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Abstract

In this paper an optimization problem for a Boussinesq equation sys-
tem will be formulated. To approach a given velocity field we are looking
for an appropriate velocity on the boundary to induce a forced convec-
tion or temperature profile on the boundary of the considered region of
the thermal coupled flow problem. For a tracking type minimization
functional the evaluation of the first order necessary optimality condi-
tion leads to an optimality system consisting of the forward and adjoint
mathematical model.

The optimization concept will be applicated to a crystal growth flow
and results of twodimensional and threedimensional model problems will
be presented.
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1 Introduction

During the growth of crystals crystal defects were observed under some condi-
tions of the growth device. A transition from the twodimensional flow regime
of a crystal melt in axisymmetric zone melting devices to an unsteady three-
dimensional behavior of the velocity and temperature field was found experi-
mentally. This behavior leads to striations as undesirable crystal defects. To
avoid such crystal defects it is important to know the parameters, which guar-
antee a stable steady twodimensional melt flow during the growth process.
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There are several possibilities for parameter finding. In this paper optimiza-
tion problems will be discussed. From the experiment and the practical crystal
production process it is known that an unsteady behavior of the melt and vorti-
cies near the fluid-solid-interphase decrease the crystal quality. Thus it makes
sense to look for example for (i) flows, which are nearly steady and (ii flows,
which have only a small vorticity in a certain region of the melt zone.

This leads to tracking type optimization problems (i) with functionals like

J(~u, θc) =
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and problems with optimization functionals of the form
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~u is the velocity vector field in the melt and ~u is a desired state, which repre-
sents a physically favourable flow situation. θc is the control temperature on
the control boundary Γc. The discussed methods of deriving optimization and
the iterative algorithms of the evaluation of necessary optimality conditions
are investigated by the solution of typical crystal growth problems. Because
of the difficulties to construct or to prescribe desirable flow fields we use ~u

which we got by a certain forward solution of the Boussinesq equation system
or we set ~u equal to zero. But with the optimization strategy we are ready to
compute an optimal control for a given desirable flow field ~u by crystal growth
engineers.

2 Mathematical model

The crystal melt is described by the Navier-Stokes equations for an incom-
pressible fluid using the Boussinesq approximation coupled with the convective
heat conduction equation and the diffusion equation. Heat conductivity and
viscosity depend on the temperature. Thus we have a Boussinesq equation
system for the velocity ~u = (u, v, w), the pressure p and the temperature θ

~ut + (~u · ∇)~u − ∆~u + ∇p − Gr θ~g = 0, (3)

−div ~u = 0, (4)

θt + ~u · ∇θ −
1

Pr
∆θ − f = 0 , (5)

on the space-time cylinder ΩT = Ω× (0, T ). The vector ~g is directed in the z-
direction, i.e. ~g = (0, 0, 1). We will now discuss the case f = 0 because we are
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mainly interested in boundary control. ~u is the velocity vector. u, v, w and p

are the primitive variables of the velocity vector and the pressure, ρ and θ

denote the density and the temperature, Gr is the Grashof number, Pr is the
Prandtl number, and f stands for an energy source.

The boundary conditions are of the form

u = ud, v = vd, w = wd on ΓT ,

θ = θc on the control boundary ΓcT , (6)

θ = θd, on Γd × [0, T ] ,

where ΓT means the boundary-time cylinder Γ × [0, T ].
Dirichlet data on the control boundary as a first choice are used, because there
are some results of Kurz[1998], who solved an inverse problem to find a heat-
ing strategy for catching a given temperature profile on the boundary. Our
idea is to find optimal temperature profiles during the optimization method,
described in this paper. And after that the heater identification method of
Kurz/Müller[2000] can be used to find the optimal heating strategy.
In the case of the Czochralski crystal growth technique with ud, vd, wd we have
the possibility to describe a certain crystal and crucible rotation. In the case
of zone melting flow ud equals zero. The initial state is assumed as the neutral
position of the crystal melt (~v = 0) and a temperature field, which solves the
non convective heat conduction equation with the boundary conditions θ = θd

on Γd and θ = θ0 on Γc. The material properties and the dimensionless pa-
rameters for the investigated crystals close the initial boundary value problem
for the description of the melt flow.

3 Optimization

For example we construct an optimization system for the case of a boundary
temperature profile as a control variable. For the calculus of optimization and
the derivation of an optimality system we use the above desrcibed dimension-
less mathematical model (3), (5) with the boundary conditions (6). For t = 0
we have the initial condition ~u = 0 and a temperature field, which solves the
non convective heat conduction equation with the given temperature bound-
ary conditions θ = θ0 on Ω.
With the formal Lagrange parameter technique described in Bärwolff/Hinze[2006]
we get the following adjoint equation system with appropriate boundary and
final conditions for the adjoint variables ~µ (velocity), ξ (pressure), κ (temper-
ature) and the control variable θc.

−~µt − ∆~µ + (∇~u)t~µ − (~u · ∇)~µ + ∇ξ
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+κ∇θ = −(~u − ~u) in ΩT , (7)

with the boundary condition ~µ = 0 on Γ × (0, T ), and the final condition
~µ(T ) = 0 in Ω and

−div ~µ = 0 in ΩT . (8)

−κt −
1

Pr
∆κ − ~u · ∇κ = Gr~g · ~µ in ΩT , (9)

with the boundary condition κ = 0 on Γ × (0, T ), and the final condition
κ(T ) = 0 in Ω, and the choice of χ as

χ = −
1

Pr

∂κ

∂n
on ΓcT .

