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Abstract: In the current paper, we present a tree-like structure for the object representation in time-of-flight
(TOF) datasets which enables an efficient computation of the object contour lines. The generated contour
lines can be further processed in object detection and recognition for the TOF dataset. We illustrate this idea
in the application of a monitoring system using the TOF ranging technology. In addition, we also present a
fast algorithm of visualizing the object contour lines as unstructured (that is, raw) pixels.
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1 Introduction

Three-dimensional (and semi-three-dimensional) im-
ages of real-world objects can be acquired by various
means, among which radar, interferometry and trian-
gulation are frequently applied. A major component
of three-dimensional imaging is the ranging system.
We refer to [1] for an overview of the optical rang-
ing systems. Time-of-flight (TOF) imaging is a new
emerging technique of contactless distance measure-
ment; the key of this method is the light travel du-
ration over the spatial distance. This technique dates
back to the famous, though due to the technical lim-
itation at that time, unsuccessful light speed experi-
ment of Galileo Galilei in which the measurement of
light propagation time between two observers was at-
tempted, using a mechanical clock. However, robust
measurement of light travel duration over small dis-
tances (the light travel duration for a typical distance
of 10m is 33 n s approximately) is not an easy task
even within the realm of contemporary technology. In
the context of three-dimensional imaging of real-world
objects, the measurement is to be carried out on points
of a sufficient density, and this poses an additional dif-
ficulty. A possible solution for this is to measure the
phase shift ∆φ of an amplitude-modulated light wave
which is proportional to the flight duration rather than
this time span directly, this can be expressed as

∆φ =
4πf

c
· d, (1)

where d denotes the distance, c
.
= 3.0 · 108 ms−1

the speed of light under standard conditions, and f

the modulation frequency. Although laser-based TOF
systems of this kind have been known at least since
1977 [13], real-time “on-chip” systems did not appear
until with the development of novel CMOS technolo-
gies [15, 17].

The proportionality (1) of the light phase shift and
the spatial distance is the functional cornerstone of the
current TOF sensor systems. We explain this princi-
ple idea briefly. After the scene is actively illuminated
by an incoherent infrared light amplitude-modulated
with a specific frequency f , this optical signal is re-
flected by the object being measured at a distance d,
and returns after the time lapse of T = 2d

c
to an array

of CMOS pixels. The CMOS pixel array captures both
the spatial distribution of intensity of the reflected sig-
nal and the phase-shift, the latter of which—up to an
unambiguous range of dmax = c

2f
—is proportional to

the distance of the object. A typical modulation fre-
quency is f = 20MHz which amounts to a maximum
distance range of dmax = 7.5m. For an overall survey
and technical details on the subject we refer to [10, 12].

The actual phase shift ∆φ and intensity I is usu-
ally computed from four sampled values of the re-
ceived optical signal I0, . . . , I3; or rather their differ-
ences J1 = I0 − I2 and J2 = I3 − I1,

I = 1
2 |J1 + iJ2| ,

∆φ = arg (J1 + iJ2) − φ0; (2)



see for example [6]. In case φ ∈
(

−π
2 , π

2

)

, (2) can be
written as

∆φ = arctan
(

J2

J1

)

− φ0.

The sampled intensity values are obtained by an on-
chip correlation of the emitted and the received signal.
φ0 is a constant offset due to the propagation time
of the internal signal and has to be calibrated away.
It should be noted that this technique functions un-
der the assumption of a harmonic signal modulation
which is actually not given with real-world systems
and leads to systematic errors dependent of the actual
range [14]. Furthermore, the standard deviation of the
phase-range measurement is directly reciprocal to the
intensity. This allows one to simply discard measure-
ments with an intensity that is too low or to filter the
range image with the intensity as a confidence value
adaptively [6].

Another pre-processing step is the transformation
of chip coordinates (m,n, d) into Cartesian world co-
ordinates (x, y, z):

x = nd√
α2+m2+n2

,

y = md√
α2+m2+n2

,

z = αd√
α2+m2+n2

.

(3)

Here, m and n are the vertical and horizontal distances
from the centre of the chip in pixel units, and d is
the measured radial distance. The world coordinate
system has its origin at the centre of the chip, and
the z-axis is parallel to the optical axis of the camera.
Furthermore, α =

lf
lp

, where lf is the focal length of

the camera and lp is the physical edge length of the
pixel. Near the chip’s centre, (3) can be approximated
as

x
.
= nd

α
,

y
.
= md

α
,

z
.
= d.

