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Abstract. Due to the implementation of numerical solution algorithimsthe nonstationary Navier-Stokes equations of an
incompressible fluid on massively parallel computers tbeeanethods are of special interest.

A red-black pressure-velocity-iteration which allows dficeent parallelization based on a domain decompositigmvi#
be analyzed in this paper.

We prove the equivalence of the pressure-velocity-itera{PUI) by Chorin/Hirt/Cook [2][3] with a SOR-iteration to
solve a poisson equation for the pressure. We show this onra@Bngle with some special outflow boundary conditions and
Dirichlet data for the velocity elsewhere. This equivakemtiows us to prove the convergence of that iteration sch&vee
also discuss the stablity of the occuring discrete Laptatialiscrete Sobolev spaces.
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INTRODUCTION

In the sequel the 2D consideration is used only for reasosgwflicity. The results of the paper can be generalised
for the 3D case.
On the rectangl® = [a,b] x [c,d] the nonstationary, incompressible Navier-Stokes equa{iNSE) are given:

U+ (u-0u=-0Op+vAu,d-u=0 Q)

Onlp={a} x[c,d]U{c,d} x [a,b] we have Dirichlet-data fan and on the outflow o, = {b} x]c,d[ we use a natural
boundary condition of [5] or [6]:

u = uponly (2)
Jau _
V& = p—pon rout (3)
ov
x = 0 onl gy (4)

If a solutionp € H(Q) of (1) exists, it is unique, since

d d d
JECLS v/a—dy+<d 0p——v [ Syt (d-0)p=v(vb.d)-vb.O)+(@-0F (9

Hirt and Cook developed in [3] an iteration method modifyargidea of Chorin [2] to solve (1) using a time integration
scheme of the following kind:

Ukt gk
DUk = —0ptt4vadk (6)

O.ut = 0 ©)

For the spatial discretization a staggered mesh with meslsrél is used. This inverse spelling of the spatial grid
sizes was used for a better readability of the formulas below



It is well known, that the size of the time-steps restricted by the following conditions

v-ma{h? 1?2} < 1 (8)
T-maxu-l},7-maqv-h} < 1 9

using a scheme (6). Especially (8) seems to be the cructailtesn. To overcome (8) time integration schemes, which
treat the diffusive ternvAu implicitly were developed. Recent investigations [9] hatewn, that in turbulent flows
tmax{v-h} can be of the same order of magnituderasnax{|%,h?}. In the sequel we will only give the qualitative
results as lemmata and theorems. Their proofs are notedait itk 1].

THE p—u-ITERATION

To derive the discretization of (6) the following approxiinas are used:

divju = h(v;—vi_gy) +1(u; —uj_y) (10)
Ip . op
i Li(Bij1—Pyj) s v, =Hi(Py1— By) (11)

where YL, :=1/2(1/I; , +1/I;) and YH; := 1/2(1/h; ; +1/h;). Letuk"? pk! be discretized by, p , then the
linear system accordlng to (6) reads

(é S)(:)—(;)wheregelm(D) (12)

A'is a slight modification of because of (3). This form is not the basis of PUI. For simplisie denote the iteration
sublevel for the computation of*2, pt1 by u'S, pS . Then PUI is given by

- start:
p® = anyinitial guess, e.g (13)
u® = - (U O)u* - rOp°+ rvad (14)
+ do for each celj;
adivu '\
6p=5+1 =: p’3+1 —p°=-w ( a|vu ) div; ju S5+1/2 (15)
P i
U|T+** - us+* spett- Ly u”s+§* = UIT-H;_'— 5p’s+l'|‘i—1
vuSH* = VS** SpStH;; vf*f]* - V|S+1j +op*ttH (16)

- until max{div;;us™} < g,

During one iteration each velocity value is updated twit¢hére are no further informations about the order of the
unknowns, the sublevelist1/25t1 s not clear. This problem will be solved in sectiom is a relaxation parameter and

B, = ‘93'[‘)’“” which is derived as follows:
The substitution oﬂ”,uI -1 Vijs Vit j in (10) by the discrete version of (6) leads to
) _,.,0p ap ap ap
dlv”u_hi(ﬁ_yij—i_f"’”_d_yi, —fi 1J)—H (0x| +fu’ij_&ij,1_fuﬁij*1) @an
for inner cells. The substitution #, 7y by (11) gives
adiv;u
=hi(—Hj+0—(-H,_;) —0)+1;(L; +0— (—Ljfl) -0) (18)