For the control we get

α(−θctt
+ θc) = χ (= −

1

Pr

∂κ

∂n
) on ΓcT , (10)

with the time boundary conditions

θc(0) = θ0 and θct
(T ) = 0 , (11)

where θ0 means a temperature distribution on Γc at the beginning of the
melting process, which is physical and technological founded. Now we can
summarize, and the fully optimization system consists of

1) the forward model with the Boussinesq equations (3),(4),(5), the bound-
ary condition (6) and the given initial state for the velocity field ~u, the
pressure p and the temperature θ, and

2) the adjoint model with the equations (7),(8),(9),(10), and the boundary
and final conditions for the adjoint variables ~µ, ξ, κ and the control θc,

and we will call it the optimality system. The global existence of a solu-
tion of the forward problem is well known (Constantin[1988]). In three di-
mensions only the local uniqueness of the forward solution could be shown.
Hinze/Kunisch[2000] have shown the existence and uniqueness of a solution of
the adjoint model. Minimization functionals of the considered types (1) are in-
vestigated for example by Hinze[2000] and Gunzburger et al.[2002]. The main
reason for such quadratic functionals is the technological aim of the crystal
growth methods. This purpose dominates qualitativ mathematical questions -
for example like existence of a minimum - which are still under consideration.
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4 To the numerical solution method of the full prob-

lem

The primal and dual initial/final boundary value problems are discretized in
space by a finite volume method (see Bärwolff/Hinze[2006]).

The solution of the discretized system (3)-(6) and (7)-(11) is difficult and
expensive, because of the opposite time direction of the forward system (3)-(6)
and the adjoint system (7)-(11). That means we have to provide the forward
solution ~u, θ on the whole time interval [0, T ] to get the adjoint solution ~µ, κ, θc

and vice versa.
If we have discretized the time interval [0, T ] by Z timesteps τ = 1

Z
and the

dimensions of the spatial discretizations are N , M and P a direct solution
of the whole system means the solution of an algebraic equation system with
2Z ×N ×M × P × 10 equations. For the representation of the used iteration
method we denote with H := −∂tt + id a solution operator, which describes
the solution of the two point boundary value problem (10),(11) on ΓcT , i.e.

H(θc) = χ or θc = H−1(χ) .

Iterative methods of the form

i) choose a suitable start value of θc,

ii) solve the forward problem and get [~u, θ](θc)

iii) solve the adjoint problem and get [~µ, κ](~u, θ)
update of θc by θc := σrθc + (1 − σr)H

−1(χ), σr ∈]0, 1[,

iv) until convergence, go to ii),

are used. During one time step of the forward problem we have to solve a
Poisson equation, and four Helmholtz equations (for the adjoint problem also
five equations of the same type). The above described fixpoint iteration i)-iv)
with relaxation works good, and the results of the numerical simulations will
be demonstrated now.

5 Results of the numerical solution of the full prob-

lem

As a testproblem we consider a zone melting configuration. The used geomet-
rical and material parameters for the crystal (Bi0.25Sb0.75)2Te2, a composition
of bismuth point fifty antimony one point fifty telurium two, are summarized
in the table 1 (see also Bärwolff[1997]).
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(Bi0.25Sb0.75)2Te2-crystals are used for small cooling devices. The figure 1
shows the physical domain of the melt zone. For the velocity we have homo-

melt zone

solid crystal
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Figure 1: Physical domain for the zone melting growth

geneous dirichlet data on the whole boundary. For the temperature we have
the boundary conditions

θ = θc, for r = R, 0 ≤ z ≤ H, ϕ ∈ (0, 2π), (12)

θ = θs, for 0 ≤ r ≤ R, z = H, (13)

θ = θs, for 0 ≤ r ≤ R, z = 0. (14)

For t = 0 we start with a given temperature profile θc = θc0 on Γc and with
θs = 613K, δθ = 25K for θc0 we have

θc0(z) = θs + 4
z

H
(1 −

z

H
)δθ .

The velocity field ~u, which we want to reach is a typical twodimensional
toroidal flow. We consider a time interval [0, T ] = [0, 8 seconds] with Z = 60

parameter symbol value

radius R 0.004 m

height H 0.016 m

melting point θs 613 K

diffusivity a 0.44000e-05 m2

s

viscosity ν 0.36310e-06 m2

s

expansion β 0.96000e-04 K−1

Table 1: Parameters of (Bi0.25Sb0.75)2Te2-melt and of the melt geometry
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time steps of 0.1222 seconds. For the spatial discretization we use 20 × 30
finite volumes. The figures 2 and 3 show the results of the optimization, i.e.
the resulting control temperature on the boundary-time cylinder and the de-
velopment of the functional values, where the temperatures are dimensionless
defined by θ̄ = θ−θs

δ
.
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Figure 2: Control temperature
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Figure 3: Functional vs. iteration

6 Conclusion

With the Lagrange parameter technique it’s possible to derive an optimization
system for a given functional, which solution gives an optimal control. The
numerical examples of the fully time-depend 2.5d optimization system show
the possibility of the practical optimization of a thermal coupled flow problem
in the crystal growth field. The results show the possibility of boundary control
especially in the case of the zone melting technique. Based on the results the
proposed strategies it is now possible to do a fully 3d optimization. For the
Czochralski growth configuration the optimization works, but the results show,
that these kind of boundary control is not really of practical interest.

It is necessary to continue numerical experiments to investigate if the
optimization during a boundary control only will be successful technology.
There are some experiences with other optimization problems which show the
efficiency of volume control, if there is a possibility of the production of volume
forces (for example by a magnetic field).

The presented optimization method is applicable to other coupled trans-
port problems for example the coupling of solutal and natural convection.
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