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Abstract. Due to the implementation of numerical solution algorithmsfor the nonstationary Navier-Stokes equations of an
incompressible fluid on massively parallel computers iterative methods are of special interest.

A red-black pressure-velocity-iteration which allows an efficient parallelization based on a domain decomposition [4] will
be analyzed in this paper.

We prove the equivalence of the pressure-velocity-iteration (PUI) by Chorin/Hirt/Cook [2][3] with a SOR-iteration to
solve a poisson equation for the pressure. We show this on a 2Drectangle with some special outflow boundary conditions and
Dirichlet data for the velocity elsewhere. This equivalence allows us to prove the convergence of that iteration scheme. We
also discuss the stablity of the occuring discrete Laplacian in discrete Sobolev spaces.
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INTRODUCTION

In the sequel the 2D consideration is used only for reasons ofsimplicity. The results of the paper can be generalised
for the 3D case.

On the rectangleΩ = [a,b]× [c,d] the nonstationary, incompressible Navier-Stokes equations (NSE) are given:

ut +(u ·∇)u =−∇p+ν∆u , ∇ ·u = 0 (1)

OnΓD = {a}× [c,d]
⋃{c,d}× [a,b] we have Dirichlet-data foru and on the outflowΓout = {b}×]c,d[ we use a natural

boundary condition of [5] or [6]:

u = uD on ΓD (2)

ν
∂u
∂x

= p− p̄ on Γout (3)

∂v
∂x

= 0 onΓout (4)

If a solutionp∈ H1(Ω) of (1) exists, it is unique, since

d
∫

c

p(b,y)dy= ν
d
∫

c

∂u
∂x

dy+(d−c)p̄ =−ν
d
∫

c

∂v
∂y

dy+(d−c)p̄ = ν(v(b,d)−v(b,c))+(d−c)p̄ (5)

Hirt and Cook developed in [3] an iteration method modifyingan idea of Chorin [2] to solve (1) using a time integration
scheme of the following kind:

uk+1−uk

τ
+(uk ·∇)uk = −∇pk+1 +ν∆uk (6)

∇ ·uk+1 = 0 (7)

For the spatial discretization a staggered mesh with mesh sizes 1
l j
, 1

hi
is used. This inverse spelling of the spatial grid

sizes was used for a better readability of the formulas below.



It is well known, that the size of the time-stepτ is restricted by the following conditions

τν ·max{h2, l2} ≤ 1 (8)

τ ·max{u· l},τ ·max{v ·h} ≤ 1 (9)

using a scheme (6). Especially (8) seems to be the crucial restriction. To overcome (8) time integration schemes, which
treat the diffusive termν∆u implicitly were developed. Recent investigations [9] haveshown, that in turbulent flows
τmax{v ·h} can be of the same order of magnitude asτν max{l2,h2}. In the sequel we will only give the qualitative
results as lemmata and theorems. Their proofs are noted in detail in [1].

THE p−u-ITERATION

To derive the discretization of (6) the following approximations are used:

divi j u = hi(vi j −vi−1 j)+ l j(ui j −ui j−1) (10)

∂ p
∂x i j

= L j(pi j+1− pi j ) ;
∂ p
∂y i j

= Hi(pi+1 j − pi j ) (11)

where 1/L j := 1/2(1/l j+1 + 1/l j) and 1/H j := 1/2(1/h j+1 + 1/h j). Let uk+1, pk+1 be discretized byu, p , then the
linear system according to (6) reads

(

A G
D 0

)(

u
p

)

=

(

f
g

)

whereg∈ Im(D) (12)

A is a slight modification ofI because of (3). This form is not the basis of PUI. For simplicity we denote the iteration
sublevel for the computation ofuk+1, pk+1 by u,s, p,s . Then PUI is given by

• start:

p,0 = any initial guess, e.g.pk (13)

u,0 = uk− τ(uk ·∇)uk− τ∇p,0 + τν∆uk (14)

