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Abstract. To optimize processes in chemical engineering and matsiahces nowadays is an important issue. Based on
mathematical models the optimization goal for example isteign maximizing the output of a process, or in optimizihg t
quality of a produced material. This work focusses on théntipation of thermally coupled flows as they occur in growth
processes from a melt influenced by thermal and magnetisfield

There are several stages of modeling and we consider firigtfthence of a magnetic field via the Lorentz force source term
in the impuls balance. Here we discuss two kinds of magewefiidj the RMF (rotating magnetic field) and the TMF (travegli
magnetic field). The parameters of the Lorentz force termgesas control variables with respect to the optimizationisT
paper is sequel of the work of [1].
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THE MATHEMATICAL MODEL

In many crystal growth processes the flow and the tempergraients in the melt have a considerable impact on
the quality of the crystal. The stationary flow is governd bg Boussinesq approximation for a velocity-pressure-
temperature fieldU,P, T) in the flow domairQ;
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and a simplification including time averaging over a peridgeg for thez- and theg-direction of the Lorentz force
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The parametersT R, wr r, Bt r, k and f¢ characterize the TMF and RMF.
The expressions (4) fdi- could be directly inserted into the momentum equation withresult
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Because of the special configuration of our problem (seeFatsdl) we can assume a cylindrical problem region and
a homogeneity in the-direction with

—

(U-0yd

1 -

™ _o
¢
for all quatities¥ =U,P,T.
To have an idea of the typical problem parameters Taylor msfiand dimensionless Lorentz force dengityve
do a non-dimensionalisation with the scaR crucible radius) for distancB?/v for time, pv?/R? for pressure and
v/Rfor velocity. For the dimensionless velocity,v,w) = (ur, Uz Ug) pressurep and temperatur@ fields we get the



Navier-Stokes equation in cylindrical coordinates, z) as follows.

du du  dp u w

Uor Ve T Tar TAYT T T ©
ow  odw uw  w

ov. dv _ dp 1_ 5
UE+V0—Z—7EAV+GI'9+§FH‘, (8)

with the Taylor number, the dimensionless Lorentz forcesitgrand the Grashof number
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For the dimensionless temperatire- TTb:TT‘t with the top temperatur@less than the bottom temperatigwe get
the convective heat conduction equation
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Pr is here the Prandtl number. The continuity equation reads as
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We summarize the whole non-dimensional model equatioesyst vectorial writing style to
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Fig. 1 shows the experimental configuration of the group ofGerbeth [2], who inspired us to investigate the
configuration theoretically. The boundary conditions fog velocity are no slip conditions at solid walls and
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for the normal and tangential velocity component at the $tgéace of the melt. For the temperatures we have Dirichlet
boundary conditions for the bottom of the crucible and therfiace between the melt and the solid crystal (melting
temperature). At the side walls of the crucible and the frefase we use adiabatic boundary conditions for the
temperature.

The goal of the parameter studies and a possible optimizptimblem is achieved by minimizing a cost functional
of the form
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whereQq means a small subregion 6fnear the triple point of the melt, the solid crystal and tleefsurface.

NUMERICAL MODEL

The numerical solution procedure for the system (12),(18),consists in

1) spatial discretizatior:EM-method,
2) nonlinear system solvetonjugate gradient/Newton method



Temperature control experiment (schematic draft)
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FIGURE 1. Problem configuration (left) and a typical temperature field

The procedureis realized for the 2.5D problem using toole@packag€omsol multiphysic©n the other hand there
are also computations with the FEM-packdagewifeof A. Cliffe [3], which confirm the results of the computat®n
with Comsol multiphysics

The study of the functional (15) and its minimization islstihder consideration. In a first stage we evaluate the
gradient of] by finite differences. The use of the adjoint calculus follog4] with the aim of a Karush-Kuhn-Tucker
system to get critical points is prepared for a generalisedehof the magnetic field using the Maxwell equations to
describe the magnetic field caused by a given current thrawgimductor.

RESULTS

The parameter studies of the influence of prescribed RMF &l magnetic fieldsTa and/orF) are done with the
fixed Grashof number £dor the crystal materigBalnSn. There were done variations of the travelling magnetic field
by Fr from 0 up to 4x 10° and variations of the rotating magnetic field Bgr from 0 up to 8x 103. Fig. 2 shows
typical fields of the velocityu, v) (left) and isolines ofvin a (r,z)-plane.

All parameter variations dfr andTagr show an increasing of the temperature gradients near the froint Qo). In
the tables the gradient$,(= (T1 — T2) /Az, T, = (T3 — T1) /Ar, &z = Ay = 1mn) and the tangens of the south east angle
are given. The gradients increase monotonously Witland Tag. Thus the idea or hope to reduce the temperature
gradient near the triple point does not complied. In otherdsdor controling and reducing the temperature gradient
near the triple point simple TMF or RMF magnetic fields aresatable.

It is important to note, that the used temperature boundangliions on the crystal-melt interface and the free
surface are only a coarse approximation and do not desdribeetl physical situation. Thus with more realistic
temperature conditions it is worthwhile to do some furttmestigations of the influence of TMF and RMF magnetic



velocity field (u,u,) Isolines of u,
0.09 T T T 0.09 —T T T 0.025

0.02

0.015

~~~~~~~~~ b 0.051 F | H

""" 4 0.04f / | 4
.

P P S S / [ r -0.005
N v |

. / |
,,,,,,,,,,,,,, B ooi- g

I == I I I I
0.04 0 0.01 0.02 0.03 0.04

FIGURE 2. Velocity fields

fields to temperature gradient near the triple point.

| Fr | norm of T in [K/lcm] | T/T, || Tar | norm ofOT in [Klcm] | T,/T, |

0.0 940.13 -0.72818][ 0.0 940.13 -0.72818

103 940.85 -0.72811|| 103 940.99 -0.72815

104 947.79 -0.72814|| 4x 10° | 952.37 -0.72895

4x10° | 1146.6 -0.72813|| 8x 10° | 968.90 -0.73044
CONCLUSION

There must be further investigations using magnetic fields more degrees of freedom than the simple ones of
RMF- and TMF magnetic fields and more realistic temperatunenidary conditions. This will be done using the
coupled system of Navier-Stokes equation, convective b@atluction equation and the Maxwell equation for the
magnetic flux densit which determines the Lorentz forde.

As a control should be used the current density which is resipte for the field of the magnetic flux density. For
the optimization we consider and develope now the apprigpadjoint system to evaluate the necessary optimality
condition for a suitable minimization functional.
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