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Abstract. In this paper we collect two parts of a research project on
the pedestrian flow modeling. Rapid growth in the volume of public
transport and the need for its reasonable, efficient planning has made
the description and modeling of transport and pedestrian behaviors an
important research topic in the last twenty years. Comparatively little
attention has been paid to the problem of pedestrian crowd behaviors in
geometries with multiple destinations: each of the possibly many pedes-
trians moves to one out of a number of destinations. The objective of
the present study is to investigate pedestrian behaviors in such a con-
text. The central problem is the modeling of crossing pedestrian streams.
In view of a desirable practical relevance, realistic, i.e. rather complex
geometries are studied in this context.

Keywords: macroscopic models, pedestrian density and flow measure-
ment, human crowd experiments, intersecting pedestrian flows

1 Introduction

In a close cooperation with engineers we investigate the mathematical description
of pedestrian movement by

1. data generation with real world experiments for model validation and pa-
rameter calibration,

2. development of
(a) microscopic mathematical models,
(b) macroscopic mathematical models.

We managed the experiments with about 300 students of the TU Berlin and
recorded the different constellations of pedestrian streams by a multi-trace recorder
as a base for generation of individual tracks and a density estimation.
As microscopic models we discuss grid-based approaches rooted in cellular au-
tomata and a second ansatz with a combination of a force-based and a graph-
based approach. The microscopic models are discussed in detail for example in
[?] and [?].



In this paper we are focused on macroscopic models based on a set of pedestrian-
specific coupled partial differential equations (pde’s). The first discussed model
is based on the mass balance and the considered quantities are the pedestrian
density and fluxes which give information about the velocities of pedestrian
groups.
As a second model we consider multispecies pedestrian model based on a 3d
multiphase incompressible fluid flow model

2 A compressible macroscopic model

This macroscopic approach is based on a set of pedestrian-specific coupled par-
tial differential equations. The equations are not derived from the Euler-/Navier-
Stokes equations known from fluid and gas dynamics. The specific situation of
multi-destination pedestrian crowds with crossing streams requires the develop-
ment of appropriately adapted methods. This has been targeted by the use of
simple heuristics.
Typical applications of these approaches include real-world scenarios like air-
ports, shopping malls, buildings of middle- to large size etc., where the partici-
pants (i.e. the pedestrians) do not exhibit an overall unanimity and (may) have
different and multiple destinations.
Beyond the modeling of the above-mentioned problems, a particular aim of
this project will be the development, implementation and test of appropriate
computer-based simulation models.

2.1 The Transport Equation

Perceiving pedestrian flows as a transport problem, we start with the governing
equation that describes the mass flow:

∂ρi
∂ϑ

+∇ · (ρivi) = 0. (1)

In this document, ϑ denotes the time, and i ∈ {1, . . . , n} where n is the number of
pedestrian “types” or “species” distinguished by certain properties. The desired
velocity would be a frequent example of such a property. Furthermore, ρi is the
current density and vi the current velocity of a species in a given computational
domain.
Since pedestrian dynamics cannot be entirely described as a physical phenomenon,
the parts of the equation can do well with some discussion.

2.2 Measuring Pedestrian Density

In physics, mass density ρ has units [ρ] = mass
volume . However, this does not seem to

be the best fit for the problem considered here. The definition [ρ] = mass
area used,

for example, in [?] similarly includes “mass” which the authors need to model
inertial effects, which are not included in our model.



Concerning pedestrian inertial mass, we require the following assumption:

Due to the smoothness of the controlling fields we assume that it is not necessary
to describe mass (inducing inertial behavior in the model). This way we assume
that the pedestrians may follow (adapt speed and heading) to the controlling
fields without significant lag by means of internal impetus, decision and physical
strength.

