µ, ξ, and θc w.r.t. space and time in the space-time domain
ΩT , which inherits a very special structure.

From now onwards we assume that system (3) together with (4), (5) and (6) for
given θc admits a unique solution (this is satisfied under appropriate assumptions at
least in the two-dimensional case, see [6], [7]). Then the cost functionals in (1),(2)
may be rewritten in the form

Ĵ(θc) = J(~u(θc), θc),

where the gradient of Ĵ is determined by the optimality condition (10). More precisley,
there holds

Ĵ ′(θc) = α(θctt + θc) − χ.(11)

To evaluate Ĵ ′(θc) for given θc amounts to solving (3)-(6) for ~u, θ, and then (9) for
~µ, θ and χ.

Let us close this section with noting that the approach to boundary control pre-
sented in the present work is designed to compute temperature distributions at every
single point of the control boundary, since it follows from (11) that the gradient of
the cost functional w.r.t. θc can be expressed in terms of adjoint variables, so that
the directional derivatives in all directions are available once the adjoint variables are
determined. This is different to the approach presented in e.g. [8], were control func-
tions are sought which only depend on a few numbers of parameters and directional
derivatives w.r.t these parameters are computed using finite difference techniques. We
note that the latter approach requires the solution of an auxilliary linear problem for
every directional derivative, so that its computationally complexity is proportional to
the number of parameters.

4. The numerical approach. We solve problem (7) by applying a damped
Picard iteration to the KKT system (3)-(6), (9),(10). The pseudo-algorithm reads

i) choose θc,
ii) solve the forward problem for [~u, θ](θc)
iii) solve the adjoint problem for [~µ, κ](~u, θ)
iv) update θc := σrθc + (1 − σr)H

−1(χ), σr ∈]0, 1[,
v) until convergence, go to ii),

where H−1(χ) for given χ denotes the solution of (10).
Next let us describe the numerical solution methods used in ii)-iv). For this

purpose we denote by ti := iτ , i = 0, . . . Z an equidistant time grid on [0, T ], where
τ := T

Z
for some Z ∈ N. Moreover, unknown quantities are supplied with superscripts.

In ii) we apply a semi-implicit time discretization scheme. Convective terms are
treated explicitly, conductive terms implicitly. We obtain for n = 0, . . . , Z − 1

~un+1

τ
− ∆~un+1 + ∇pn+1 − Gr θn+1~g =

~u

τ
− (~u · ∇)~u,(12)

−div ~un+1 = 0,(13)

θn+1

τ
−

1

Pr
∆θn+1 =

θ

τ
− (~u · ∇)θ,(14)

supplied with the boundary conditions (4) at t = tn+1. Here ~u and θ for n = 0 are
taken from (5) and (6), respectively. Of course, given ~u equation (14) can be solved
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for θn+1. To solve (12),(13) we apply a pressure-correction scheme which is explained
next. Taking the divergence in (12) leads to

−∆pn+1 = −
1

τ
div ~̂u,(15)

where

~̂u = ~u + τ [(~u · ∇)~u + Gr θn+1~g].(16)

For the pressure we get Neumann boundary conditions. In the case of no slip

walls the pressure boundary conditions are of the form ∂pn+1

∂~n
= 0. Using the noted

boundary conditions for pn+1 equation (15) can be solved for pn+1, which in turn
determines the velocity field ~un+1 in terms of

1

τ
~un+1 − ∆~un+1 =

1

τ
~u −∇pn+1(17)

together with boundary conditions for ~un+1 from (4) for t = tn+1. In summary step
ii) amounts to solving one poisson equation for pn+1, three Helmholtz equations for
~un+1, and one for θn+1. Spatially these subproblems are discretized by the finite
volume method on a staggered grid in cylindrical coordinates developed in [9]. The
resulting linear systems are solved by appropriately preconditioned cg methods.

For the time discretization of the adjoint system in iii) we for n = Z, . . . , 1 apply
the scheme

~µn−1 − ~µ

τ
− ∆~µn−1 + (∇~un−1)t~µ − (~un−1 · ∇)~µ + ∇ξn−1

= −κn−1∇θ +

{

−(~un−1 − ~u)
curl curl ~un−1,

(18)

−div ~µn−1 = 0,(19)

κn−1 − κ

τ
− ~un−1 · ∇κ −

1

Pr
∆κn−1 = Gr~g · ~µ,(20)

where for n = Z we have ~µ = µ(T ) = 0 and also κ = κ(T ) = 0. The boundary
conditions are taken from (9) for t = tn−1. A motivation of this scheme together with
a detailed discussion is given in [10]. Eq. (20) immediately can be solved for κn−1, the
quantities ~µn−1, ξn−1 are obtained from (18),(19) by the pressure-correction method
explained above. Spatially these subproblems are discretized again by the finite vol-
ume method of [9], and the resulting linear systems are also solved by appropriately
preconditioned cg methods.

