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Abstract. To optimize processes in chemical engineering and materialsciences nowadays is an important issue. Based on
mathematical models the optimization goal for example consists in maximizing the output of a process, or in optimizing the
quality of a produced material. This work focusses on the optimization of thermally coupled flows as they occur in growth
processes from a melt influenced by thermal and magnetic fields.

There are several stages of modeling and we consider first theinfluence of a magnetic field via the Lorentz force source term
in the impuls balance. Here we discuss two kinds of magentic fields, the RMF (rotating magnetic field) and the TMF (travelling
magnetic field). The parameters of the Lorentz force terms serve as control variables with respect to the optimization. This
paper is sequel of the work of [1].
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THE MATHEMATICAL MODEL

In many crystal growth processes the flow and the temperaturegradients in the melt have a considerable impact on
the quality of the crystal. The stationary flow is governd by the Boussinesq approximation for a velocity-pressure-
temperature field(U,P,T) in the flow domainΩ;

ρ(~U ·∇)~U = −∇P+ η∆~U + ρ~gβ (T −T0)+~j ×~B (1)

−∇ ·~U = 0 (2)

ρcp~U ·∇T −λ ∆T = 0 , (3)

and a simplification including time averaging over a period gives for thez- and theϕ-direction of the Lorentz force
~f L = ~j ×~B
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The parametersσT,R, ωT,R, BT,R, k and fc characterize the TMF and RMF.
The expressions (4) for~f L could be directly inserted into the momentum equation with the result
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Because of the special configuration of our problem (see alsoFig. 1) we can assume a cylindrical problem region and
a homogeneity in theϕ-direction with

∂Ψ
∂ϕ

= 0

for all quatitiesΨ = ~U ,P,T.
To have an idea of the typical problem parameters Taylor numberTaand dimensionless Lorentz force densityF we

do a non-dimensionalisation with the scalesR (a crucible radius) for distance,R2/ν for time,ρν2/R2 for pressure and
ν/R for velocity. For the dimensionless velocity(u,v,w) = (ur ,uz,uϕ) pressurep and temperatureθ fields we get the



Navier-Stokes equation in cylindrical coordinates(r,ϕ ,z) as follows.
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with the Taylor number, the dimensionless Lorentz force density and the Grashof number
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For the dimensionless temperatureθ = T−Tt
Tb−Tt

with the top temperatureTt less than the bottom temperatureTb we get
the convective heat conduction equation
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Pr is here the Prandtl number. The continuity equation reads as
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We summarize the whole non-dimensional model equation system in vectorial writing style to

(~u·∇)~u−∆~u+ ∇p−TaRr fc~eϕ −−Grθ~ez−
1
2

FT r2~ez = 0 (12)

∇ ·~u = 0 (13)

(~u·∇)θ −
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∆θ = 0 . (14)

Fig. 1 shows the experimental configuration of the group of G.Gerbeth [2], who inspired us to investigate the
configuration theoretically. The boundary conditions for the velocity are no slip conditions at solid walls and

~u·~n = 0 ,
∂~u·~t

∂~t
= 0 ,

for the normal and tangential velocity component at the freesurface of the melt. For the temperatures we have Dirichlet
boundary conditions for the bottom of the crucible and the interface between the melt and the solid crystal (melting
temperature). At the side walls of the crucible and the free surface we use adiabatic boundary conditions for the
temperature.

The goal of the parameter studies and a possible optimization problem is achieved by minimizing a cost functional
of the form

J(θ ,Ta,F) =
1
2

∫

Ω0

|∇θ |2dΩ0 s.t. (12),(13),(14), (15)

whereΩ0 means a small subregion ofΩ near the triple point of the melt, the solid crystal and the free surface.

NUMERICAL MODEL

The numerical solution procedure for the system (12),(13),(14) consists in

1) spatial discretization:FEM-method,
2) nonlinear system solver:conjugate gradient/Newton method.
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FIGURE 1. Problem configuration (left) and a typical temperature field

The procedure is realized for the 2.5D problem using tools ofthe packageComsol multiphysics. On the other hand there
are also computations with the FEM-packageEntwifeof A. Cliffe [3], which confirm the results of the computations
with Comsol multiphysics.

The study of the functional (15) and its minimization is still under consideration. In a first stage we evaluate the
gradient ofJ by finite differences. The use of the adjoint calculus following [4] with the aim of a Karush-Kuhn-Tucker
system to get critical points is prepared for a generalised model of the magnetic field using the Maxwell equations to
describe the magnetic field caused by a given current througha conductor.

RESULTS

The parameter studies of the influence of prescribed RMF and TMF magnetic fields (Ta and/orF) are done with the
fixed Grashof number 106 for the crystal materialGaInSn. There were done variations of the travelling magnetic field
by FT from 0 up to 4×105 and variations of the rotating magnetic field byTaR from 0 up to 8×103. Fig. 2 shows
typical fields of the velocity(u,v) (left) and isolines ofw in a (r,z)-plane.

All parameter variations ofFT andTaR show an increasing of the temperature gradients near the triple point (Ω0). In
the tables the gradients (Tz = (T1−T2)/∆z, Tr = (T3−T1)/∆r , ∆z = ∆r = 1mm) and the tangens of the south east angle
are given. The gradients increase monotonously withFT andTaR. Thus the idea or hope to reduce the temperature
gradient near the triple point does not complied. In other words for controling and reducing the temperature gradient
near the triple point simple TMF or RMF magnetic fields are notsuitable.

It is important to note, that the used temperature boundary conditions on the crystal-melt interface and the free
surface are only a coarse approximation and do not describe the real physical situation. Thus with more realistic
temperature conditions it is worthwhile to do some further investigations of the influence of TMF and RMF magnetic
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FIGURE 2. Velocity fields

fields to temperature gradient near the triple point.

FT norm of∇T in [K/cm] Tz/Tr

0.0 940.13 -0.72818
103 940.85 -0.72811
104 947.79 -0.72814
4×105 1146.6 -0.72813

TaR norm of∇T in [K/cm] Tz/Tr

0.0 940.13 -0.72818
103 940.99 -0.72815
4×103 952.37 -0.72895
8×103 968.90 -0.73044

CONCLUSION

There must be further investigations using magnetic fields with more degrees of freedom than the simple ones of
RMF- and TMF magnetic fields and more realistic temperature boundary conditions. This will be done using the
coupled system of Navier-Stokes equation, convective heatconduction equation and the Maxwell equation for the
magnetic flux density~B which determines the Lorentz force~f L.

As a control should be used the current density which is responsible for the field of the magnetic flux density. For
the optimization we consider and develope now the appropriate adjoint system to evaluate the necessary optimality
condition for a suitable minimization functional.
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