Therefore, one natural way to measure the pedestrian density in this setting is to
use [ρ] = pedestrians

area , which implicitly relies on a certain amount of homogeneity
of the pedestrian crowd in the considered sample. An even smarter approach is
presented in [?] by defining the area that a specific pedestrian occupies. This area
depends on, e.g., whether the pedestrian is a child, an adolescent or an adult,
which cloths the pedestrian wears (summer or winter cloths), how much luggage
the pedestrian carries and so on. This yields an appropriate dimensionless mea-
sure [ρ] = pedestrians’ needed area

available area . Since the area occupied by a pedestrian is not
always readily available for input, we choose the former definition of density as
pedestrians per area.
In our model we use normalized densities: ρi, ρ ∈ [0, 1] with ρ =

∑n
i=1 ρi. A

value of ρ = 1 would for instance mean 5.4pedestrians
area according to [?] and up to

10pedestrians
area according to other sources (see, e.g., [?] for a discussion).

2.3 Transport Velocity

The primary goal is to find a sensible functional relationship vi = vi(ρ1, . . . , ρn)
that yields a nonlinear system for realistic cases.
In the literature, one frequently discriminates between a planned (e.g., “external”
in [?] or “tactical” in [?]) and an instantaneous (e.g., “intelligent” in [?] or
“operational” in [?]) velocity. In our opinion, this differentiation makes sense in
the context of categorizing the cause of an action taken by a pedestrian.
Our approach is slightly more pragmatic and accounts for three different types
of decisions. Pedestrians:

1. choose a direction they wish to go,
2. choose a speed for walking in the chosen direction based on local conditions,
3. alter speed and walking direction in order to locally avoid densely populated

areas (prefer the direction of −∇ρ).

Therefore, we decompose the velocity as follows:

vi = aiV d
i
i − biWdl, (2)

where:

V ∈ [0, 1] is a normalized speed determined by a fundamental diagram (see
below).

dii is a unit vector field pointing into the direction of the desired heading.



dl is a directional vector field for local correction (not necessarily of unit length,
see below). Since it depends on the total density ρ, it is common to all
pedestrian species.

ai and bi are constants: ai stands for the absolute value of the wished velocity,
bi is a measure for avoiding regions of high density.

W = 1− V reflects the operational shift from wanting to reach the desired target
to reacting to local encounters with other pedestrians at high densities.

Summarizing this the term aiV d
i
i stands for the gradient driven part of the

velocity and biWdl decries the influence of high density regions on the velocity
of pedestrians.
A model for two pedestrian species with just the aiV d

i
i term present has been

investigated in [?] with a focus on discussing the mathematical foundation. This
investigation highlights some shortcomings of the model with respect to the sim-
ulation of real-world scenarios. The authors suggest to introduce (cross) diffusion
terms in order to solve these problems. Since the meaning of these terms in the
context of real-life applications seems to be obscure, here we prefer to introduce
the biWdl term.

2.4 Desired Heading.

The term dii describes the pedestrian’s choice of a walking direction, and is
based on spatial information from the vicinity and the global environment of the
pedestrian:

∆φ
(i)
j (ϑ) = r

(i)
j (ϑ), (3)

φi(ϑ) =
∑
j

φ
(i)
j (ϑ), (4)

dii(ϑ) =

{
∇φi(ϑ)
|∇φi(ϑ)| if |∇φi(ϑ)| 6= 0,

random unit vector if |∇φi(ϑ)| = 0.

With the formula (??) we add the different potentials coming from global influ-
ences like the shape of the considered domain or local influences like the local
density.

The subscripted character j of φ
(i)
j (ϑ) denotes the influence type (for exam-

ple global, local etc.), and the superscripted character i denotes the considered
species.
Therefore, according to the assumption of continuous influences, dii is based on
source and boundary terms of j (partially) solved Poisson equations for each

pedestrian species i (reflecting j different influencing factors). The α
(i)
j are con-

stant weights, and the f
(i)
j (ϑ) are source terms derived from spatially distributed

information—for example, the density ρk(ϑ) of some pedestrian species. This
kind of flow, the direction of which is derived from a potential, has been inves-
tigated in [?].



The parameters in the above equations have to be chosen very specifically, and
finding appropriate settings is one of the open tasks for the application of this
model.
With a special choice of the right hand side of the equation (??) we can model
global or local influences by potentials. A detailed discussion of this point is
given in [?].

