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Abstract. An aspect of recent developments in computational methods for control of fluids is the design of reduced-order
controllers, for reducing the CPU costs of flow solves. In this paper a reduced order approach will be introduced for the
optimal boundary control problem governed by the unsteady Navier Stokes equations with the help of the Galerkin proper
orthogonal decomposition(POD) method. The paper summarizes the results of the diploma-thesis [Wang2008].

The Galerkin Proper orthogonal decomposition provides a method for deriving reduced order models of dynamical
systems. It’s based on projecting the dynamical system onto subspaces of snapshots ensemble, which is composed of the
solutions for the physical system at pre-specified time instances or experimental measurements. These snapshots are not
suitable as the basis for the ensemble spanned by themselves by reason of the possible linear dependence. We will find the
orthogonal basis for the ensemble by solving an eigenvalue problem, and these basis will be denoted in the thesis as POD
basis, and number of these POD basis can be very small in comparison with the number of the snapshots. The POD basis
spanned subspace is just that, which the dynamical system will be projected onto.

The goals of the paper are at first applying the POD basis to simulate the original flow in two dimensional rectangle. We
hope that in this manner the POD method can reduce the computational cost of the nonlinear flow solutions. Moreover, a
boundary condition should be found, so that the unsteady Navier Stokes equations is solved with this boundary condition
and meanwhile its solution minimized dynamically an extra cost functional, which contains the state and the control variable.
In this optimization procedure we continue with the help of POD basis to derive an optimal control system for the reduced
order models. POD-based optimization is going to work, only if the snapshots contains enough information to model all the
dynamical behavior of the flows that are encountered throughout the optimization process.
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THE DESCRIPTION OF THE METHOD

Firstly we concentrate ourself on the snapshots ensemble, the FVM method discretization and Newton iteration are

applied for the snapshots of the 2-dimensional rectangle dynamical system, which is described by the following Navier

Stokes equations. boundary.
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We study the theory of the Galerkin Proper Orthogonal Decomposition through understanding, finding and using the

POD. For understanding POD we discuss the finite and infinite case and with a convergence statement to combine the

both cases. By minimizing a least square formula error, one finds the POD basis system as the global optimal solution

of it in the snapshots ensemble. Meanwhile the Singular Value Decomposition is also very helpful to understand how

to find the orthogonal POD basis, and its algorithm is detailed. With the numerical experiment the six POD basis and

two extra POD basis could simulate almost the spatial behavior of two hundreds snapshots, and they take the almost

full order kinetic energy of the dynamical snapshots.



One application of the POD basis is to simulate the original flow with the combination of the POD basis and

Galerkin weak formulation. We project the above Navier Stokes equation on the POD subspace, which is spanned by

POD basis, develop the original solution of Navier Stokes equation with respect to the total eight POD basis, then

yields
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The simulation of fluid flow can be completed by solving the above nonlinear ODE system. The numerical example

shows that the advantage of the POD reduced order models is not only the dynamical system can be solved simply,

reliably and quickly but also the strong short term simulation capacity.

An an acquaintance the boundary optimal control for Navier Stokes equations (Pd) is introduced in the thesis and

its first order optimality obtained with an Attempt of the Lagrange formal technique but numerical difficult to execute.
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Then alternatively the penalized Neumann boundary control for Navier Stokes equations (Pnε) can be presented to

avoid the numerical difficulty of (Pd), which differs from the control problem (Pd) only on the inflow boundary

condition.
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Under certain assumptions, the optimal solution of (Pnε) converges strongly in L2(0,T ) to the solution of (Pd), as

ε → 0.

Another application of the POD basis is POD approach to the optimal boundary control for Navier Stokes equations.

In the simulation stage it is possible that in POD subspace a satisfying solution of NSE can be found. Equally the largest

projection of the cost functional should be also considered in the POD subspace. Then the optimal boundary problem

subjects to the Navier Stokes equations can be converted to the POD boundary control problem (PM), whose cost

functional with respect to POD basis subjects to the above nonlinear ODE as state equation.
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The existence optimal control solution of (PM) is proved under some assumptions and for the first order optimality

condition with Pontryagin Maximum Principle and weak Minimum Principle we could get the following system

state equation ⇒

{

Ẋ(t) = ~F(X)+u(t) ·B
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adjoint equations ⇒

{

−ẇ =
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The optimality system can be solved by in the thesis formulated algorithm combined with CG method and Armijo

step size control. One solves once nonlinear state ODE and once linear adjoint ODE in every control iterative step

instead of for the optimal control problem subjects to semi-linear partial differential equation to solve expensively

once semi-linear parabolic PDE and once linear parabolic PDE in every iterative step. That is why recently much more

attention has been paid to reducing the costs of the nonlinear flow control problem by using reduced order models for

the flow. We set now the optimal solution of (PM) as the controlled configuration in the Navier Stokes equations Solver

to calculate the controlled flow. The result shows the successful controls are captured with respect to the different σ
values, which minimizes the cost functional and reduces the extra vortex of the original flow.

