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1 Introduction

During the growth of crystals crystal defects were observed under some condi-
tions of the growth device. A transition from the twodimensional flow regime of
a crystal melt in axisymmetric zone melting devices to an unsteady threedimen-
sional behavior of the velocity and temperature field was found experimentally.
This behavior leads to striations as undesirable crystal defects. To avoid such
crystal defects it is important to know the parameters, which guarantee a stable
steady twodimensional melt flow during the growth process.
There are several possibilities for parameter finding. In this paper optimization
problems will be discussed. From the experiment and the practical crystal pro-
duction process it is known that an unsteady behavior of the melt and vorticies
near the fluid-solid-interphase decrease the crystal quality. Thus it makes sense
to look for example for

(i) flows, which are nearly steady and
(ii) flows, which have only a small vorticity in a certain region of the melt zone.

This leads to tracking type optimization problems (i) with functionals like

J(u, θc) =
1

2

∫ T

0

∫
Ω

|u − u|2 dΩdt +
α

2

∫ T

0

∫
Γc

(θ2
c + θ2

ct
) dΩdt (1)

and problems with optimization functionals of the form

J(u, θc) =
1

2

∫ T

0

∫
Ω

|curlu|2 dΩdt +
α

2

∫ T

0

∫
Γc

θ2
c dΩdt . (2)

u is the velocity vector field in the melt and u is the state, which we want to
have, θc is the control temperature on the control boundary Γc. The discussed
methods of deriving optimization and the iterative algorithms of the evaluation
of necessary optimality conditions are investigated by the solution of typical
crystal growth problems. Because of the difficulties to construct or to prescribe
desirable flow fields we use u which we got by a certain forward solution of the
Boussinesq equation system or we set u equal to zero. But with the optimization
strategy we are ready to compute an optimal control for a given desirable flow
field u by crystal growth engineers.
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2 Mathematical model

The crystal melt is described by the Navier-Stokes equation for an incompress-
ible fluid using the Boussinesq approximation coupled with the convective heat
conduction equation and the diffusion equation. Heat conductivity and viscos-
ity depend on the temperature. Because of the axisymmetric situation of the
melting zone we write down the equations in cylindrical coordinates. Thus we
have a Boussinesq equation system in cylindrical coordinates for the velocity
u = (u, v, w), the pressure p and the temperature θ.

ut + (ruu)r/r + (uv)ϕ/r + (wu)z − v2/r = (3)

− pr + ((ru)r/r)r + uϕϕ/r2 − 2vϕ/r2 + uzz ,

vt + (ruv)r/r + (vv)ϕ/r + (wv)z + uv/r = (4)

− pϕ/r + ((rv)r/r)r + vϕϕ/r2 + 2uϕ/r2 + vzz ,

wt + (ruw)r/r + (vw)ϕ/r + (ww)z = (5)

− pz + (rwr)r/r + wϕϕ/r2 + wzz + Gr θ ,

(ru)r/r + vϕ/r + wz = 0 , (6)

θt + (ruθ)r/r + (vθ)ϕ/r + (wθ)z =
1

Pr
[(rθr)r/r + (θϕ)ϕ/r2 + (θz)z] + f , (7)

in the cylindrical melt zone (height H , radius R). u, v, w and p are the primitive
variables of the velocity vector and the pressure, ρ and θ denote the density and
the temperature, Gr is the Grashof number, Pr is the Prandtl number, and f
stands for an energy source.
For the velocity no slip boundary conditions are used. At the interfaces between
the solid material and the fluid crystal melt we have for the temperature in-
homogenous Dirichlet data, i.e. the melting point temperature. The boundary
conditions are of the form

u = ud and v = w = 0 on the whole boudary, (8)

θ = θc for r = R, 0 ≤ z ≤ H, ϕ ∈ (0, 2π), (control boundary Γc), (9)

θ = θd, for 0 ≤ r ≤ R, z = 0, z = H, ϕ ∈ (0, 2π). (10)

In the case of the Czochralski crystal growth technique with ud we have the
possibility to describe a certain crystal and crucible rotation. In the case of
zone melting flow ud equals zero. The initial state was assumed as the neutral
position of the crystal melt (v = 0) and a temperature field, which solves the
non convective heat conduction equation with the given temperature boundary
conditions.
The material properties and the dimensionless parameters for the investigated
crystal close the initial boundary value problem for the description of the melt
flow.
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3 Optimization