2.5 Introducing the Gradient Term.

There are a number of possible approaches to introduce a gradient term. Notable
are the following two:

dl(ϑ, x) =

{
∇ρ(ϑ,x)
|∇ρ(ϑ,x)| if |∇ρ(ϑ, x)| > 0,

0 if |∇ρ(ϑ, x)| = 0,
(5)

dl(ϑ, x) =

{
∇ρ(ϑ,x)
|∇ρ(ϑ,x)| if |∇ρ(ϑ, x)| > 1,

∇ρ(ϑ, x) else.
(6)

Concerning (??) it has to be noted that dl(ϑ, x) is not necessarily continuous with
respect to x at points where |∇ρ(ϑ, x)| = 0 holds. Another problem obviously
present with this term is that it may show large scatter where the density is high.
This can lead to the violation of the condition ρi, ρ ∈ [0, 1] because of numerical
overshooting. Another risk is the numerical oscillation of the solution (which
might be interpreted as remaining erratic pedestrian activity at high densities
in certain situations).
This term might be viewed as carrying some random disturbances as discussed
in [?,?], which produces less effective motion (stronger clogging tendency due
to the “freezing by heating effect” discussed there). The measurement of the
mobility there did not show an increase of flux with more “thermal” motion at
all. This is due to the inhibition of lane formation because the effect of lane
formation yields an enhancement of flux. The observed “freezing by heating
effect” has been considered for modeling panic situations, where it might well
make sense. However, such scenarios are beyond the scope of this paper.
The gradient term defined by (??) is more likely to be the rule applied by
pedestrians under normal conditions, because it is more efficient than the term
given by Eq. (??).
Another argument in favor for (??) is given by the fact that the key idea of the
macroscopic approach is to average the behavior of several pedestrians and thus
smoothing out random disturbances caused by single pedestrians at sufficiently
large scales.

2.6 Walking Speed and Fundamental Diagram.

A uni-directional flux can be defined by J = ρiV (ρ1, . . . , ρn)di. For the case of
J = ρV (ρ)d the three quantities are related by a fundamental diagram. Funda-
mental diagrams have been determined by a number of authors, with a relatively



wide range of different results that cannot be used to deduce a general law. Ac-
cording to [?], the values found in the literature for the maximum pedestrian
density, where movement is possible at all, vary from 3.8/m2 – 10/m2. Another
controversially discussed issue is how V depends on whether movement is uni-
directional or multi-directional.
For more details, see [?] and [?].
Despite the issues described above, we have evaluated the impact of different
fundamental diagrams on quantitative and qualitative properties of the solutions.
The differences are large enough to indicate the need for a better approximation
in this respect. The fundamental diagrams that we have tested are:

V (ρ) = 1− ρ, V (ρ) = (1− ρ)2, V (ρ) = 1− ρ2,
V (ρ) = 1− exp(−1.913/5.4(1/ρ− 1)) . (7)

Note that, compared to [?, p. 65], Eq. (??) employs the normalization conditions
V ∈ [0, 1] and ρ ∈ [0, 1].

2.7 Simulation example - 90◦ Encounter.

The above discussed boundary value problem completed by appropriate bound-
ary conditions (see [?]) is solved using the Finite-Volume package OpenFOAM.
In The figures ?? show the results of two pedestrian streams crossing with an
angle of 90◦. A formation of dynamically reconfiguring clusters can be observed.

Fig. 1. Time steps 5, 10, 20, 40, 60 and 80 of the simulation of a 90◦ encounter of two
species. Shown are density and flux of one species coming from left. The length of the
arrows indicate flux strength, the grade of darkness indicates the density of the species.
The crossing species coming from bottom is located in the light gray or white regions
of the area