Growing applications of TOF ranging systems
have been found in the fields of object/human
detection and recognition [3, 7], object/human
tracking [2, 8, 18], robotics and automated pro-
duction [9, 19], human-machine interaction [4, 16],
surveillance [5] etc.

In the current paper, we consider the problem of
object detection using TOF data. The TOF data of
a measurement is usually stored as a time series of
frames which contain the distance value at every given
two-dimensional position at a given time point. Con-
temporary technology supports a measurement fre-
quency of up to fifty frames per second approximately.

Due to the large data volume, we believe that an ef-
ficient data structure for the representation is indis-
pensable. Our proposed data structure optimizes the
computation of contour lines of objects in the scene.
These contours preserve the volume information of the
measured objects and can thus be further used in ob-
ject detection, recognition and tracking.

2 Model

We assume that the measured objects are placed on
a ground floor and the optical axis of the sensor is
perpendicular to it. Applying the world coordinate
system of (3), this ground floor is in fact the plane
z = h0, where h0 denotes the distance from the sensor
to the floor. For the simplicity of the notation, we
let (0, 0, h0) be the origin of a new world coordinate
system and reverse the direction of the z-axis, that is,

x 7→ x, y 7→ y, z 7→ h = h0 − z. (4)

Thus, the sensor is positioned at (0, 0, h0) in the new
world coordinate system. For a schematic description,
we refer to Figure 1.

Ω

(0, 0)(x, y)

(x, y, h) d

d ≤ c
2f

Figure 1: By proper pre-processing the distance value
d will be projected onto the z-axis. For an object
measured (drawn as a small circle) this value will be
further transformed by (4) into a height value h in
the new world coordinate system. The ground floor is
the plane z = 0. In the ideal case, the optical axis of
the installed sensor (drawn as a small box) should be
perpendicular to the floor. The otherwise propagated
errors are shown as small dashed line segments; if so,
an additional affine transformation of the coordinates
to compensate the errors would be necessary.

The measurable region of the ground floor is in
most cases a rectangle (depending on the TOF sensor
technology). We write this as a rectangular grid Ω of
{1, . . . , nx}×{1, . . . , ny}, where nx and ny denote the
number of samples in the x- and y-dimension respec-
tively. Each of the grid points on Ω is associated with



a pre-processed height value, Hx,y, x = 0, . . . , nx − 1,
y = 0, . . . , ny − 1. The boundary of Ω is written as
∂Ω.

An obvious result is that, apart from measurement
error or inaccuracy, an object detected by the TOF
sensor always exhibits positive height values in the new
coordinate system. We are primarily interested in the
grid positions with considerable positive height values,
taking into consideration small random measurement
errors.

2.1 TOF-node

In a TOF sensor monitoring scenario, the measured
objects can be considered as being “placed” on the
ground floor z = 0. After the transformation of (3),
the outer surface in the positive z-direction of an ob-
ject is in many cases geometrically convex. When we
consider the height value as a continuous function on
the x-y-plane, we observe the following

Theorem (Standard version). The height function h

of a strict convex object has only one local maximum.

Proof. Instead of “height function of a convex ob-
ject” we simply say “concave function”. We show the
contraposition of the claim. Let the concave height
function h : D → R be defined on a convex set
D ⊂ R

2. Let h(p) and h(q) be two different strict
local maxima of h at p, q ∈ D. Without loss of gen-
erality, we assume h(q) ≥ h(p). Since D is convex,
there exists an ε ∈ (0, 1] for the local maximum h(p)
such that h(p′) < h(p) for all p′ = (1 − t)p + tq

with t ∈ (0, ε). For any t so chosen, we also have
h ((1 − t)p + tq) = h(p′) < h(p). On the other hand,
h(p) < (1−t)h(p)+th(q) for t ∈ (0, 1), since the right-
hand side is monotonely increasing with respect to t.
This contradicts the concavity of h.