CONVERGENCE OF PUI

Now the cells; and p; are ordered in @aed-blackmanner. We denote thevalues of black cells by, and those of
red cells byp, respect|vly

Lemma 1. The red-black version of PUI restricted to the p-values is@black SOR iteration for the solution of

F-p:=DA'G.-p=—g+DAlf=f (19)

Evaluation of F := DA~ G and f = DA 1f

For simplicity the Dirichlet datavy, are treated together withy,  as unknowns. Then the definition 8{G, f
ensuresm = Vv (x d). The natural boundary condition is discretized by

Un—U, 1—1/(Inv)p,n=—1/(lnv)p (20)

To keep the matrice&, G, D managable, their components are equiped with the followidges: for exampId-DIJ g
denotes the coefficient af; for computation ofdiv;; andGu K is the coefficient ofp,; in the momentum equation

for u;. Thus:

Diju, = 5|k(5j| =9 1)1:Dijy, = Bk = - Ay = (O = 6jn O 1) Avi,-,vm =9y Oy (21)
Aujvg = Aoy =0, 1/TGUij’k| = 0((8,0 = Gy) (1= 9p)L; + 9, Jn) 1/TG = (82 = O (1= Om)Hi 9y,
wherea = — Wl from (20).

A detailed evaluation oh~! gives
AU iU = |k( il +5Jndn 1 A\/ iV = j| |k7AU Vk| .J Uy =0 . (22)

Now C = DAL is given by:

(DAil)iJ.aUH = ;(Dij,UrSAJri_AUH + Dij,VrsA\;s:,LaUH)
= Z(élr (6js j— lS)I AUrs Uy +O IJ z J 1s Auls Y
rs S
= |J(A|J Uy —(1- 5 )Au” 1uk|) l] k(5 +5jndn 1 1 5]1)5jfll) (23)

-1 -1
(Dij !UTSAurS'rVH + Dij -,VrsA’rs=Vk| )

= > (0+05(d — 3 1), 9y ) = hi(8 — &_y)9
2

o
2
=
:
|
g

(24)

ol

ThusF becomes:

1 1
2w = ;g [Cij,ursGurs,kl +Cij,vrSGvrs,kl}

= Z |:Ij5II’ (5js - 5]—1s+ 6Jn55ml) Urs. Kl +h (5 5| 1r)6stv,S,kl}

:ljz(6js_5jfls+5jn55ml) U kth Z o 1r)Gv”-,kI
:Ij(Gu-.kI_(1_6jl_6jn)Guij_l,kl)+hi( vij,k|_(1—5|1) v oK) (25)

i—1j



For 1<ik<mand 1< j,| <nwe havelF, , =

—lj(Lj+ (1= 9L 1) —m((1—§)Hi+ (1 - 31)H 1)
fori=k;j=1<n (26)
Iha —h((1-8,)H,+(1-38)H, ;) fori=kj=1=n 27)

Iij fori=kl=j+1

(1=0;, = oljLj_, fori=kl=j-1

hH; fork=i+1] =j

hH,_;fork=i—-1]=]

0 elsewhere,

withe the diagonal entries
1

Bij = —Fij.j (28)
) T )
To get an idea oF , we consider the lexicographic order of thevalues
P=(Py1:-» Popi-s Pmas - Pmn)
B, hHl
hy,H, | B, h,H,!
FIeX: . .. (29)
hm 1Hm72I Bmfl hmlemflI
hmH, 4! Bm
with
Bi,l |1|-1
Ly Bz ol
B, = (30)

Ir1Ln—1 Bi,n—l In—an—l
0 Bin

Remark2. The asserted identity & andDiag(F'®) is clear. Forj < none has to substitute the momentum equation

(4-#boundaries of the cell with Dirichlet-data)-times ,igfhleads to (26). Fof = n (20) and (2-#boundaries of the

cell with Dirichlet-data)-times the momentum equationsed, which coincides with (27).

To start the evaluation dDA~1f a representation of is given. From (6) we havé = uX + t(u- O)uk + tvAuk.
Thusf reads B

Now we obtain
(DAilf)ij = Z((DAil)ijAurs fus + (DA?l)ij,Vrs fus)

s

> {Ij S (Ojs + 010051 — (1= 8j1)0;_15) furs + M Oy5(& — §_y,) ers:|

]
= Ij 2(5j5+ 5jn55n—l -(1- 5]1)6j—1s) fUis +hy 2(5" - 6|—1r) erj
S T

l(fy, + 8y — (A=) fu ) +h(fy, —(1=8)f ). (32)

Analysis of thered-black SOR Iteration

To show the convergence we need some auxiliary results,hwdme proved in the sequel. We denote §y) ,
H (A, w) the iteration matrices of the Jacobi and SOR iteration agddhey exist foA.