3 A Multispecies Pedestrian Model based on a 3d
multiphase incompressible fluid flow model

The idea to simulate pedestrian flow by the application of fluid dynamics equa-
tions has a certain history in that field. This approach is based on the application
of partial differential equations, which makes it a macroscopic method. The need
to simulate several different species of pedestrians is a need from the start, which
has not been matched very well by numerical simulations of the macroscopic
type. The basis of the description of non dense pedestrian movement by incom-
pressible fluid flow models consists in the introduction of an empty phase as a
species of a multiphase system of distinct phases. In the following we describe



the mathematical model and modifications to the multiphaseInterFoam-solver
of the OpenFOAM library, which makes it applicable in this field and present
results that show capabilities and limitations of the modified solver.
We introduces now a new technique for the simulation of several species in macro-
scopic simulation of pedestrian crowds. The focus is on the modelling of several
species with different destination and the ability to intersect each other rather
than on a precise reconstruction of known pedestrian phenomena for prediction
purposes. We proceed by first presenting the mathematical model followed by a
concrete implementation and some results. Based on the discussions in [?], [?]
and [?] we choose the incompressible Navier-Stokes equations as a starting point
of our model and added boundary conditions and transport equations to allow
an intermixing and separation of different species.

3.1 The Mathematical Model

We use the non-stationary, incompressible Navier-Stokes equations

ρ
∂v

∂t
+ ρv · ∇ ⊗ v +∇p− (8)

∇ · (µ(∇⊗ v) + µ(∇⊗ v)T ) = f (9)

∇ · v = 0 (10)

combined with a volume of fluid (VOF) method as a starting point to simulate
Np ∈ N different pedestrian species. Let P = {1, . . . , Np} be the set of indices of
pedestrian groups, then the VOF method keeps track of the species’ positions
by introducing one fraction function per species

αi(x) ∈ [0, 1], (11)

that describes the fill level at position x ∈ Ω of species i ∈ P. The fraction
function can be discontinuous, especially when discretized for implementation
purposes. We demand the sum of all fraction functions to be one, i.e.∑

i∈P
αi = 1. (12)

A standard VOF method uses the velocity computed by (??) with ρ =
∑
i∈P ρiαi,

µ =
∑
i∈P µiαi and changes every αi by solving the transport equation

∂αi
∂t

+ v · ∇αi = 0 for all i ∈ P. (13)

In the course of pedestrian simulation we tried to simulate group crossing. There-
fore, it was necessary to solve three modelling problems:

1. simulation of spaces without a pedestrian species
2. distinct species forces
3. separation of species



3.2 Empty Spaces

An empty space is simulated by using a pedestrian group f ∈ P, Pwf = P\{f}.
This so-called fill-species is able to leave Ω by flowing through an additional di-
mension, i.e. for a two-dimensional Ω the third dimension or z-axis. It is therefore
necessary to simulate a three dimensional domain for a two dimensional problem.
The inflow and outflow over the third dimension is implemented using special
boundary conditions that are aware of the fill-species. We used a solver that
is based on an operator splitting approach. Therefore, we have to choose two
boundary conditions; one for the velocity and one for the pressure variable.
The boundary condition for the velocity is defined as

n · v = 0, for n ·Φ ≥ 0, αf = 0 (14)

n · ∇(n · v) = 0 otherwise, (15)

where Φ is the velocity value adjacent to the boundary condition face from the
last pressure correction step.
The pressure boundary condition is defined as

p =

{
p0 − 1

2ρ‖v‖
2, for n ·Φ < 0

p0, for n ·Φ ≥ 0, αf > 0
(16)

n · ∇p = 0, for n ·Φ ≥ 0, αf = 0 (17)

(18)

on the z-axis. The other sides of the domain can be chosen as slip boundary
conditions.

3.3 Species Forces

Each species of the intersection of pedestrians needs to have a distinct destina-
tion. Therefore the need to implement species specific forces and velocities arises.
Each pedestrian species i ∈ Pwf has a desired velocity vdi , that is the velocity a
pedestrian species has without the influences of other pedestrian species.
The desired velocity gets transformed into a resulting force for the right hand
side in the Navier-Stokes equation (??). Following the nomenclature by Helbing
et al. for microscopic models (cf. [?], [?]), we introduce a so-called behavioural
force

f := C2(αbil)
(
C1(αbil)

∑
i∈Pwf

αiv
d
i − v

)
, (19)

with
αbil :=

∑
i∈Pwf

αi (20)

and add it to the right hand side of the Navier-Stokes equations (??). The
functions C1 and C2 control the pedestrian behaviour, e.g. a choice of

C1(αbil) := (1− αbil) (21)

C2(αbil) := αbil (22)



approximates the pedestrian fundamental diagram.