For the calculus of optimization and the derivation of an optimization system
we use the following dimesionless mathematical model in cartesian coordinates,
which reads as

ut + (u · ∇)u − ∆u + ∇p − Gr θ g = 0 on ΩT , (11)

−div u = 0 on ΩT , (12)

θt + (u · ∇)θ −
1

Pr
∆θ − f = 0 on ΩT . (13)

The vector g is directed in the z-direction, i.e. g = (0, 0, 1). We will now discuss
the case f = 0. u is the velocity vector and ΩT = Ω × (0, T ) is the considered
time cylinder. For the boundary conditions we have

u = ud on Γ × (0, T ), θ = θc on ΓcT , and θ = θd on Γd × (0, T ), (14)

where Γ is the boundary of the spatial region Ω ⊂ IR3, on which the problem
lives, and Γc is the control boundary, Γd is the Dirichlet part of the boundary
and ΓcT = Γc × (0, T ). For t = 0 we have the initial condition u = 0 and
a temperature field, which solves the non convective heat conduction equation
with the given temperature boundary conditions θ = θ0 on Ω.
The use of formal Lagrange parameter technique with respect to the functional
of type (1) means the consideration of the Lagrange functional

L(u, p, θ, θc, µ, ξ, κ, χ) = J(u, θc)+ < µ, mo >ΩT

− < ξ, div u >ΩT
+ < κ, en >ΩT

+ < χ, θ − θc >ΓcT
. (15)

mo and en stand for the left sides of the equations (11) and (13), and for example
for < µ, mo >ΩT

we have

< µ, mo >ΩT
=

∫
ΩT

[ut + (u · ∇)u − ∆u + ∇p − Gr θ g] · µ dΩ dt . (16)

µ, ξ, κ and χ are Lagrange parameters. We will not discuss the functional an-
alytical aspects of the used Lagrange method, i.e. function spaces, smoothness
properties etc. in detail. A very good overview over the functional analytical
background and the foundation of the optimization of Navier-Stokes problems
is developed in [2].
To find candidates u(θc) and θc, which minimize the functional (1) we have to
analyze the necessary conditions

Luũ = Juũ (17)

+ < µ, mou >ΩT
− < ξ, divũ >ΩT

+ < κ, enu >ΩT
= 0,

Lpp̃ = < ∇p̃, µ >ΩT
= 0, (18)

Lθθ̃ = < −Gr g θ̃, µ >ΩT
+ < κ, enθ >ΩT

+ < χ, θ̃ >ΓcT
= 0, (19)

Lθc
θ̃c = Jθc

θ̃c+ < −χ, θ̃c >ΓcT
= 0 . (20)
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Let us have a closer look at the condition (17). For Juũ we find

Juũ =

∫
ΩT

(u − u) · ũ dΩdt . (21)

The term < µ, mou >ΩT
means the derivative of the Navier-Stokes equation,

i.e.

< µ, mou >ΩT
=

∫
ΩT

[ũt − ∆ũ + (u · ∇)ũ + (ũ · ∇)u] · µ dΩdt . (22)

The discussion of the term < κ, enu >ΩT
gives

< κ, enu >ΩT
=

∫
ΩT

[(ũ · ∇)θ]κ dΩdt . (23)

Using the rules of integration by parts from (21)-(23) and (17) we get for all test
vector functions ũ

Luũ =

∫
ΩT

[−µt −∆µ+(∇u)t
µ− (u ·∇)µ+∇ξ +(u−u)+κ∇θ] · ũ dΩdt = 0 ,

or

−µt − ∆µ + (∇u)t
µ − (u · ∇)µ + ∇ξ = −(u − u) − κ∇θ in ΩT , (24)

with the boundary condition and the final condition

µ = 0 on Γ × (0, T ), and µ(T ) = 0 in Ω . (25)

The necessary condition (18) gives for all test functions p̃ the equation

−div µ = 0 in ΩT . (26)

The condition (19) means

Lθ θ̃ =

∫
ΩT

−Gr g · µ θ̃ dΩdt

+

∫
ΩT

[θ̃t −
1

Pr
∆θ̃ + u · ∇θ̃]κ dΩdt +

∫
ΓcT

χθ̃ dΓcdt = 0 ,

or after the integration by parts for all test functions θ̃ we get the equation

−κt −
1

Pr
∆κ − (u · ∇)κ = Gr g · µ in ΩT , (27)

with the boundary condition and the final condition

κ = 0 on Γ × (0, T ), and κ(T ) = 0 in Ω , (28)

and the choice of χ as

χ = −
1

Pr

∂κ

∂n
on ΓcT .
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The evaluation of the condition (20) finally gives