We recall that the strict convexity of h is formally
defined on its convex domain of definition D,

∀ p, q ∈ D, p 6= q : ∀ t ∈ (0, 1) :

h ((1 − t)p + tq) > (1 − t)h(p) + th(q). (5)

In real-world scenarios, however, the domain of def-
inition is discrete, composed of finitely many points
p1, . . . , pn ∈ R

2. In correspondence with the measure-
ment of the object, the height function h is given on
these positions. We may divide the original domain R

2

into geometrically convex sub-domains D1, . . . ,Dn as-
sociated with p1, . . . , pn (for example, by constructing
the Voronoi diagram). See Figure 2 for a schematic
example. To simplify the notation, we write N =

{1, . . . n} for the index set. Since for every i ∈ N ,
pi is the only position where a measurement is com-
mitted, we may define the height function h on the
sub-domain Di,

h(Di) := h(pi), (6)

for all i ∈ N .

Intuitively, a position p can be considered as a
local maximum, if its height value exceeds all those in
the surrounding sub-domains of its own.

qa

qb

pa

pb

pc

pd

Da

Db

Dc

Dd

Figure 2: The Voronoi diagram associated with four
points.

When we adapt (5) into

∀ c, a, b ∈ N, c 6= a, c 6= b :

∃ qa ∈ Da, qb ∈ Db : ∃ t ∈ (0, 1) :

(1 − t)qa + tqb = pc =⇒

h(Dc) > (1 − t)h(Da) + th(Db)

(7)

for the discrete case, we have the following

Corollary (Discrete version). A function h defined on
finitely many points, satisfying (7), has only one local
maximum.

In words, (7) means that for every pair of the n

sub-domains associated with the measurement points,
if there exists a third sub-domain lying between
them, the height function (6) defined on these three
sub-domains is convex. We wish to draw the attention
that qa and qb in (7) are not necessarily positions
where the measurements are available (pa and pb),
these are needed to locate the relevant sub-domains
to compare the height values.

Thus it is possible for us to characterize the ob-
jects by their height values which are retrievable from
their physical locations. These objects can be la-
belled and distinguished from each other by the rel-
evant maximum height values in the associated re-
gions. This means an object can be represented by



a tree-like data structure in which parent nodes al-
ways have larger height values than their child nodes.
Therefore, we define a type of memory unit “TOF-
node” to hold the original data (position and value)
and four pointers to other memory units of the same
kind (see Figure 3). The four pointers de-reference the
data in the neighbouring points at the relative posi-
tions (±1, 0) and (0,±1), they are written as W (west,
(∆x,∆y) = (−1, 0)), N (north, (∆x,∆y) = (0, 1)), E

(east, (∆x,∆y) = (1, 0)) and S (south, (∆x,∆y) =
(0,−1)). For a TOF-node representing no local max-
imum, at most three of W , N , E and S de-reference
further TOF-nodes.

data

data data data data

node

W N E S

Figure 3: Basic structure of a TOF-node. Each node
holds the pointers to up to four child nodes (W , N ,
E and S). The node “node” may be the root node
of a TOF-tree, therefore its incoming pointer may not
exist. The child nodes hold further pointers to their
child nodes. Some of these pointers may be NULL (de-
referencing no further TOF-nodes), therefore, they are
drawn as dashed.

Consequently, a convex object can be represented
by a tree-like object with a starting TOF-node as its
root. The root TOF-node is associated with the lo-
cal maximum the convex object exhibits. An object
in reality, which may not be perfectly convex, can be
decomposed into multiple TOF-trees.

2.2 TOF-tree construction

To represent the objects in the TOF dataset, we in-
vestigate the local maxima of height value function.
We start from each of these maxima to construct the
related TOF-trees.

procedure main:

parameter: global information Ω and T

repeat

find grid point p with maximum height;

create TOF-node pointer tp with p;

call build TOF tree with tp;

until all grid points processed

return

The next procedure illustrates the construction of
the TOF-tree starting with a TOF-node pointer tp.

procedure build TOF tree:

parameter: tp

allocate memory for W , N , E and S;

initialize W , N , E and S with default (NULL);

mark grid point de-referenced by tp as processed;

call build TOF tree W;

call build TOF tree N;

call build TOF tree E;

call build TOF tree S;

return

This procedure checks the neighbouring grid
points at the relative positions (±1, 0) and (0,±1),
whether the TOF-tree further expands or the
construction terminates. This can be real-
ized by recursion through four internal wrap-
per procedures build TOF tree W, build TOF tree N,
build TOF tree E and build TOF tree S to expand
the current TOF-tree in the four directions. In the
first direction:

procedure build TOF tree W:

parameter:

if candidate grid point not defined in Ω (∗)

;

elseif candidate grid point not already processed

and associated height value not increasing (∗∗)

set W as TOF-node pointer to candidate;

call build TOF tree with W ;

fi

return

The other three are analogous.