3.4 Separation of Species

The seperation of species is not naturally given by the discretized VOF method.
Equation (??) does not provide a mean of seperation of once mixed cells due to
the fact we compute until now only a global velocity v out of the Navier-Stokes
equations (??). Thus, we introduce an additional transport equation

∂αi
∂t
−∇ ·

(
C3(αf )

vdi
‖vdi ‖

αi

)
= 0 (23)

for all i ∈ Pwb followed by

αf = 1−
∑
i∈Pwf

αi (24)

with C3 defining the magnitude of the seperation velocity with a typical value
of

C3(αf ) =

{
0.01, for αf > 0

0, for αf = 0.
(25)

3.5 Implementation

The Navier-Stokes equation is solved using the so-called Pressure Implicit with
Splitting Operators (PISO) algorithm [?] (use of the multiphaseInterFoam solver
in OpenFOAM [?]). The solver consists mainly of three distinct steps. The ve-
locity predictor step, the pressure correction loop and the fraction function ad-
justments. It further implements a surface tension force, which has been disabled
for our experiments, but might be used in combination with our model, too.

We need to introduce some notation to proceed. We will call E the set of all
velocity nodes and N (i), i ∈ E the set of all neighbor nodes of i, that is the
nodes whose cell share a face with the cell of i. Let us denote by Vi the volume
of a cell for node i ∈ E .

3.6 The velocity predictor step

Let ρg and µg be defined as

ρg =
∑
i∈P

ρiαi, µg =
∑
i∈P

µiαi, (26)



where µi and ρi are species dependent and f be computed by (??). For the most
simple case we use the explicit Euler method, so equation (??) becomes∫

Vi

ρg
vn+1 − vn

∆t
dx +

∫
∂Vi

(n · ρgΦn)vn ds+ (27)∫
Vi

∇pn dx−
∫
Vi

∇ · (µg(∇⊗ vn) + µg(∇⊗ vn)T ) dx (28)

=

∫
Vi

fn dx (29)

in a finite volume context, where Φ is the velocity interpolated to the faces
using the values from neighbor cells and n symbolizes the current time step.
OpenFOAM is using a kind of Rhie-Chow interpolation for flux fields, which we
will symbolize by Π.
Then the algebraic equation for a single cell i ∈ E of (??) becomes

aivi +
∑

n∈N (i)

anvn = bi −∇pi (30)

in discretized form, where ai ∈ R are the coefficients for vi and b represents the
right hand side of the algebraic equation without the pressure.

3.7 The pressure correction loop

Let A be the diagonal matrix containing all ai from equation (??), that is for
k = bj/3c let (A)jj = ak and (A)ij = 0 for i 6= j and further let H be the vector
containing all anvn and the right hand side bi, that is

H3i+j = (−
∑

n∈N (i)

anvn + bi)j for j ∈ {1, 2, 3}. (31)

This H-operator is common for OpenFOAM based implementations. We then
compute a Jacobi step for v with

vjac = A−1H (32)

Next, we compute Φ = Π(vjac +A−1f) followed by

∇ · (A−1∇pn+1) = ∇ ·Φ (33)

to compute the new pn+1.
The face flux Φ is then corrected by

Φn+1 = Π(A−1H −A−1∇p) (34)

followed by the correction of the velocity

vn+1 = vjac −∇p. (35)



The boundary conditions (??) and (??) are used for the z-axis in equations
(??) and (??), respectively. The velocity’s boundary conditions have been set
to slip at non-penetrable walls and boundary conditions for the pressure have
been chosen as zero gradient. The pressure correction loop is repeated until the
pressure converges or a maximum number of rounds is reached.

3.8 Adjustment of the Fraction Function

The computation of vn+1 allows the adjustment of the fraction function via
(??). It follows the seperation of the species by solving (??) and (??). Usually a
downwind scheme should be used for the evaluation of C3, so it is set depending
on the αf value in the target cell.