α(−θctt
+ θc) = χ (= −

1

Pr

∂κ

∂n
) on ΓcT , (29)

with the time boundary conditions

θc(0) = θ0 and θct
(T ) = 0 , (30)

where θ0 means a temperature distribution on Γc at the beginning of the melting
process. Now we can summarize, and the fully optimization system consists of

• the forward model with the Boussinesq equations (11),(12),(13), the bound-
ary condition (14) and the given initial state for the velocity field u, the
pressure p and the temperature θ, and

• the adjoint model with the equations (24),(26),(27),(29), and the conditions
(25),(28),(30) for the adjoint variables µ, ξ, κ and the control θc,

and we will call it optimization system (I). The global existence of a solution of
the forward problem is well known (see [4], [5]). In three dimensions only the
local uniqueness of the forward solution could be shown. Hinze [2] has shown
the existence and uniqueness of a solution of the adjoint model. Minimization
functionals of the considered types (1) are investigated by Hinze [2], and the
discussion of qualitative questions like existence of a minimum of

Ĵ(θc) := J(u(θc), θc) ,

will be done later.
Now we will discuss the question, do we have enough smoothness of our control
to work with the functional

J(u, θc) =
1

2

∫ T

0

∫
Ω

|u − u|2 dΩdt +
α

2

∫ T

0

∫
Γc

(θ2
c + θ2

ct
) dΩdt

and the resulting two point boundary value problem

α(−θctt
+ θc) = −

1

Pr

∂κ

∂n
on Γc × (0, T ) , θc(0) = θ0 and θct

(T ) = 0 ?

Instead of the functional (1) we can use

J(u, θc) =
1

2

∫ T

0

∫
Ω

|u − u|2 dΩdt +
α

2

∫ T

0

∫
Γc

(θ2
c + η2) dΩdt , (31)

and in addition to our Boussinesq equation system the ordinary differential equa-
tion

θct
= η on ΓcT . (32)

Initial conditions will be considered later. With the new equation (32) we need
one more Lagrange parameter and the Lagrange function reads

L(u, p, θ, θc, µ, ξ, κ, χ, ζ) = J(u, θc, η)+ < µ, mo >ΩT

− < ξ, div u >ΩT
+ < κ, en >ΩT

+ < χ, θ − θc >ΓcT
+ < ζ, θct

− η >ΓcT
.
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Now we will analyze the derivatives of L over θc and η. We find

Lθc
θ̃c = Jθc

θ̃c+ < −χ, θ̃c >ΓcT
+ < ζ, θ̃ct

>= 0 (33)

Lηη̃ = Jη η̃+ < ζ,−η̃ >ΓcT
= 0 . (34)

The discussion of the equation (33) gives after integration by parts

αθc − χ = ζt, with ζ(T ) = 0 . (35)

From equation (34) we have

ζ = αη or ζ = αθct
. (36)

That means in the case of the functional (31) we have to solve the ode system

θct
=

1

α
ζ, θc(0) = θ0 on ΓcT (37)

−ζt = −αθc + χ, ζ(T ) = 0 on ΓcT , (38)

instead of the two point boundary value problem (29),(30) for the functional (1).
For the functional (31) we can summarize the fully optimization system and we
get

• the forward model with the Boussinesq equations (11),(12),(13), the bound-
ary condition (14) and the given initial state for the velocity field u, the
pressure p and the temperature θ, and

• the adjoint model with the equations (24),(26),(27),(37),(38), and the con-
ditions (25),(28) for the adjoint variables µ, ξ, κ , ζ and the control θc,

and we will call it optimization system (II). It is easy to see, that if we have
enough smoothness of our control θc the ode system (37),(38) is equivalent to
the two point boundary value problem (29),(30).