• do for each celli j

δ p,s+1 =: p,s+1− p,s =−ω

(

∂divu
∂ p i j

)−1

divi j u
,s,s+1/2 (15)

u,s+∗∗
i j = u,s+∗

i j −δ p,s+1 ·L j ; u,s+∗∗
i j−1 = u,s+∗

i j−1 +δ p,s+1 ·L j−1

v,s+∗∗
i j = v,s+∗

i j −δ p,s+1 ·Hi ; v,s+∗∗
i−1 j = v,s+∗

i−1 j +δ p,s+1 ·Hi−1 (16)

• until max{divi j u
,s+∗} ≤ εtol

During one iteration each velocity value is updated twice. If there are no further informations about the order of the
unknowns, the sublevel,s,s+1/2,s+1 is not clear. This problem will be solved in section .ω is a relaxation parameter and
Bi j :=− ∂divu

∂ p i j
, which is derived as follows:

The substitution ofui j ,ui, j−1,vi j ,vi1− j in (10) by the discrete version of (6) leads to

divi j u = hi(
∂ p
∂y i j

+ fv,i j −
∂ p
∂y i−1 j

− fv,i−1 j)+ l j(
∂ p
∂x i j

+ fu,i j −
∂ p
∂x i j−1

− fu,i j−1) (17)

for inner cells. The substitution of∂ p
∂x , ∂ p

∂y by (11) gives

∂divi j u

∂ pi j
= hi(−Hi +0− (−Hi−1)−0)+ l j(L j +0− (−L j−1)−0) (18)



CONVERGENCE OF PUI

Now the cellsi j andpi j are ordered in ared-blackmanner. We denote thep-values of black cells byp0 and those of
red cells byp1 respectivly.

Lemma 1. The red-black version of PUI restricted to the p-values is a red-black SOR iteration for the solution of

F · p := DA−1G· p =−g+DA−1 f =: f̃ (19)

Evaluation of F := DA−1G and f̃ = DA−1 f

For simplicity the Dirichlet datavm,. are treated together withum,. as unknowns. Then the definition ofA,G, f
ensuresvm,. = vD(x j ,d). The natural boundary condition is discretized by

u.,n−u.,n−1−1/(lnν)p.,n =−1/(lnν)p̄ (20)

To keep the matricesA,G,D managable, their components are equiped with the followingindices: for exampleDi j ,ukl
denotes the coefficient ofukl for computation ofdivi j andGui j ,kl is the coefficient ofpkl in the momentum equation

for ui j . Thus:

Di j ,ukl
= δik(δ jl −δ j−1l )l j ,Di j ,vkl

= (δik−δi−1k)hiδ jl ,Aui j ,ukl
= δik(δ jl −δ jnδln−1),Avi j ,vkl

= δ jl δik, (21)

Aui j ,vkl
= Avi j ,ukl

= 0,1/τGui j ,kl = δik((δ j+1l −δ jl )(1−δ jn)L j +αδ jl δ jn),1/τGvi j ,kl = (δi+1k−δik)(1−δim)Hiδ jl ,

whereα =− 1
τν ln

from (20).

A detailed evaluation ofA−1 gives

A−1
ui j ,ukl

= δik(δ jl +δ jnδln−1) , A−1
vi j ,vkl

= δ jl δik , A−1
ui j ,vkl

= Avi j ,ukl
= 0 . (22)

Now C = DA−1 is given by:

(DA−1)i j ,ukl
= ∑

r,s
(Di j ,urs

A−1
urs,ukl

+Di j ,vrs
A−1

vrs,ukl
)

= ∑
r,s

(δir (δ js−δ j−1s)l jA
−1
urs,ukl

+0) = l j ∑
s
(δ js−δ j−1s)A

−1
uis,ukl

= l j(A
−1
ui j ,ukl

− (1−δ j1)A
−1
ui j−1,ukl

) = l jδik(δ jl +δ jnδln−1− (1−δ j1)δ j−1l ) (23)

(DA−1)i j ,vkl
= ∑

r,s
(Di j ,urs

A−1
urs,vkl

+Di j ,vrs
A−1

vrs,vkl
)