RESULTS OF NUMERICAL EXPERIMENTS

Here we will illustrate the numerical experiments result of the POD approach in solving the boundary flow control

problem.

For snapshots we use the same configuration as in the simulation stage. That means the linear profile for c(t) was

taken and consequently the start guess u0 must be constant, which strongly depends on the choice of c(t), since it must

hold c′(t) = u(t). Hereby two hundreds snapshots as many as in the POD simulation were be recorded. The eigenvalues

of the correlation matrix in Fig 1, which is generated from the controlled solution of Navier Stokes equations as the

renewed snapshots set, decay rapidly and the most eigenvalues are clearly smaller than these in the uncontrolled case.

The percentage of the controlled fluid dynamics energy capture by the new calculated POD basis are given in Table 1,

as before 6 POD basis carry the 99.9999% kinetic energy.

TABLE 1. % of controlled full order model energy captured with M = 1, ...,6

M 1 2 3 4 5 6

Energy in % 89.1467 95.4803 99.7010 99.9893 99.9997 99.9999

The penalty parameter σ is found to play a critical role in the controller design. In Fig 2 we present the u(t) in POD

system and c(t) in the NSE system at different σ values. The relative smaller value of σ can more quickly bring the

flow state to the expected one, but relative too large σ value couldn’t bring the enough satisfied flow and too small

causes to the oscillation. With value σ = 1
20

, a smooth control was obtained. Here we mention the optimal steady flow

doesn’t belong to the snapshots, that is to say, there exists error, if one projects this steady flow onto the POD subspace.

Consequently it results in unaccomplished control missions with some σ values.

In Fig 3 the cost functional curve shows the convergence to the local minimum with respect to the iteration number.

The expression σu∗(t)+BT w(t) is evaluated and shown in the Table 2 regarding the supremum norm, which displays

the descent direction almost zero, consequently the corresponding convergence solutions u∗ are local optimal for

different σ values.

TABLE 2. Estimation of the descent direction of the CG algorithm

σ 0.1 0.05 0.01 0.001

‖σun(t)+BT w(t)‖
C(0,T )

1.9901e−08 3.2144e−08 7.6844e−07 3.4349e−07

The flow fields presented in Fig 4 - Fig 5 are flow profiles at different stations for the controlled and uncontrolled

cases at t = 4, t = 7 and t = 10. We could simply read the difference between snapshots profile and POD boundary

controlled flow profile. At t = 4 the difference was not large, by and by POD controlled flow profile was flinching

because of the reduced inflow, such that the forth vortex was successfully avoided.



For giving a clear sight for reducing the forth vortex, in Fig 6 - Fig 7 demonstrate the both streamlines, in which we

confirm that in uncontrolled flow appeared vortex in the left above wall corner vanishes, because an expected flow is

set in the objective functional at the pattern flow, which has no vortex. In Fig 7 we could read at t = 7 the uncontrolled

flow has the tendency that the forth vortex on the left above corner is arising, and at t = 10 it finished. But the controlled

flow is stiller than the uncontrolled one as expected, and from beginning to end the forth vortex didn’t arise.

The steady pattern flow is presented in Fig 8, inclusive the flow velocity demonstration and streamline.
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FIGURE 1. Eigenvalues of the correlation matrix for baseline and controlled case
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FIGURE 2. Optimal boundary control of NSE and POD-based system for different values of sigma: 10(dotted line), 1/10(solid
line), 1/20(dashed line), 1/100(dash-dot line) and expected boundary profile (magenta dotted line)
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FIGURE 3. The cost functional curve.
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FIGURE 4. Controlled(red dashed dot line) and uncontrolled(blue solid line) flow profile comparison at various situations in
t = 4.
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FIGURE 5. Controlled(red dashed dot line) and uncontrolled(blue solid line) flow profile comparison at various situations in
t = 10.
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FIGURE 6. Controlled and uncontrolled flow streamline comparison in t = 1 and t = 4.
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FIGURE 7. Controlled and uncontrolled flow streamline comparison in t = 7 and t = 10.
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FIGURE 8. The steady pattern flow with c(t) = 0.025.