4 Optimization with infinite degrees of freedom vs.

optimization of finite parameters

In our concept we look for a boundary control θc, which has infinite degrees of
freedom. The prize we have to pay for this is high, because of the very com-
plicated optimization system consisting of the forward and the adjoint system,
which is hard to solve. Other concepts (for example [6]) look for special control
functions, which only depend on a few parameters (in [6] are two parameters
used). This restriction gives the possibility to minimize a given functional in the
case of two parameters by a Newton method, and for one Newton iteration the
forward problem must be solved three times.
Because of the more general concept a result θc of the presented optimization
strategy will be optimal in a more general sense, than prescribed temperature
profiles, which only depend on two parameters. But the easier implementation
of the method, presented in [6], makes it to a valuable optimization tool.
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5 To the numerical solution method of the full problem

The optimization system (I) is now under consideration for a numerical solu-
tion. The used time discretization should be demonstrated for the forward prob-
lem (11)-(14), i.e. the boussinesq equation system. The adjoint problem will be
treated in a similar way. Quantities without upper indices are considered at the
old time level tn = nτ with the time step τ . The upper index n + 1 means the
values at the new time level tn+1 = (n + 1)τ . With τ = T

Z we have a discretiza-
tion t0 = 0, t1 = τ, t2 = 2τ, . . . , tZ = Zτ = T of the considered time intervall
[0, T ]. We use an implicit time discretization related to the conductive terms
controlled by the weighting parameters σm, σh ∈]0, 1]. Thus we have the time
integration scheme

u
n+1 − u

τ
+ (u · ∇)u − ∆(σmu + (1 − σm)un+1)

+∇(σmp + (1 − σm)pn+1) − Gr θn+1
g = 0 on ΩT (39)

−div u
n+1 = 0 on ΩT (40)

θn+1 − θ

τ
+ (u · ∇)θ −

1

Pr
∆(σhθ + (1 − σh)θn+1) = 0 on ΩT . (41)

The divergence of the equation (39) gives

−(1 − σm)∆pn+1 = −
1

τ
div ũ , (42)

with
ũ = u + τ [(u · ∇)u − σm∆u + σm∇p + Gr θn+1

g] . (43)

With the solution pn+1 of the equation (42) the velocity field u
n+1 we get as

the solution of

1

τ
u

n+1 − (1 − σm)∆u
n+1 =

1

τ
u − (1 − σm)∇pn+1 . (44)

The used time discretization means the solution of a Poisson equation for pn+1,
four Helmholtz equations for the components of u

n+1 and θn+1. The spatial
finite volume discretization developed in [1] of the equations (42), (44) and (41)
leads to linear equation systems with symmetric coefficient matrices which we
solve with conjugate gradient methods. The same time discretization is used for
the adjoint problem.
Now we discuss some aspects of our special axisymmetric case. If we have ax-
isymmetric conditions we can transform the adjoint equations into a cylindrical
coordinate system. Using the adjoint divergence condition div µ = 0 we can
write the adjoint equations in the following quasi conservative form. For the ad-
joint velocity µ = (µ, ν, ω) in the cylindrical coordinate system with the radial
component µ, the azimutal component ν and the z-component ω using the ad-
joint divergence condition div µ = 0 we can write the adjoint equations (24) in
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the following quasi conservative form.

−µt − ((rµ)r/r)r − µϕϕ/r2 + 2µϕ/r2 − µzz + µur + νvr + ωwr (45)

−(ruµ)r/r − (vµ)ϕ/r − (wµ)z + vν/r + ξr = −(u − u) − κθr

−νt − ((rν)r/r)r − νϕϕ/r2 − 2νϕ/r2 − νzz (46)

+µuϕ/r + νvϕ/r + ωwϕ/r + (νu − µv)/r

−(ruν)r/r + (vν)ϕ/r − vµ/r − (wν)z + ξϕ/r = −(v − v) − κθϕ/r

−ωt − (rωr)r/r − ωϕϕ/r2 − ωzz + µuz + νvz + ωwz (47)

−(ruω)r/r − (vω)ϕ/r − (wω)z + ξz = −(w − w) − κθz .