= ∑
r,s

(0+δ js(δir −δi−1r)hiδrkδ jl ) = hi(δik−δi−1k)δ jl (24)

ThusF becomes:

1
τ

Fi j ,kl =
1
τ ∑

r,s

[

Ci j ,urs
Gurs,kl +Ci j ,vrs

Gvrs,kl

]

= ∑
r,s

[

l j δir (δ js−δ j−1s+δ jnδsn−1)Gurs,kl +hi(δir −δi−1r)δ jsGvrs,kl

]

= l j ∑
s
(δ js−δ j−1s+δ jnδsn−1)Guis,kl +hi ∑

r
(δir −δi−1r)Gvr j ,kl

= l j(Gui j ,kl− (1−δ j1−δ jn)Gui j−1,kl)+hi(Gvi j ,kl− (1−δi1)Gvi−1 j ,kl) (25)



For 1≤ i,k≤m and 1≤ j, l ≤ n we have1
τ Fi j ,kl =

−l j(L j +(1−δ j1)L j−1)−hi((1−δim)Hi +(1−δi1)Hi−1)

for i = k; j = l < n (26)

lnα−hi((1−δim)Hi +(1−δi1)Hi−1) for i = k; j = l = n (27)

l jL j for i = k;l = j +1

(1−δ jn−δ j1)l jL j−1 for i = k;l = j−1

hiHi for k = i +1;l = j

hiHi−1 for k = i−1;l = j

0 elsewhere,

withe the diagonal entries

Bi, j =
1
τ

Fi j ,i j (28)

To get an idea ofF , we consider the lexicographic order of thep-values
p = (p1,1, .., p1,n; ....; pm,1, .., pm,n)

F lex =















B1 h1H1I
h2H1I B2 h2H2I

. . .
. . .

. . .
hm−1Hm−2I Bm−1 hm−1Hm−1I

hmHm−1I Bm















(29)

with

Bi =















Bi,1 l1L1
l2L1 Bi,2 l2L2

. . .
. ..

. . .
lnLn−1 Bi,n−1 ln−1Ln−1

0 Bi,n















(30)

Remark2. The asserted identity ofE andDiag(F lex) is clear. Forj < n one has to substitute the momentum equation
(4-#boundaries of the cell with Dirichlet-data)-times , which leads to (26). Forj = n (20) and (2-#boundaries of the
cell with Dirichlet-data)-times the momentum equation is used, which coincides with (27).

To start the evaluation ofDA−1 f a representation off is given. From (6) we havẽu = uk + τ(u ·∇)uk + τν∆uk.
Thus f reads

fui j
= (1−δ jn)ũi j −δ jnln/ν p̄ , fvi j

= (1−δim)ṽi j +δim ·0 (31)

Now we obtain

(DA−1 f )i j = ∑
r,s

((DA−1)i j ,urs
furs +(DA−1)i j ,vrs

fvrs)

= ∑
r,s

[

l jδir (δ js +δ jnδsn−1− (1−δ j1)δ j−1s) furs +hiδ js(δir −δi−1r) fvrs

]

= l j ∑
s
(δ js +δ jnδsn−1− (1−δ j1)δ j−1s) fuis

+hi ∑
r

(δir −δi−1r) fvr j

= l j( fui j
+δ jn fuin−1

− (1−δ j1) fui j−1
)+hi( fvi j

− (1−δi1) fvi−1 j
) . (32)

Analysis of the red-black SOR Iteration

To show the convergence we need some auxiliary results, which are proved in the sequel. We denote byJ(A) ,
H(A,ω) the iteration matrices of the Jacobi and SOR iteration as faras they exist forA.



Lemma 3. Let A be, such that J(A) exists, P be a permutation matrix forπ (Pei = eπ(i)) and E be a nonsingular

diagonal matrix. Then J(PAPT) = PJ(A)PT and J(EAE−1) = EJ(A)E−1 . Especially J(PAPT) , J(EAE−1) exist and
have the same spectrum as J(A).

Another usefull statement is

Lemma 4. Let A be a symmetric,real matrix with Aii < 0. Then the spectrum of J(A) is real.