2.3 The expansion of TOF-tree

We recall that the criterion applied in the internal pro-
cedures of TOF-tree construction is the monotonicity
of decreasing height values. In addition to the filtering
in the pre-processing, a tolerance value can be used
to smooth out small measurement errors (caused by
technical limitations of the TOF sensor hardware) so
that the construction of the TOF-tree should not ter-
minate unexpectedly, since the monotonicity of height



values can be greatly affected by even a single captured
pixel. However, the set of the TOF-trees associated
with the local maxima always presents a partitioning
of the floor Ω.

1. Ω

O1

2. Ω

O1

3. Ω
O1

4. Ω

O1

Figure 4: Four scenarios of a single object. The root
node of the TOF-tree representing the object is drawn
as a point. Boundary type III (h = 0, where the height
values drop to 0) is drawn as dots. This boundary may
or may not be completely visible within Ω.

In the internal wrapper procedures of TOF-tree
construction, the candidate must be checked whether
it is defined in Ω, in case the condition (∗) is fulfilled,
the expanding TOF-tree reaches the boundary of the
geometrical setting. We call this boundary type I. If
the condition (∗∗) is not fulfilled, the TOF-tree stops
expanding and the grid position in Ω of the candidate
has the shape of a “valley” (among two or more convex
objects) and thus forms the common boundary of this
TOF-tree and others. We call this type II boundary.
To specify that this boundary is shared with another
TOF-tree T ′, it can be written as “type II(T ′)” explic-
itly.

In case the condition (∗∗) is fulfilled (and implic-
itly, (∗) is not fulfilled), the TOF-tree expansion con-
tinues. In the expansion the height value can reach
a certain height value h (h ≥ 0), for example h = 0,
when this happens, the grid points in Ω form a further
type of boundary which we call type III in regard of
level height h = 0, in short form: III(0). This is also
the contour of the object when it is projected onto
the ground floor vertically. In general, we may also
consider the boundary of a TOF-tree at a given height
level h, the respecting boundary boundary type of this
will be called III(h). When it is clear in the context,
“type III(0)” can be simply written as “type III”.

In Figures 4 and 5 we present some schematic
examples. Figure 4 shows the case of a single object
O1. The expansion of the TOF-tree associated with
O1 stops at the boundary of Ω, and is therefore of type

1. Ω

O1

O2 2. Ω

O1

O2

Figure 5: Two further scenarios of multiple objects.
Boundary type II is drawn as dashed lines.

I. In the first three sub-figures, type III boundary is
visible. The last sub-figure demonstrates an extreme
case in which the would-be type III boundary is not
within Ω. This means, on the boundary of Ω, the
height values are always above floor level, this is
the case that Ω is completely covered by the object
captured by the TOF sensor.

Figure 5 gives a simple schematic example of two
objects O1 and O2. Boundaries type I and type III
can be identified just as in Figure 4. Due to the
presence of two objects, there exist (at least two) local
maxima in height value, then the boundary shared by
O1 and O2 forms a “valley”. This is the case of type II.

The distinction of these three boundary types is
essential in further processing of the TOF datasets.
It is frequently encountered in the so-called tracking
problem where the traces/trajectories of the measured
objects are to be investigated. An incomplete bound-
ary type III(0), with the exception of the extreme case
investigated in sub-figure 4 of Figure 4, signals the sit-
uation in which an object enters or leaves the actual
measuring environment. (For the aforesaid extreme
case, the situation is undecidable from a single frame
in the whole time series of the TOF dataset.)

2.4 Reflections on concave objects etc.

A concave object exhibits multiple local maxima and
will be represented by more than one TOF-trees con-
sequently. For a schematic example we refer to sub-
figure 1 of Figure 6. For a rigid object, if not convex,
the relevant TOF-trees representing the object have
fixed relative positions—in the sense of the grid po-
sition of the nodes, especially the root node of the
TOF-tree—with each other. Given a time series of
TOF data frames, it is possible to distinguish a rigid
concave object from multiple independent objects.1

1. If the object is not rigid, it is principally not possible to
keep a continuous tracking of its movement using TOF data ex-

clusively. In the real-world environment, it suffices to assume



1. Ω

O1

O3

2. Ω

O1

O2

O3

Figure 6: Two schematic examples of concave objects
and occlusion. Type III (h = 0) and type II boundaries
are drawn as dots and dashed lines respectively.