From equation (27) we get for the adjoint temperature κ

−κt−
1

Pr
[(rκr)r/r+κϕϕ/r2 +κzz]− (ruκ)r/r− (vκ)ϕ/r− (wκ)z = Gr ω . (48)

Equation (48) is a convective heat conduction equation and the discretization
can be done like those in [1]. In the equations (45)-(47) the terms

(∇u)t
µ and κ∇θ

are not known from the classical Navier-Stokes equations. Using a staggered grid
finite volume method, u and µ live at the same gridpoints, also v and ν, w and
ω, and θ and κ. Let us discuss the first component of (∇u)t

µ and κ∇θ, we get
in a canonical way

(µur + νvr + ωwr)i+1/2jk ≈ (49)

µi+1/2jk[(ui+3/2jk + ui+1/2jk) − (ui+1/2jk + ui−1/2jk)]/(2∆xi+1/2)

+νi+1/2jk[(vi+1j+1/2k + vi+1j−1/2k) − (vij+1/2k + vij−1/2k)]/(2∆xi+1/2)

+ωi+1/2jk[(wi+1jk+1/2 + wi+1jk−1/2) − (wijk+1/2 + wijk−1/2)]/(2∆xi+1/2)

with

νi+1/2jk = (νij+1/2k + νi+1j+1/2k + νij−1/2k + νi+1j−1/2k)/4 and

ωi+1/2jk = (ωi+1jk+1/2 + ωi+1jk−1/2 + ωijk+1/2 + ωijk−1/2)/4 ,

and
κθr ≈ 0.5(κi+1jk + κijk)[θi+1jk − θijk]/∆xi+1/2 . (50)

For the control θc we got the equation (29)

−θctt
+ θc = χ (= −

1

αPr

∂κ

∂n
) on ΓcT ,

with the boundary conditions θc(γ, 0) = θc0 and θct
(γ, T ) = 0 for γ ∈ Γc. The

numerical solution of this two point boundary value problem is done with a finite
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volume method in space and time.
The solution of the discretized system (11)-(14) and (24)-(30) is difficult and
expensive, because of the opposite time direction of the forward system (11)-(14)
and the adjoint system (24)-(30). That means we know the forward solution u, θ
on the whole time interval [0, T ] to get the adjoint solution µ, κ, θc and vice
versa.
If we have discretized the time interval [0, T ] by Z timesteps τ = 1

Z and the
dimensions of the spatial discretizations are N , M and P a direct solution of the
whole system means the solution of an algebraic equation system with 2Z×N ×
M × P × 10 equations. For the representation of the used iteration method we
denote with H := −∂tt + id an invertible operator, which describes the solution
of the two point boundary value problem (29),(30) on ΓcT , i.e.

H(θc) = χ or θc = H−1(χ) .

Iterative methods of the form

i) choose a suitable start value of θc,
ii) solve the forward problem and get [u, θ](θc)
iii) solve the adjoint problem and get [µ, κ](u, θ)

update of θc by θc := σrθc + (1 − σr)H
−1(χ), σr ∈]0, 1[,

iv) until convergence, go to ii),

are used. In the case of the optimization system (II) we have to solve the ode
system (37),(38) instead of the two point boundary value problem (29),(30). We
do this by

θn+1
c − θn

c

τ
=

1

α
ζn+1, n = 0, . . . , Z − 1 , θ0 = θ0 , (51)

−
ζn+1 − ζn

τ
= −αθn

c + χn, n = Z − 1, . . . , 0 ζZ = 0 . (52)

The combination of (51) and (52) gives with

−
θn+1

c − 2θn
c + θn−1

c

τ2
+ θn

c =
1

α
χn, n = 1, . . . , Z − 1, θ0 = θ0,

θZ
c − θZ−1

c

τ
= 0 ,

(53)
a numerical solution method of (29),(30). That means in the case of the conver-
gence of the fixpoint iteration for the full problem the solution of the optimization
system (I) is a solution of (II) and vice versa. We controlled this fact by the im-
plementation of the two methods and found equal solutions in both cases.
During one time step of the forward problem we have to solve equations of the
type (42), a Poisson equation, and with (44),(41) four Helmholtz equations (for
the adjoint problem also five equations of the same type). We do this with a
preconditioned conjugate gradient method.
The above described fixpoint iteration i)-iv) with relaxation works good, and
the results of the numerical simulations will be demonstrated now.
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6 Results of the numerical solution of the full problem

As a first testproblem we consider an idealized Czochralski crystal growth pro-
cess. The figure 1 shows the geometrical situation of the crucible. The above

solid crystal

crystal melt

crucible

control boundary

Ω

Γc

R

H

H

z

r
R

Rcθ θ

θ

Ω
Γ

s t

c

b

Fig. 1. Physical domain for Czochralski growth

discussed model and the optimization system is formulated and implemented in
three dimensions. Because of the huge computational amount we test the opti-
mization procedure for the twodimensional case u = 0 (azimuthal component of
the velocity) and ∂Q

