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The idea to simulate pedestrian flow by the application of fluid dynamics equations has a certain
history in that field. This approach is based on the application of partial differential equations,
which makes it a macroscopic method. The need to simulate several different species of pedestrians
is a need from the start, which has not been matched very well by numerical simulations of the
macroscopic type. The basis of the description of non dense pedestrian movement by incompressible
fluid flow models consists in the introduction of an empty phase as a species of a multiphase system
of distinct phases. In this article we describe the mathematical model and modifications to the
multiphaseInterFoam-solver of the OpenFOAM library, which makes it applicable in this field and
present results that show capabilities and limitations of the modified solver.
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I. INTRODUCTION

The simulation of pedestrians is an important issue in
transport and emergency applications. The current work
in the field of pedestrian modelling and simulation can
be roughly divided into micro- and macroscopic models.
An overview of present results and models is given by
Dogbe et al. [1].

One particular topic of interesst is the intersecting of
pedestrian crowds, which occurs when path of pedestrian
groups cross. Mircoscopic simulations for intersecting
crowds are numberous and an example is the work by
Helbing et al. [2].

For the simulation of intersecting crowds we tried sev-
eral approaches from microscopic models (cf. Minjie
Chen et al. [3]) to macroscopic models (cf. Berres et al.
[4]) at our own research group. For evaluation purposes,
video recordings of students crossing in a predefined area
has been analysed by Plaue et al. [5].

The present paper introduces a new technique for the
simulation of several sepecies in macroscopic simulation
of pedestrian crowds. The focus is on the modelling of
several species with different destination and the ability
to intersect each other rather than on a precise recon-
struction of known pedestrian phenomena for prediction
purposes. We proceed by first presenting the mathemat-
ical model followed by a concrete implementantion and
some results. Based on the discussions in [6] and [7] we
choose the incompressible Navier-Stokes equations as a
starting point of our model and added boundary con-
ditions and transport equations to allow an intermixing
and seperation of different species.
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II. MATHEMATICAL MODEL

We use the non-stationary, incompressible Navier-
Stokes equations (see for example [8]) combined with
a volume of fluid (VOF) method as a starting point
to simulate Np ∈ N different pedestrian species. Let
P = {1, . . . , Np} be the set of indices of pedestrian
groups, then the VOF method keeps track of the species’
positions by introducing one fraction function per species

αi(x) ∈ [0, 1],

that describes the fill level at position x ∈ Ω of species
i ∈ P. The fraction function can be discontinuous, espea-
cially when discretized for implementation purposes. We
demand the sum of all fraction functions to be one, i.e.∑

i∈P
αi = 1.

A standard VOF method uses the velocity computed
by the Navier-Stokes equation with the overall density
ρ =

∑
i∈P ρiαi, µ =

∑
i∈P µiαi and changes every αi by

solving the transport equation

∂αi

∂t
+ v · ∇αi = 0 for all i ∈ P. (1)

In the course of pedestrian simulation we tried to sim-
ulate group crossing. Therefore, it was necessary to solve
three modelling problems:

1. simulation of spaces without a pedestrian species

2. distinct species forces

3. seperation of species
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A. Empty Spaces

An empty space is simulated by using a pedestrian
group f ∈ P, Pwf = P\{f}. This so-called fill-species is
able to leave Ω by flowing through an additional dimen-
sion, i.e. for a two-dimensional Ω the third dimension or
z-axis. It is therefore necessary to simulate a three di-
mensional domain for a two dimensional problem. Doing
this we can model density variations of pedestrians by
adding or reducing of the fill-species in the third direc-
tion.

The inflow and outflow over the third dimension is
implemented using special boundary conditions that are
aware of the fill-species. We used a solver that is based
on an operator splitting approach. Therefore, we have to
choose two boundary conditions; one for the velocity and
one for the pressure variable.

The boundary condition for the velocity is defined as

n · v = 0, for n ·Φ ≥ 0, αf = 0 (2)

n · ∇(n · v) = 0 otherwise,

where Φ is the velocity value adjacent to the boundary
condition face from the last pressure correction step.