When the fraction function has been adjusted, the velocity predictor step con-
tinues with the next time step.

3.9 Numerical Results

We produced simulation results for quadratic geometries with an orthogonal
mesh and on a more complex geometry inspired by real world experiments in
the Technical University of Berlin [?].

Fig. ?? shows the results for a quadratic area with two species crossing in 180
degrees.

As can be seen from Fig. ?? the species cross each other, show stripe formation,
create lanes and reach their destination on opposite walls. At the end of the
simulation the species are completely separated. It should, however, be noted,
there are several effects originating in the impulse conservation, which are rather
unnatural for crowd simulation. For example the the occurrence of a splash at
the moment the species hit a wall with larger values of v, which is due to the
impulse conservation and can be seen at time T = 20.0 in Fig. ??. There, one is
able to see species one splashing back at the bottom wall. Further, the masses
have a non-neglectable acceleration time, which is in contrast to pedestrians
behaviour.

We made real world experiments, that can be used to test parameters and vali-
date the numerical results. In 2010 and 2011 we performed several experiments
with up to four crowd groups that were crossing in a predefined area. The exper-
iments have been recorded on video and we were able to observe common crowd
phenomena like lane formation and isolated groups (c.f. [?]). It also allowed us
to get quantitative results for evaluation purposes by video analysis [?].

Therefore, we made numerical simulation on a mesh with a geometry similar to
the control area in the real world experiments. The simulation in the control area
shows lane formation and congestion before an entrance, see Fig. ??. The origin
of the congestion lays in the very static desired velocities we are currently using.
A more dynamical desired velocity that better models pedestrian long and short
sight behaviour is subject of future work.



Experiments showed the fill-species and the pedestrian species should have the
same density ρ. Otherwise, we may create artificial impulses through the seper-
ation step that could move heavier species to a place with higher velocity. Al-
though different ρ values for different species will work, the impulse balance
should be kept in mind.
We were also able to implement very basic in- and outlet boundary conditions
for multiple species, i.e. the fill-species and a pedestrian species. For inlet bound-
aries we use a fixed value condition for the velocity together with the pressure
boundary condition (??). For outlet boundary conditions we use (??) and (??)
for the pressure and velocity, respectively. Further research should be put in in-
and outlet boundary conditions for more complex in- and outflow scenarios of
pedestrian, e.g. the rate of flow should be controllable depending on the fill rate
of cells next to the inlet boundary.

4 Discussion

In section ?? we presented a macroscopic model based on the mass balance with
velocity ansatzes respecting local and global influences. The numerical simula-
tion results of the densities and the fluxes (pedestrian velocities) matched the
experimental data with a good quality. Especially typical patterns of crossing
pedestrian groups and time scales of processes like emptying were very good
reproduced. The simulation results are promising and in our further research we
have to investigate the detailed description of model parameters with the aim
of a reduction of the occurring heuristic parameters. For special constellations
like the genesis of small groups moving close together the fundamental diagrams
must be appropriately modified.
In section ?? we introduced a new ansatz for the simulation of pedestrian crossing
and multispecies simulation. The implementation is based on the incompressible
Navier-Stokes equations with a volume of fluid ansatz that has been altered
by special boundary conditions for the pressure and the velocity as well as an
added transport equation for the seperation of intermixed species. The proposed
model allowed us to reproduce common pedestrian crossing effects like stripe
and lane formation. It also allows us to simulate higher numbers (more than
two) of pedestrian species.
The model showed impulse effects originating from the Navier-Stokes equations,
which are unnatural for pedestrian behaviour. Therefore, it is the subject of
future work to use a different set of equations and to study the stability and
conservation properties of the solver in more detail. Another topic is the im-
plementation of open boundaries for the in- and outflow of pedestrians in the
simulation.
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Fig. 2. Simulation of 180◦ crossing with max(u) = 10.0, vps = 0.04, max(|f |) = 1000
as parameters.
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Fig. 3. Simulation done with a complex geometry inspired by real world experiments.