∂ϕ = 0 for all transport quantities Q (u, p, θ, etc.). Thus we

have a twodimensional integration region (see figure 1). Rc is the radius of the
solid crystal, R is the crucible radius and H is the height of the crystal melt. θs is
the melting point temperature of the crystal material, θb and θt are temperatures
with θb > θt > θs. In the table 1 the used geometrical and material parameters
for a Silicium Czochralski growth process found in [8] are summarized.

parameter symbol value

crucible radius R 0.15 m

crystal radius Rc 0.075 m

height of the melt H 0.4 m

melting point temperatur θs 1683 K

thermal diffusivity a 0.264e-04 m
2

s

kinematic viscosity ν 0.279e-06 m
2

s

thermal expansion coefficient β 1.41*10−4 K−1

Table 1. Parameters of Silicium and of the melt geometry
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The material parameters give a Grashof number of 1.5e+09 and this magnitude
leads to a strong CFL restriction for the used time discretization. It’s only possi-
ble to work with time steps of τ ≈ 10e−05. But it is not so strong than it seems.
One dimensionless time step τ = 10e− 05 is equal to a time of 0.80645 seconds.
For the thermal boundary conditions of our Czochralski process we have

θ = θc for r = R, 0 ≤ z ≤ H, ϕ ∈ (0, 2π), (control boundary Γc) (54)

θ = θs, for 0 ≤ r ≤ Rc, z = H, (55)

θ = θs +
r − Rc

R − Rc
(θt − θs), for Rc ≤ r ≤ R, z = H, (56)

θ = θt, for 0 ≤ r ≤ R, z = 0. (57)

For t = 0 we start with a given temperature profile θc = θc0 on Γc and with
θt = 1690 K, θb = 1708 K for θc0 we have

θc0(z) = θb +
z

H
(θt − θb) .

The velocity field u, which we want to approach, is a typical toroidal steady
twodimensional velocity field. The figure 2 shows the temperature θc on ΓcT as
the result of the optimization over 60 time steps (= 48,4 seconds). In figure 3
the linear profile θc(0) = θ0 at the time t = 0 and the profile θc(T ) are plotted.
The figure 4 shows the development of the functional value during the iteration
(regularization parameter α = 0.5, relaxation parameter σr = 0.75). The figure
4 shows the fast convergence of the fixpoint iteration with relaxation, and these
results are better than the results with gradient methods using time step control.
As a second testproblem we consider a zone melting configuration. In the table 2
the used geometrical and material parameters for the crystal (Bi0.25Sb0.75)2Te2,
a composition of bismuth point fifty antimony one point fifty telurium two, are
summarized ([1]).

parameter symbol value

radius of the ampulla R 0.004 m

height of the melt H 0.016 m

melting point temperatur θs 613 K

thermal diffusivity a 0.44000e-05 m
2

s

kinematic viscosity ν 0.36310e-06 m
2

s

thermal expansion coefficient β 0.96000e-04 K−1

Table 2. Parameters of (Bi0.25Sb0.75)2Te2-melt and of the melt geometry

(Bi0.25Sb0.75)2Te2-crystals are used for small cooling devices. The figure 5 shows
the physical domain of the melt zone. For the velocity we have homogeneous
dirichlet data on the whole boundary. For the temperature we have the boundary
conditions

θ = θc for r = R, 0 ≤ z ≤ H, ϕ ∈ (0, 2π), (control boundary Γc) (58)
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θ = θs, for 0 ≤ r ≤ R, z = H, (59)

θ = θs, for 0 ≤ r ≤ R, z = 0. (60)
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Fig. 5. Physical domain for the zone melting growth

For t = 0 we start with a given temperature profile θc = θc0 on Γc and with
θs = 613 K, δθ = 25 K for θc0 we have

θc0(z) = θs + 4
z

H
(1 −

z

H
)δθ .