Another phenomenon is the so-called occlusion in
which an object is (partly) covered by another/others.
An example of this can be seen in sub-figure 2 of Fig-
ure 6 where objects O1 and O2 are partly covered by
object O3. Occlusion is caused by objects of indepen-
dent behaviours of mobility, and therefore their rela-
tive positions do not stay unchanged in a time series
of frames. By this criterion it is possible to distinguish
them from concave objects.

3 Object Contour and TOF-Tree

As mentioned earlier, a TOF-tree can be constructed
in response to a given height value h: the TOF-nodes
contained in the tree have a height value no less than
the given h.

After building up the TOF-trees using the data in
the original domain Ω, we now consider the problem
of retrieving the data from the height value, this is
sometimes called “slicing”: by “sweeping” an imagi-
nary “cutting” plane parallel to the domain (floor) of
a given height through the objects, we get the contour
lines of the objects at the given height level. The con-
tour of a given object, in the special case h = 0, is
equivalent with type III boundary.

On the other hand, the topological size of a TOF-
tree is the number of the TOF-nodes it contains.
When a TOF-tree is “cut” at a given height level, we
may consider that the child node pointers W , N , E

and S be set as “NULL” to terminate the expansion of
the tree, when the height values they de-reference are
below the given one. Thus it is obvious to conclude

Theorem. The size of a TOF-tree, in number of the
TOF-nodes, equals the area enclosed by the contour
line, in number of the grid points in the original do-
main Ω, at arbitrary height h.

Proof. By recursion. To simplify the notation, we
write tp as the TOF-node pointer de-referencing the
TOF-tree, tp->h as the height associated with this

node. If tp->h < h, then both sides equal 0. If
tp->h = h, then both sides equal 1. Otherwise, the left
side equals 1 plus the sum of the sizes of the TOF-trees
de-referenced by tp->W , tp->N , tp->E and tp->S,
if these pointers are not “NULL”. These numbers are
consistent with the increment (in number of the grid
points) of the contour area in the four relevant direc-
tions.

We give an implementation as recursive function to
calculate the size of a TOF-tree above a given height
h:

procedure compute size:

parameter: level height h

if tp->h < h

return 0;

else

call compute size on non-NULL pointers

tp->W , tp->N , tp->E, tp->S with h;

sum the return values;

fi

return the sum plus 1

In a similar way, the boundary information of a
given TOF-tree at a given height level h can be re-
trieved:

procedure compute boundary:

parameter: level height h

if tp->h < h

save “type III(h)”;

return;

fi

if W not NULL

call compute boundary on W with h;

else

if node de-referenced by tp on ∂Ω

save “type I”;

elseif node of neighbouring position with

(∆x, ∆y) = (−1, 0) belongs to another

TOF-tree T ′

save “type II(T ′)”;

that the objects are “roughly” rigid, i. e. in certain regions-of-
interest. When the TOF ranging system is deployed as a mon-
itoring system to record the trajectories of the moving human
beings (or other objects), the former assumption is still safe to a
large extent, the region-of-interest could be chosen as the head
of shoulders. The shape of these can be fully captured by the
contours at different height levels, see the next section.



fi

fi

if N not NULL

call compute boundary on N with h;

else

if node de-referenced by tp on ∂Ω

save “type I”;

elseif node of neighbouring position with

(∆x, ∆y) = (0, 1) belongs to another

TOF-tree T ′

save “type II(T ′)”;

fi

fi

if E not NULL

call compute boundary on E with h;

else

if node de-referenced by tp on ∂Ω

save “type I”;

elseif node of neighbouring position with

(∆x, ∆y) = (1, 0) belongs to another

TOF-tree T ′

save “type II(T ′)”;

fi

fi

if S not NULL

call compute boundary on S with h;

else

if node de-referenced by tp on ∂Ω

save “type I”;

elseif node of neighbouring position with

(∆x, ∆y) = (0,−1) belongs to another

TOF-tree T ′

save “type II(T ′)”;

fi

fi

return

4 Monitoring System: An Application

In this section we present a simple application of the
TOF data representation. We have a monitoring sys-
tem equipped with a SwissRanger4000 TOF sensor2,
similar to Figure 1. The data will be processed on the
basis of the time frames. See Figure 7 for some raw
data samples.

