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Abstract. The paper investigates the control of flow over a backward facing step for
a Reynolds number of 3000. The top of the channel is considered as a slip wall and in
the lateral direction a periodic behavior is assumed.

With the aim of drag reduction or a reduction of reattachment length in the wake
of the step, acoustic manipulations of the boundary layer in front of the step were
performed by experiments and numerical simulations ([1] and [4]). A good agreement
was found between the experimental and numerical results, especially in the case of
the reattachment length, also related to the mean velocity field and the rms-profiles.
The numerical investigations are done as direct numerical simulations and large eddy
simulations.

The influence of manipulation parameters on the recirculation length X, was identified
by a series of large eddy simulations of a transitional backward facing step flow.
Because of the huge amount of computational work for the solution of an optimization
problem for the drag minimization (the non stationary Navier-Stokes equation and the
adjoint problem are to be solved several times...) we are looking for computationally
”cheap” control strategies. Our interest is focussed on the relation of the amplitude A
of the acoustic manipulation signal and the recirculation length X,.

1 Modelling of the flow problem

We consider a backward facing step channel and we investigate the flow for a
Reynolds number of 3000 built with the velocity Us, = 2,277 of the block
inflow profile and the step height H = 20 mm (see fig. 1) for an air flow. The top
of the channel is considered as a slip wall and in the lateral direction a periodic
behavior is assumed.

To describe the flow we get from the nondimensional Navier-Stokes equation
the equation system for the filtered quantities

aa—‘;Jrv.ﬁﬁ:_erv.Qu? (1)
V-u=0 (2)

where v is the total eddy-viscosity
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Fig. 1. channel situation

u = (u1, ug, ug) is the velocity vector, ¢ is the ”pseudo”-pressure with

1
=P+ 5T, Tij = WiU; — Uiy,
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and for the strain rate tensor S we have

S — — 1 ou; Ju;
S =(5;), Si=-= : 1),
In the case of a direct numerical simulation we have v, = 0 and there is no

effect of filtering, and the equations (1) and (2) are the classical Navier-Stokes
equations with w = u and p = p for an incompressible fluid.

If we don’t resolve all small structures by the spatial discretization 14 is the eddy-
viscosity of a subgrid-scale model. We use a subgrid-scale model of Germano-type
following Akselvoll and Moin [3]. For vy we have

ve=CAYS],  |S|=1/2545,;. (3)

For the Germano-type subgrid scale model we need two different filters to handle
the quation of motion, the so-called grid filter G and the test filter G, with the
filter A of the test filter, assumed to be larger than that of the grid-filter. The
quantity CA” we set

—2 _1 < Li; My >,

A% = , 4
2 < My My >y (1)

where,

L;; =w;u; — ﬁiﬁj, M;; = (Z/Z)2|§|§” - |§|§”
< >y indicates an average taken over the homogeneous spanwise direction.
The result of the subgrid-scale modelling is concentrated in the variable eddy-
viscosity. The equation of motion is of the same type as the Navier-Stokes equa-
tion.
With suitable boundary conditions which will be specified in the following sec-
tion and appropriate initial conditions we have a mathematical model for the
transitional flow over a backward facing step.
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2 The geometry of the backward facing step and the
manipulation principle

On the inflow plane and for solid walls Dirichlet boundary conditions are given
(inflow block profile, no slip conditions). In the lateral direction we assume a
periodic behavior and at the top boundary a slip one is used. On the outlet zero
gradient conditions are used. With appropriate initial conditions now we have a
mathematical model for the transitional flow over a backward facing step. The
figure 2 shows the kind of manipulation, which results in Dirichlet-boundary
conditions.

manipulation slit

Fig. 2. Acoustic manipulation via a spanwise manipulation slit, As ~ 0.05 H

For the streamwise length L., the spanwise width L, and the vertical height
L, we set (Ly, Ly, L.) = (22H,6H,12H). The choice of the vertical height is
based on experiences concerning the dependency of the reattachment length
on L,. Only beyond 11H the dependency of the reattachment length can be
neglected. The inlet section of the step has length Ly = 5H. The inflow profile
was assumed as a block profile with the velocity U., = const.
Non-uniform grid spacings for the streamwise and vertical directions are used.
In the z- and the z-directions we consider a refined grid around the step. In
z-direction fine spacings are used near the channel bottom. In the spanwise
direction uniform grid spacings are used.
Because of the absence of detailed information about the blowing and suction
during the acoustic control it was simulated by a sine function of the form
Ujet = A sin(2n ft) (U1 = Uy = Ujer). Former calculations [4] with amplitudes
of A = 01Uy, A = 001Uy and A = 0.001 Uy, using a fixed frequency
of f =50 Hz showed a good agreement with the experimental results [1] using
different loudnesses of the loudspeakers. With the used physical dimensions the
dimensionless frequency has the value F' = % = 0.45.
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3 Identification

Because of the huge amount of computational work for the solution of an opti-
mization problem for the drag minimization (the non stationary Navier-Stokes
equation and the adjoint problem are to be solved several times...) we are looking
for computationally ”cheap” control strategies. Our interest is focussed on the
relation between the amplitude A of the acoustic signal and the recirculation
length X,.

The recirculation length X, is determind as the last intersection with the z-axis
of the graph of wall shear stresses (z-direction) averaged in the lateral direction.
Figure 3 shows a typical distribution of the derivative of % at the wall, which
ist proportional to the wall shear stress 7.
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Fig. 3. % at the channel bottom averaged in the lateral direction

In the result of the large eddy simulations for several parameters constella-
tions different black box models have been identified. In the most simple case a
first order model of the form

TX.(t)+ X, (t) = K A(t) (5)

could be used to describe the dependence of the reattachment length on the
amplitude of the harmonic excitation.
Figure 4 shows the time response of the recirculation length to a step of the ma-
nipulation amplitude based on the LES and the black box model (from A = 0,
non manipulated flow, to A = 0.01U., manipulated case). A second order ap-
proximation gives only a slight improvement of the fit. However, if this approx-
imation is repeated for other Re-numbers different parameters 7' and K are
identified. Therefore a family of models was considered to design a controller.
The first black box model was used as a basis for a robust controller design.
Different control schemes were tested. Only the very simple P-controller is shown
here. It’s equation is of the form

Alt) = Kp[W () = X ()] (6)
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Fig. 4. time response to an amplitude step

where W stands for the setpoint of the recirculation length and k, is the gain
factor of the controller. For a stable closed loop it is necessary to work with
the factor K, = —0.01%. If the same controller is to be used for other larger
Reynolds numbers, the gain has to be reduced to maintain robust stability. To
guarantee zero steady state offset for a constant setpoint a Pl-controller can be
used which is described by

E't)Kere + E()ke = A'(O)7e (7)

with
E(t) =W(t) = X, (1),

where 7., K. are constant system parameters ([2]). Figure 5 shows the time be-
havior of the recirculation length and the manipulation amplitude during the
work of the P-controller. A recirculation setpoint length W = 5 H was pre-
scribed.

The study of more robust controllers like Smith-predictors to increase per-
formance is under consideration.

4 Further investigations

As mentioned above the huge amount of cpu-time for the solution of an optimi-
sation problem with respect to functionals measuring the reattachment length
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Fig. 5. numerical simulation of the P-controller, X, (¢) and A(t)

is the reason for the discussed identification methods to construct robust con-
trollers. But the computational work for the identification is still very large and
we think about the development of our flow by a finite number of modes in
the result of a proper orthogonal decomposition using snapshots of an unsteady
numerical simulation of the manipulated backward facing step flow.
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