Now the main theorem of this section is given:

Theorem 5. For F lex we have

1. Flex is reducible
2. Flex has only real eigenvalues
3. J(F lex) has only real eigenvalues
4. ρ(J(F lex)) < 1

Theorem 6. The red-black-SOR iteration for (19) converges for relaxation parameters0 < ω < 2.

Remark7. F is the discrete operator of the 5-point stencil for the Laplacian with Neumann conditions onΓD. ForΓout
the boundary condition reads

−ντ
∂ 2p
∂x2 − p = r.h.s (33)

Using the Poisson equation for the pressure we can substitute (33) by

+ντ
∂ 2p
∂y2 − p = r.h.son Γout (34)

This is an ODE of Helmholtz type onΓout with homogeneous boundary conditions for∂ p
∂y in ∂ Γout. This ODE has a

unique solution under some assumptions for the right hand side.

Convergence for ∂ u
∂x = 0 on Γout

In this section we consider another often used boundary condition on Γout

∂ u
∂x

= 0 onΓout (35)

Using all notations of the previous sections we haveα = 0.

Lemma 8. For α = 0 : Ker(F lex) = span{1}
Lemma 9. 1. ρ(J(F01)) = 1

2. J(F01) has only real eigenvalues
3. 1 and −1 are eigenvalues of J(F01) , the eigenspace of1 is spanned by1 and the eigenspace of−1 by

e01 :=

(

10
−11

)

Now we are ready to show that the SOR-iteration converges in the sense of damping all errors except the error that
belongs to the global pressure level. That means

Lemma 10. The iteration converges to a solution of (19).

Remark11. For the solvability of the equation (1) it’s necessary to show the property of the right hand sidẽf :

f̃ ·1 = 0. (36)

The relation (36) means the mass conservation of the channelflow problem, i.e., the mass flux, coming in overΓD,
must be equal to the mass flux, going over the outlet boundaryΓout. Using the representation and evaluation (32) of
the right hand sideDA−1 f the relation (36) is obvious.



STABILITY OF THE SPATIAL DISCRETIZATION

This section deals with the stability of the discrete LaplacianFα of the previous section. In order to obtain statements
concerning the regularity in the discrete sobolev spaceH1

h (see [8], Chapter 9.2) we show the boundedness of(Fα)−1

; (Fα )−T . This implies the stability in the discrete spaceL2 (=l2).

Lemma 12. If the grid stretching is bounded (1
q ≤ 1

l j+1
/ 1

l j
≤ q), then

‖(Fα)−1‖∞ ≤max{ q
q+1

,τν}. (37)

Lemma 13. Using all notations of the previous lemma and the following notations ph := maxi,r
hr
hi

; pl :=

maxj,s
ls
l j

, then

‖(Fα)−T‖∞ ≤max{phpl
q

q+1
,2maxj{l j}/l1τν p2

h}. (38)

Remark14. If condition (8) is satisfied, then one has for theL2
h stability

|(Fα)−1|0←0≤
√

phpl
q

q+1
(39)

PRACTICAL APPLICATION OF THE DISCUSSED METHOD

The above dicussed pressure-velocity-iteration method isused in production codes for the numerical simulation of lam-
inar and turbulent flow problems. A Navier-Stokes code developed in Munic at the university of the Bundeswehr[10]
was parallelized for running on massively parallel computers of the Technische Universität Berlin and of the Konrad-
Zuse-Zentrum Berlin. Together with engineers from the fluidmechanical department of the TU Berlin and the univer-
sity of the Bundeswehr Munic investigations of a backward facing step flow problem are done [11]. With the aim of the
decrease of the recirculation length the boundary layer will be manipulated by loudspeakers with certain frequencies
und sound pressure. The loudspeakers are simulated in the mathematical model by non stationary Dirichlet boundary
conditions.

With the presented strict proof of the convergence of the pressure-velocity-iteration method a gap between heuristic
engineering development and numerical mathematics with respect to appropriate parallelization techniques was closed.
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