To provide H−1(χ) in iv) equation (10) is solved for the control θc by a finite
volume method in space and time, where the boundary conditions θc(γ, 0) = θc0 and
θct

(γ, T ) = 0 for γ ∈ Γc are taken. We note that H := −∂tt + id.
Let us note that for the computation of ~µn−1, ξn−1, κn−1 the flow ~un−1 is required

for n = Z, . . . , 1. This means that we have to store these flow velocities in order to
compute the adjoint solution ~µn−1, κn−1, and θc.

5. Numerical results. To test our optimal control approach we consider a cylin-
drical threedimensional zone melting configuration with the crystal (Bi0.25Sb0.75)2Te2,
which forms a composition of bismuth point fifty antimony one point fifty telurium
two, whose geometrical and material parameters are summarized in in Table 1 (see
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parameter symbol value
radius R 0.004 m

height H 0.016 m

melting point θs 613 K

diffusivity a 0.44000e-05 m2

s

viscosity ν 0.36310e-06 m2

s

expansion β 0.96000e-04 K−1

Table 1

Parameters of (Bi0.25Sb0.75)2Te2-melt and of the melt geometry

melt zone

solid crystal

solid crystal input

output
z

r

R

H

ΩΩ

Γ

Γ

Γc

1

0

Fig. 1. Physical domain for the zone melting growth

also [9]).

(Bi0.25Sb0.75)2Te2-crystals are used for small cooling devices. The Figure 1 shows
the physical domain of the melt zone. We note that Γd = Γ1 ∪ Γ0. For the velocity
we use homogeneous dirichlet data on the whole boundary. For the temperature we
use the boundary conditions

θ = θc, for r = R, 0 ≤ z ≤ H, ϕ ∈ (0, 2π),(21)

θ = θs, for 0 ≤ r ≤ R, z = H,(22)

θ = θs, for 0 ≤ r ≤ R, z = 0,(23)

i.e. we set a = 0, b = 1 in (4). For t = 0 we start with a given temperature profile
θc = θc0 on Γc and with θs = 613 K, δθ = 25 K for θc0 we use

θc0(z) = θs + 4
z

H
(1 −

z

H
)δθ .

The control goal is tracking of a velocity field ~u, which either is given by
i) a typical twodimensional toroidal flow, or by a
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ii) a non moving melt, i.e. ~u = 0.

The case ii) is artificial but serves as a good test case since θc = θs = const. implies
~u = 0, and this velocity field together with θ = θs is a solution of the Boussinesq
approximation. Artificial in this context means that θ = θs on Ω is not a realistic
assumption for a crystal melt and the input mixed crystal will never change to a single
homogeneous output crystal. We consider the time interval [0, T ] = [0, 8 seconds] and
Z = 60 time steps of duration 0.1222 seconds each. For the spatial discretization we
use a grid containing 20×30 finite volumes. As regularization and damping parameters
we use α = 0.25 and σr = 0.1.

The Figures 2 - 4 show the results of the optimization for the case i) and case ii),
i. e. the resulting control temperature on the boundary-time cylinder and the devel-
opment of the functional values, where the temperatures are dimensionless defined by
θ̄ = θ−θs

δθ
. As one can see a remarkable reduction of the value of the cost functional

is obtained already within the first few iterations of our solution algorithm.
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Fig. 2. Control temperature (problem (i))

6. Conclusion. Optimal boundary heating control strategies for fully time-
dependent thermally coupled flow problems in spatially 3-dimensional cylindrical do-
mains are developed. Optimal heating strategies are obtained as solutions of certain
minimization problems and are computed from the related Karush-Kuhn-Tucker sys-
tem by applying a damped Picard iteration.

Numerical results are presented for zone melting growth configurations in real-
istic 3-dimensional cylindrical domains. While boundary heating control for zone
melting configurations seems to offer a practically relevant control mechanism numer-
ical results for Czochralski growth in [10] indicate, that boundary heating for this
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Fig. 3. Functional vs. iteration (problem (i))
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Fig. 4. Control temperature (problem (ii))

configuration seems to have only limited impact on the flow behaviour in the melt.
As a result for Czochralski growth other control mechanisms should be considered,
like control by magnetic fields and/or crucible/crystal rotation.
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