Lemma 3. Let A be, such that(®) exists, P be a permutation matrix for (Pg = en(i)) and E be a nonsingular

diagonal matrix. Then (PAP") = PJ(A)PT and JEAE 1) = EJ(A)E~!. Especially JPAP") , J(EAE™1) exist and
have the same spectrum a\J.

Another usefull statement is

Lemmad4. Let A be a symmetric,real matrix with; A< 0. Then the spectrum of4) is real.
Now the main theorem of this section is given:

Theorem 5. For F'® we have

1. F'*%is reducible
2. F'* has only real eigenvalues
3. J(F'®) has only real eigenvalues
4. p(J(F'®)) <1
Theorem 6. The red-black-SOR iteration for (19) converges for reléo@parameter® < w < 2.

Remark7. F is the discrete operator of the 5-point stencil for the Laiala with Neumann conditions dr},. Forl g
the boundary condition reads

9%p
—vrﬁ—p:r.h.s (33)
Using the Poisson equation for the pressure we can sulestij by
02
—|—vra—y£) —p=rhsonrl (34)

This is an ODE of Helmholtz type o, with homogeneous boundary conditions @ in dT 4t- This ODE has a
unique solution under some assumptions for the right hatel si

Convergence for % = 0on oy

In this section we consider another often used boundaryiton@n T

du
I 0 onl gyt (35)

Using all notations of the previous sections we have 0.
Lemma8. For a = 0: Ker(F'®) = span{1}

Lemma9. 1. p(J(F%)) =1
2. J(F%) has only real eigenvalues
3.1 and —1 are eigenvalues of (F%) , the eigenspace df is spanned byl and the eigenspace ofl by

1
= ()

Now we are ready to show that the SOR-iteration convergdsaiisénse of damping all errors except the error that
belongs to the global pressure level. That means

Lemma 10. The iteration converges to a solution of (19).
Remarkll. For the solvability of the equation (1) it's necessary tovsltioe property of the right hand side
f.1=o0. (36)

The relation (36) means the mass conservation of the chélongproblem, i.e., the mass flux, coming in ovgg,
must be equal to the mass flux, going over the outlet bounidggy Using the representation and evaluation (32) of
the right hand sid®A~1f the relation (36) is obvious.



STABILITY OF THE SPATIAL DISCRETIZATION

This section deals with the stability of the discrete Lajala¢&? of the previous section. In order to obtain statements
concerning the regularity in the discrete sobolev sp-ﬁﬁsesee [8], Chapter 9.2) we show the boundedneg& &1
; (F9)~T. This implies the stability in the discrete space(=1).

Lemma 12. If the grid stretching is boundec%(g ﬁ/% < q), then
I+ ]

FO L, < max—— 11, 37
II()Ilfx{qH} 37)
Lemma 13. Using all notations of the previous lemma and the followimgations p, := maxvr% N
ls
max s, then .

IR o < max{pyp =7 2maxg {1;}/1,Tv R} (38)

Remarkl4. If condition (8) is satisfied, then one has for ﬂtfgstability

- q

[(F) oo < /PP q+1 (39)

PRACTICAL APPLICATION OF THE DISCUSSED METHOD

The above dicussed pressure-velocity-iteration methosiéd in production codes for the numerical simulation oflam
inar and turbulent flow problems. A Navier-Stokes code dgyedl in Munic at the university of the Bundeswehr[10]
was parallelized for running on massively parallel compité the Technische Universitat Berlin and of the Konrad-
Zuse-Zentrum Berlin. Together with engineers from the flaechanical department of the TU Berlin and the univer-
sity of the Bundeswehr Munic investigations of a backwamiifg step flow problem are done [11]. With the aim of the
decrease of the recirculation length the boundary laydrbgiimanipulated by loudspeakers with certain frequencies
und sound pressure. The loudspeakers are simulated in themeatical model by non stationary Dirichlet boundary
conditions.

With the presented strict proof of the convergence of thegqunee-velocity-iteration method a gap between heuristic
engineering development and numerical mathematics wsgheiet to appropriate parallelization techniques was dlose
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