The pressure boundary condition is defined as

p =

{
p0 − 1

2ρ‖v‖
2, for n ·Φ < 0

p0, for n ·Φ ≥ 0, αf > 0
(3)

n · ∇p = 0, for n ·Φ ≥ 0, αf = 0

on the z-axis. The other sides of the domain can be
chosen as slip boundary conditions.

B. Species Forces

Each species of the intersection of pedestrians needs
to have a distinct destination. Therefore the need to im-
plement species specific forces and velocities arises. Each
pedestrian species i ∈ Pwf has a desired velocity vd

i , that
is the velocity a pedestrian species has without the influ-
ences of other pedestrian species.

The desired velocity gets transformed into a resulting
force for the right hand side in the Navier-Stokes equa-
tion. Following the nomenclature by Helbing et al. for
microscopic models (cf. [9], [10]), we introduce a so-called
behavioural force

f := C2(αbil)
(
C1(αbil)

∑
i∈Pwf

αiv
d
i − v

)
, (4)

with

αbil :=
∑
i∈Pwf

αi

and add it to the right hand side of the Navier-Stokes
equation. The functions C1 and C2 control the pedestrian

behaviour, e.g. a choice of

C1(αbil) := (1− αbil)

C2(αbil) := αbil

approximates the pedestrian fundamental diagram.

C. Seperation of Species

The seperation of species is not naturally given by the
discretized VOF method. Equation (1) does not provide
a mean of seperation of once mixed cells due to the fact
we compute until now only a global velocity v out of the
Navier-Stokes equations. Thus, we introduce an addi-
tional transport equation

∂αi

∂t
−∇ ·

(
C3(αf )

vd
i

‖vd
i ‖
αi

)
= 0 (5)

for all i ∈ Pwb followed by

αf = 1−
∑
i∈Pwf

αi (6)

with C3 defining the magnitude of the seperation velocity
with a typical value of

C3(αf ) =

{
0.01, for αf > 0

0, for αf = 0.

III. IMPLEMENTATION

We implemented the model by modifying the already
available multiphaseInterFoam solver in OpenFOAM
[11]. The multiphaseInterFoam solver uses the finite vol-
ume method (see for a reference of finite volume meth-
ods [12]) for the incompressible Navier-Stokes equations
and further implements the VOF method for multiphase
simulations. The Navier-Stokes equation is solved us-
ing the so-called Pressure Implicit with Splitting Oper-
ators (PISO) algorithm [13]. The solver consists mainly
of three distinct steps. The velocity predictor step, the
pressure correction loop and the fraction function ad-
justments. It further implements a surface tension force,
which has been disabled for our experiments, but might
be used in combination with our model, too.

We need to introduce some notation to proceed. We
will call E the set of all velocity nodes and N (i), i ∈ E
the set of all neighbor nodes of i, that is the nodes whose
cell share a face with the cell of i. Let us denote by Vi
the volume of a cell for node i ∈ E .

A. The predictor-corrector method

Let ρg and µg be defined as

ρg =
∑
i∈P

ρiαi, µg =
∑
i∈P

µiαi,
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where µi and ρi are species dependend and f be computed
by (4). For the most simple case we use the explicit Euler
method.

To complete the time step a pressure correction is nec-
essary. At the end it runs into a solution of discretized
Poisson equation for the pressure p and the correction of
the velocity by

vn+1 = vjac −∇p.

The boundary conditions (2) and (3) are used for
the z-axis in the Navier-Stokes equations and continuity
equation, respectively. The velocity’s boundary condi-
tions have been set to slip at non-penetratable walls and
boundary conditions for the pressure have been chosen as
zero gradient. The pressure correction loop is repeated
until the pressure converges or a maximum number of
rounds is reached.

B. Adjustment of the Fraction Function

The computation of vn+1 allows the adjustment of the
fraction function via (1). It follows the seperation of
the species by solving (5) and (6). Usually a downwind
scheme should be used for the evaluation of C3, so it is
set depending on the αf value in the target cell.

When the fraction function has been adjusted, the ve-
locity predictor step continues with the next time step.

IV. NUMERICAL RESULTS

We produced simulation results for quadratic geome-
tries with an orthogonal mesh and on a more complex
geometry inspired by real world experiments in the Tech-
nical University of Berlin [5].