The velocity field u, which we want to reach is

i) a typical twodimensional toroidal flow and
ii) a non moving melt u = 0.
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The case ii) is artificial but a good test case because we knew that θc = θs =
const. gives u = 0 and θ = θs as a solution of the boussinesq equation system.
Artificial means that θ = θs on Ω is not realistic for a crystal melt and the
input mixed crystal will never change to a single homogeneous output crystal.
We consider a time interval [0, T ] = [0, 4 seconds] with Z = 60 time steps of
0.0661 seconds. For the given problems we use the optimization system (I). For
the spatial discretization we use 20×25 finite volumes. The figures 6 and 7 show
the result of the optimization for the case i) and the figures 8 and 9 the result
for the case ii).
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Fig. 6. control on the boundary time cylinder

7 Thermal boundary conditions of third and second order

The heating of the crystal melt is normally realized by a heat source around
the crucible or the ampulla, for example by an inductor. This leads to boundary
condition of the form

λ
∂θ

∂n
+ ã(θ − θ0) = q̃ on ΓcT , (61)

where q is the normal component of a given heat flux vector and θ0 is a given
environmental temperature. We can write the thermal boundary condition (62)
as

a
∂θ

∂n
+ bθ = q on ΓcT , (62)
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with given coefficients a, b which are different from zero and the control q. This
leads to a modification of the functional

J(u, q) =
1

2

∫ T

0

∫
Ω

|u − u|2 dΩdt +
α

2

∫ T

0

∫
Γc

(q2 + q2
t ) dΩdt (63)

and the Lagrange functional

L(u, p, θ, q, µ, ξ, κ, χ) = J(u, q)+ < µ, mo >ΩT

− < ξ, div u >ΩT
+ < κ, en >ΩT

+ < χ, a
∂θ

∂n
+ bθ − q >ΓcT

. (64)
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Fig. 9. decreasing functional values during the fixpoint iteration

Using the boundary condition (62) for Lθθ̃ we get

Lθθ̃ =< −Gr g θ̃, µ >ΩT
+ < κ, enθ >ΩT

+ < χ, a
∂θ̃

∂n
+ bθ̃ >ΓcT

= 0 . (65)

The evaluation of < κ, enθ >ΩT
leads to the same equation as above

−κt −
1

Pr
∆κ − (u · ∇)κ = Gr g · µ in ΩT , (66)

but on the control boundary Γc we have to use the boundary condition

a
∂κ

∂n
+ bκ = 0 . (67)

The choice of this boundary condition is necessary to compense the boundary

integrals of < χ, a ∂θ̃
∂n

+ bθ̃ >ΓcT
by the boundary integrals, which we get during

the integration by parts of < κ, enθ >ΩT
. We get the sum of boundary integrals

−
1

Pr

∫
ΓcT

∂θ̃

∂n
κ dΓdt +

1

Pr

∫
ΓcT

∂κ

∂n
θ̃ dΓdt + a

∫
ΓcT

∂θ̃

∂n
χ dΓdt + b

∫
ΓcT

θ̃χ dΓdt ,

(68)
and with the choice of χ as

χ = −
1

b Pr

∂κ

∂n

the second and the fourth part of the sum (68) vanish. With the choice of the
boundary condition (67) the first and the third part of the sum (68) vanish.
On the other boundary Γ \ Γc we have the boundary condition κ = 0. For the
control q we get the two point boundary value problem

α(−qtt + q) = χ (= −
1

b Pr

∂κ

∂n
) on ΓcT , (69)

with the time boundary conditions

q(0) = q0 and qt(T ) = 0 . (70)
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If b is equal to zero (62) becomes to

a
∂θ

∂n
= q (71)

and this makes the choice

χ =
1

a Pr
κ

necessary with the boundary condition

∂κ

∂n
= 0 (72)

for the adjoint temperature κ. All other part of the above discussed optimization
system will not change.

As a testproblem for thermal boundary conditions of third and second order we
use the above discussed zone melting example. Instead of the control boundary
condition (58) we use

a
∂θ

∂n
= q for r = R, 0 ≤ z ≤ H, ϕ ∈ (0, 2π), (control boundary Γc) , (73)

and for the adjoint temperature κ we have on Γc the boundary condition

∂κ

∂n
= 0 for r = R, 0 ≤ z ≤ H, ϕ ∈ (0, 2π), , (74)

to consider. We try to reach a typical toroidal melt flow (above discussed zone
melting problem i)) by a control q during the boundary condition (73). We start
with a = λ = 8, 5 W

mK , q = q0 = 13000 W
m2 and the above noted geometrical

and material parameters of the mixed crystal (Bi0.25Sb0.75)2Te2. The figure 10
shows the convergence history of the optimization iteration. The optimal q over
the ampulla height and time (on ΓcT ) is shown in figure 11.
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Fig. 10. decreasing functional values during the fixpoint iteration
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8 Instantaneous control