Figure 7: The range information of a walking person
detected by a TOF sensor, recorded in a time sequence
of twelve frames.

Figure 8: The smoothed data of Figure 7; pixels with
extremely low confidence measure are drawn in red.

In addition to the usual range information,
the SwissRanger sensor series provide us with the
information of the so-called confidence measure
which further indicates how credible the range mea-
surements are. Unfavourable light reflections and
high moving speed are two common troublesome
factors. Therefore, measurements with very low
confidence measure (below a certain threshold) should
be corrected or ignored in the further processing.
See Figure 8 for an example. We leave the pixels
with extremely low confidence measure unfilled
with range information. (The correction of these
measurements may be realized by interpolation.
However, since sometimes it can happen that very

2. Produced by Mesa Imaging AG (Switzerland), homepage
http://www.mesa-imaging.ch.



large areas are composed of pixels with extremely
low confidence measure, this technique is clumsy, too.)

We then call the procedure main (see § 2.2), and get
a series of TOF-trees. We recall the fact that only in
the ideal case a perfectly convex object is represented
by a single TOF-tree; in most cases the detected object
will be understood as multiple connecting TOF-trees.3

See Figure 9.

Figure 9: The expanded TOF trees in the time frames,
drawn in different colours. Note the small white
wholes in the coloured regions which denote the pixels
with extremely low confidence measure.

Now the question is, given a set of TOF-trees
T1, . . . , Tm, how to use them to re-construct the de-
tected objects O1, . . . , On? That is, we need an index
permutation

(1, 1), . . . , (1, k1), . . . , (n, 1), . . . , (n, kn) (8)

of 1, . . . ,m, so that

O1 = T(1,1) + · · · + T(1,k1);

· · ·

On = T(n,1) + · · · + B(n,kn).

(By “+” we mean that multiple TOF-trees can be
combined into a single object.)

On the other hand, TOF-trees belonging to the
same object must share directly (or indirectly through
other TOF-trees) a common boundary (cf. procedure
compute boundary, § 3). By this criterion the prob-
lem of index allotment (8) can be greatly simplified.
For Figure 9, a possible (and reasonable) solution is
given in Figure 10, where every single object is given
a different gray colour. In three (the 3rd, 4th and 7th)
frames, there is a second (very small) object drawn in
a darker gray colour. Introducing further criteria (size,

Figure 10: Combining the TOF-trees in Figure 9.

shape etc.) we may easily exclude objects of this kind
(caused by inaccurate measurements).

Finally with the type I boundary information, the
current experimental system can be deployed as an
electronic counter for objects entering and leaving the
supervised area.

5 Further Discussion

The current paper discusses a new tree-like structure
of TOF data representation. This structure preserves
the complete information in the original dataset
and can be therefore considered as “lossless”. By
traversing the TOF-trees the contour line information
of the original objects measured by the TOF sensor
can be retrieved (roughly speaking, in a similar way
of comparing Lebesgue integration with the Riemann
variant.) These generated contour lines can be used
in further processing of object detection, recognition
and tracking, since by the local change and evolution
of these contour lines the geometric characteristics of
the original measured object are completely captured.

The contour generated using the TOF data struc-
ture is physically identical with that computed by
other simple algorithms (see Appendix). However, the
latter is unstructured, that is, composed only of a set
of raw pixels, and there is no direct and efficient way
to compute the enclosed region of the contour. In the
future work, we will investigate better solutions for ob-
ject detection and tracking problems using the struc-
tured contours.

3. In the sense that some of their leaf nodes are neighbours
with each other in Ω.



A Simplified Contour Line Visualiza-

tion

In the current paper we introduced a tree structure for
the TOF datasets. A convex object captured by the
measuring TOF sensor can be thereby represented as a
tree with a root node manifesting the local maximum.
It is sometimes necessary to visualize the object con-
tour at a given height level. This contour contains the
sets of the nodes which can be retrieved by traversing
the TOF-tree, at the given height.