Table I shows the results for a quadratic area with two
species crossing in 180 degrees.

As can be seen from table I the species cross each
other, show stripe formation, create lanes and reach their
desination on opposite walls. At the end of the simulation
the species are completely seperated. It should, however,
be noted, there are several effects originating in the im-
puls conservation, which are rather unnatural for crowd
simulation. For example the the occurence of a splash
at the moment the species hit a wall with larger values
of v, which is due to the impuls conservation and can
be seen at time T = 20.0 in table I. There, one is able
to see species one splashing back at the bottom wall.
Further, the masses have a non-neglectable acceleration
time, which is in contrast to pedetrians behaviour.

Table II shows the results for a quadratic area with
two species crossing in 90 degrees. As for the 180 degrees
example both species cross, seperate and reach their des-
tination. Impuls effects again play a big role in the simu-
lation, since generally the bigger mass wins and squeezes

the smaller mass out of their way. Another effect is the
acceleration of a small mass due to squeezing by a much
larger mass, which is also unnatural for pedestrians.

We made real world experiments, that can be used to
test parameters and validate the numerical results. In
2010 and 2011 we performed several experiments with
up to four crowd groups that were crossing in a prede-
fined area. The experiments have been recorded on video
and we were able to observe common crowd phenomena
like lane formation and isolated groups (c.f. [5]). It also
allowed us to get quantitative results for evaluation pur-
poses by video analysis [5].

Therefore, we made numerical simulation on a mesh
with a geometry similar to the control area in the real
world experiments. The simulation in the control area
shows lane formation and congestions before an entrance,
see picture 1. The origin of the congestions lays in
the very static desired velocities we are currently using.
A more dynamical desired velocity that better models
pedestrian long and short sight behaviour is subject of
future work.

Experiments showed the fill-species and the pedestrian
species should have the same density ρ. Otherwise, we
may create artificial impulses through the seperation step
that could move heavier species to a place with higher
velocity. Although different ρ values for different species
will work, the impuls bilance should be kept in mind.

We were also able to implement very basic in- and out-
let boundary conditions for multiple species, i.e. the fill-
species and a pedestrian species. For inlet boundaries we
use a fixed value condition for the velocity together with
the pressure boundary condition 3. For outlet boundary
conditions we use 3 and 2 for the pressure and velocity,
respectively. Further research should be put in in- and
outlet boundary conditions for more complex in- and out-
flow scenarios of pedestrian, e.g. the rate of flow should
be controlable depending on the fill rate of cells next to
the inlet boundary.

V. DISCUSSION

We presented a new ansatz for the simulation of pedes-
trian crossing and multispecies simulation. The imple-
mentation is based on the incompressible Navier-Stokes
equations with a volume of fluid ansatz that has been
altered by special boundary conditions for the pressure
and the velocity as well as an added transport equation
for the seperation of intermixed species. The proposed
model allowed us to reproduce common pedestrian cross-
ing effects like stripe and lane formation. It also allows
us to simulate higher numbers (more than two) of pedes-
trian species.

The model showed impuls effects originating from the
Navier-Stokes equations, which are unnatural for pedes-
trian behaviour. Therefore, it is the subject of future
work to use a different set of equations and to study
the stability and conservation properties of the solver in
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T = 0.00 T = 3.33

T = 13.32 T = 16.65

T = 20.00 T = 30.00

TABLE I. Simulation of 180 degress crossing with max(u) = 10.0, vps = 0.04, max(Fbil) = 1000 as parameters.

more detail. Another topic is the implementation of open
boundaries for the in- and outflow of pedestrians in the
simulation.

VI. ACKNOWLEDGMENT

The authors were funded by the Institut für Mathe-
matik, Technische Universität Berlin through the DFG
project “Methods for modeling and large-scale simula-
tion of multi-destination pedestrian crowds”.

[1] Bellomo N, Dogbe C. On the Modeling of Traffic and
Crowds: A Survey of Models, Speculations, and Perspec-
tives. SIAM Review. 2011;53(3):409–463. Available from:
http://link.aip.org/link/?SIR/53/409/1.