The basic idea of the instantaneous control is the time stepwise optimization
instead of the optimization over the whol time interval [0, T ]. The starting point
for the instantaneous or suboptimal control is a time discretization of the Boussi-
nesqu equation system, i.e. in the case of an Euler backward (σm = σh = 0) time
discretization with the time step parameter τ

u − τ∆u + τ∇p = τGr θ g − τ(uo · ∇)uo + u
o , −div u = 0 in Ω, (75)

u = 0 on Γ, (76)

where the upper index o means the values at the actual time level. Quantities
without an index are considered at the new time level. The Euler backward time
discretization of the heat conduction equation leads to

θ − τ
1

Pr
∆θ = −τ(uo · ∇)θo + θo in Ω, (77)

θ = θs on Γc, θ = θd on Γd . (78)

Now we look for a control θs, which minimizes the functional

Js(u, θs) :=
α

2

∫
Γc

θ2
s dΓ +

1

2

∫
Ω

|u − u|2 dΩ . (79)

With Ĵs(θs) := Js(u(θs), θs) = min! for u as a solution of the boundary value
problem (75)-(78) for a control θs we have a stationary optimization problem
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per time step and with a sequence of such problems we will get an instantaneous
control θs over the time period [0, T ]. The optimality system per time step we get
on the same way, which we used in the above discussed time-dependend case.
For the adjoint variables µ, ξ. κ and the control θs we get for the Lagrange
function

L(u, p, θ, θs, µ, ξ, κ, χ) = Js(u, θs)+ < µ, mo >Ω (80)

− < ξ, div u >Ω + < κ, en >Ω + < χ, θ − θs >Γc
.

analyzing the nessecary condition ∇L = 0 the adjoint system

µ − τ∆µ + ∇ξ = −(u − u) , −τdiv µ = 0 in Ω, (81)

µ = 0 on Γ, (82)

κ −
τ

Pr
∆κ = τGr ω in Ω, (83)

κ = 0 on Γ , (84)

θs = −
τ

αPr

∂κ

∂n
on Γc . (85)

The advantage of this technique is obvious, because we have to solve per time
step only a small stationary optimization problem. The results of [3] showed the
efficiency of the instantaneous control strategy in the case of isothermic flows
and it could be shown, that instantaneous controls are very effective compared
to optimal controls, i.e. the value of the Ĵ(θs) was only 10% higher than Ĵ(θc)
in the case of a boundary controlled backward facing step.

9 To the numerical solution method of the instantaneous

control problem

The spatial discretization of the equations (75)-(85) will be done with a finite
volume method. The solution of the equation (77) gives the temperature field
on the new time level. With the choice of

ũ = u
o − τ(uo · ∇)uo + τGr θ g (86)

from (75) follwos the equation

−τ∆p = −div ũ (87)

for the pressure on the new time level. With p it is possible to get the velocity
field as a solution of

u − τ∆u = ũ − τ∇p . (88)

If our wanted velocity field ū fullfills the condition div ū = 0 we can get the
adjoint velocity µ as a solution of

µ − τ∆µ = −(u − u) , (89)

because the adjoint pressure ξ must be constant. If div ū 6= 0 we have to solve
a Poisson equation like (87). With µ we can determine the adjoint temperature
field κ and lastly the control θs.
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10 Conclusion

With the Langrange parameter technique it’s possible to derive an optimization
system for a given functional, which solution gives an optimal control. The nu-
merical examples of the fully time-depend 2.5d optimization system show the
possibility of the practical optimization of a thermal coupled flow problem in
the crystal growth field. Based on the results the proposed strategies it is now
possible to do a fully 3d optimization.
It is necessary to continue numerical experiments to investigate if the optimiza-
tion during a boundary control only will be successful technology. There are
some experiences with other optimization problems which show the efficiency of
volume control, if there is a possibility of the production of volume forces (for
example by a magnetic field).
The investigation of thermal boundary condition of third and second order
(62),(71) and the heat flux q as a control parameter instead of the boundary
temperature will be investigated and the implementation of the instantaneous
control is on the table now and the first results are present.
Instantaneous strategies with the used linearizations of (75) and (77) lead to a
sequence of time-independend stationary optimization problems, which bring in-
stantaneous results near the optimal control. The instantaneous strategies seem
to be a cheap alternative compared to the high resolved fully time-depend opti-
mization.
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