The standard algorithm of contour generation for
volume data is the marching cube algorithm [11]. This
algorithm applies a sophisticated interpolation scheme
to construct the contour (in the three-dimensional
case, surface) with high resolution.

For the purpose of monitoring the acquired data,
our task is less complicated: that is, since the reso-
lution is already set (and presumably bottle-necked)
by the TOF sensor technology, we concentrate here
on a fast computation. From a hardware perspec-
tive, the visualization of the contour line can be eas-
ily carried out by a scanline-like algorithm. Let a
scalar-valued function H on a two-dimensional grid
Ω = {1, . . . , nx} × {1, . . . , ny} be given. Let nx and
ny denote the width and the height of the grid respec-
tively. We further request that the integers nx and ny

be larger than 2.

The idea of our algorithm is to construct a picture
C composed of (nx−1)(ny−1) points which shows the
changes of the scalar values on Ω. (The size change of
C from H should make no substantial impact on the
visualization, if H is not composed of too few pixel
elements.) First, given a level l height, we build a
bitarray of Bx,y, for x = 0, . . . , nx−1, y = 0, . . . , ny−1

Bx,y =

{

1 if Hx,y ≥ l,

0 else.

In the next step, we build up C row by row from
y = 0 to ny − 2. In each row, the index x goes from
0 to nx − 2. The value of Cx,y is then decided by
Bx,y, Bx,y+1, Bx+1,y and Bx+1,y+1. There are 24 = 16
possible combination of these bit values. We associate
each of them with an integer number of state s in the
range 0, . . . , 15:

sx,y ⇐ 0 , (9.0)

sx,y ⇐ sx,y + Bx,y · 1 , (9.1)

sx,y ⇐ sx,y + Bx,y+1 · 2 , (9.2)

sx,y ⇐ sx,y + Bx+1,y · 4 , (9.3)

sx,y ⇐ sx,y + Bx+1,y+1 · 8 . (9.4)

00002

= 010

00012

= 110

00102

= 210

00112

= 310

01002

= 410

01012

= 510

01102

= 610

01112

= 710

10002

= 810

10012

= 910

10102

= 1010

10112

= 1110

11002

= 1210

11012

= 1310

11102

= 1410

11112

= 1510

Figure 11: The 16 possibilities for sx,y. The upper-left,
lower-left, upper-right and lower-right circles stand for
the grid positions of (x, y), (x, y + 1), (x + 1, y) and
(x + 1, y + 1) respectively. The circles are filled where
the B values are 1.

We observe that only the first row element (x = 0)
needs all the four additions (9.1)–(9.4); for the other
elements, that is, x = 1, . . . , nx − 2, (9.0)–(9.2) are
equivalent (in the high programming languages) with

sx,y ⇐ sx−1,y ≪ 2 ,

where “≪” denotes the bitwise shift operator.

It is obvious that no local contour will exist if the
four grid positions have the same B value (sx,y =
0, 15). Otherwise, we suggest that the pixel in C at
(x, y) be given an indexed colour value, that is,

Cx,y =



















1 sx,y = 1, 2, 4, 7, 8, 11, 13, 14;
2
3 sx,y = 3, 5, 10, 12;
1
3 sx,y = 6, 9;

0, sx,y = 0, 15.

(10)

In (10), the cases sx,y = 1, 2, 4, 7 are the reverse of
those sx,y = 14, 13, 11, 8 respectively (the same is with
3, 5 to 12, 10 and 6 to 9 and 0 to 15). In these cases,
a contour line should go through the current pixel in
C; and Cx,y is given the full colour. The cases sx,y =
3, 5, 10, 12 is less ambiguous than sx,y = 6, 9 and Cx,y

is given a higher value. (10) can be further simplified
to be

Cx,y =

{

1 cx,y = 1, . . . , 14;

0 sx,y = 0, 15,

if C is to be a bitmap. An example of this variant is
presented in Figure 12.

We wish to point out that since the generated con-
tour line is composed of unstructured two-dimensional
grid points, there is no direct way to compute the en-
closed area (that is, size) of the contour which should
be applied as an important means for object recogni-
tion in the later processing.



Figure 12: An example of contour lines of different
level heights. Further refinement in regions-of-interest
(respecting the level height) is possible. The images
reveal that the detected object is not perfectly convex.

Figure 13: The contour lines of different level heights
in a three-dimensional frame. The colour evolution
stands for the change of level heights.
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