[2] Helbing D, Buzna L, Johansson A, Werner T. Self-
Organized Pedestrian Crowd Dynamics: Experiments,

Simulations, and Design Solutions. Transportation Sci-
ence. 2005 February;39:1–24. Available from: http:

//dl.acm.org/citation.cfm?id=1247226.1247227.
[3] Chen M, Bärwolff G, Schwandt H. A study of step cal-

culations in traffic cellular automaton models. In: Intel-
ligent Transportation Systems (ITSC), 2010 13th Inter-

http://link.aip.org/link/?SIR/53/409/1
http://dl.acm.org/citation.cfm?id=1247226.1247227
http://dl.acm.org/citation.cfm?id=1247226.1247227


5

T = 0.00 T = 2.78

T = 5.56 T = 8.34

T = 11.12 T = 13.89

TABLE II. Simulation of 90 degress crossing with max(u) = 1.0, vps = 0.1, max(Fbil) = 1000 as parameters.

national IEEE Conference on; 2010. p. 747 –752.
[4] Schwandt H, Berres S. A Simulation Model for Two-

phase Pedestrian Flow. AIP Conference Proceedings.
2011;1389(1):1825–1828. Available from: http://link.

aip.org/link/?APC/1389/1825/1.
[5] Plaue M, Chen M, Bärwolff G, Schwandt H. Trajec-

tory Extraction and Density Analysis of Intersecting
Pedestrian Flows from Video Recordings. In: Stilla
U, Rottensteiner F, Mayer H, Jutzi B, Butenuth M,
editors. Photogrammetric Image Analysis. vol. 6952 of
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg; 2011. p. 285–296. 10.1007/978-3-642-24393-
6 24. Available from: http://dx.doi.org/10.1007/

978-3-642-24393-6_24.
[6] Bärwolff G, Slawig T, Schwandt H. Modeling of Pedes-

trian Flows Using Hybrid Models of Euler Equations
and Dynamical Systems. AIP Conference Proceedings.

2007;936(1):70–73. Available from: http://link.aip.

org/link/?APC/936/70/1.
[7] Henderson LF. The Statistics of Crowd Fluids. Nature.

1971 Feb;229(5284):381–383. Available from: http://

dx.doi.org/10.1038/229381a0.
[8] Slawig T. Macroscopic modeling of pedestrian flows.

Technische Universität Berlin; 2008.
[9] Helbing D, Molnár P. Social force model for pedes-

trian dynamics. Phys Rev E. 1995 May;51:4282–4286.
Available from: http://link.aps.org/doi/10.1103/

PhysRevE.51.4282.
[10] Johansson A, Helbing D, Shukla P. Specification of the

social force pedestrian model by evolutionary adjustment
to video tracking data. Advances in Complex Systems.
2007;(10):271–288.

[11] OpenFOAM 1.7.x. The OpenFOAM Foundation; 2011.
Available from: http://www.openfoam.org.

http://link.aip.org/link/?APC/1389/1825/1
http://link.aip.org/link/?APC/1389/1825/1
http://dx.doi.org/10.1007/978-3-642-24393-6_24
http://dx.doi.org/10.1007/978-3-642-24393-6_24
http://link.aip.org/link/?APC/936/70/1
http://link.aip.org/link/?APC/936/70/1
http://dx.doi.org/10.1038/229381a0
http://dx.doi.org/10.1038/229381a0
http://link.aps.org/doi/10.1103/PhysRevE.51.4282
http://link.aps.org/doi/10.1103/PhysRevE.51.4282
http://www.openfoam.org.


6

FIG. 1. Simulation done with a complex geometry inspired by real world experiments.

[12] Ferziger JH, Perić M. Computational methods for fluid
dynamics. 3rd ed. Springer; 2002.

[13] Issa RI. Solution of the implicitly discretised fluid flow
equations by operator-splitting. Journal of Computa-

tional Physics. 1986;(62).


	 A Multispecies Macroscopic Pedestrian Model approximated by a 3d incompressible flow
	Abstract
	Introduction
	Mathematical Model
	Empty Spaces
	Species Forces
	Seperation of Species

	Implementation
	The predictor-corrector method
	Adjustment of the Fraction Function

	Numerical Results
	Discussion
	Acknowledgment
	References


