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Abstract. In order to do flow control it is necessary to solve the Na8#arkes equations using efficient and robust numerical
methods. Based on a Finite-Volume spatial discretisatfidheNavier-Stokes equation, simple time discretisati@ihnds
will be characterised and discussed for the solution of bioteady problems and of asymptotic steady state probkems.
easy-to-implement semi-implicit time integration mettodthe Navier-Stokes equation will be compared to a Newtothote

for the solution of the stationary Navier-Stokes equation.
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INTRODUCTION

Modeling and numerical simulations of incompressible flowlpems are essential in the research fields of fluid
dynamics and chemical engineering. For example it is ingmbrto know and to manipulate flow fields for an
optimisation of vehicle geometries or the design of chemieactors. In all these cases efficient and adequate
numerical solution mehtods are required.

THE MATHEMATICAL PROBLEM

From the mass and impulse balance for an incompressible ilaigiet the following partial differential equation
system

oy+(y-O)y=—-0Op+vay+f, (€H)

which is valid in the integration regiaR C R" (n = 2,3). With appropriate boundary conditions, for example &bkt
datay = gondQ, i.e. the boundary of2, and an initial conditiory|,_, =y, on QU dQ, we have together with (1),
(2) an initial boundary value problem for the descriptionaof incompressible flow probleny.and p denote the
velocity and the pressure field,indicates the kinematic viscosity arids volume force. By adding a convective heat
conduction equation it is possible to describe a thermallypted flow problem, where the coupling could be realised
by f via a Boussinesq approximation.

Spatial discretisation of the problem

In a threedimensional case we use four staggered gridsdapthtial discretisation of equations (1) and (2), three
staggered grids for the componemif the velocityy, and one grid for the pressupe If w is a finite volume or in
general a finite cell with the boundadyw, we use the theorem of Gaul3
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in whichv denotes a vector field. To use this theorem we write equtipim(the so-called divergence or conservative
form. For the components of (1) applying the equation (2) eevgthy = (y;,Y,,Y3), f = (f;, 5, f5)

YaY; POy _

qy;+0- [ Yoy | =-0-1 pdy | +0-(v0y,)+f,i=1,23, 4)
Y3Yi Pd;

with the Kronecker-delta;. The application of (3) to the equations (4) and (2) leads tarmonical finite volume

discretisation of the Navier-Stokes equation, which one fired in [1], [2] or [3]. | will describe the discretised
Navier-Stokes equation including the discretised boundanditions by

ou+C,(uu) =-Gg+Vu+f,, —-Du=0 %)

in whichC,, andV,, are the FV-discretisations of the convective and viscousgef the impulse balance, a@j, D,,
imply the discretisation results for the gradient and dje@ice operatou = (u,,U,,Us,) is the velocity considered in
the centers of the velocity grid cells agds the pressure located in the center of the pressure giil cel

Thetimediscretisation

The equation system (5) is a differential algebraic systBE), which is not easy to solve. There are special
routines, for example DASSL as a MATLAB-tool for DAEs, butetle tools are not able to solve non-linear systems
of type (5) efficiently.

There are several possible time discretisations of whichl cansider here the implicit discretisation

un+1 —u

— +Cy(u ) = =G VU £, DUt =0 (6)

and the semi-implicit discretisation (s. also [1], [2])

umtl_y
+C,(uu) = -G, a" t +Vu+f,, —Du™t=0 @)

with time step parameter. The indexh stands for a spatial discretisation parameter. The uppmEximeans the
time level, i.e.u™?! = u((n+ 1)7). Quantities without an upper index are considered at the teweln. In both
discretisations it is necessary to hold a CFL-condifjajfit/h < 1 because of the explicitness of the convective term
G (u,u).

The systems (6) or (7) are saddle point problems of the form

G un+1 u
(& 9)(d)-(%") ®
and the operatoh, is a symmetric positive one. In the case of (6) we have
1 . 1
Ah:?ld—vh and for (7) itis Ah:?ld.

r, = —Dy, is the transpose or adjoint & and thus the coefficient matrix of (8) is a symmetric one. Rerdolution
of the saddle point problems (8) we apply the operélfp@\gl to the first row of system (8) with the result of

HAL TGRA™ T = GLAL IR (U) 9)

and the coefficient matri$= G%Aﬁleh is called Schur complement matrix. Especially in the cag&)pthe matrixS
is of a simple structure, i.e. we have

S=-1D,;G, = —14, and r(u)=GyA 'R, = —1D,R,(u)
and the equation (9) is a discrete Poisson equation for #gespre

Sl =r(u). (10)



Numerical solution of the equation (8) and (10) respectively

The direct solution of (10) is possible with sparse matrixkames but it is important to note that the Schur
complement matrig$< RM*M is singular with the rank — 1 because of the Navier-Stokes property of non-uniqueness
of the pressure. Only the pressure gradient is unique.

Here, we will discuss an iterative solution method for (18)[2] and [1] the following method was proposed. (10)
means in detail

—~1D,G, @™ = —D;,(u— 1[G, (U, u) — W,u— ) (11)

and the idea of [2] and [1] was that of prediction correctiogtihod. The first step consists of a velocity prediction
I=u-1[C (uu)—vWu—1f].

With the predicted velocity an iteration for the computation af 1, ™1 is initiated. It is obvious that the iteration
process

diag'$)5q*tt) = —wDu® (12)
q= Y = g94aqcthy, g =0, (13)
U(SH') _ u(s) _ TGhaq(S—Fl) , U<O> =0 , (14)

provides in the case of convergence with! = lims_.. u®® andg™?! = lims_. q® the solution of the problem (8).
The iteration formulas (12)-(14) are explicit and very essymplement. Similar to the iterative solution theory
of linear equation systems, a single step iteration withxation (straightforward SOR-type method) is expected to
be more efficient then a Jacobi type methap £]0, 2] is a relaxation parameter which works only in the single step
iteration. In a Jacobi type methad must be equal to 1. The following pseudo code is an iterabop for a single

step iteration described (2d, equidistant FV grid, spatial parameteh, k, rectangular region).

divp = tau/ (h"2+k”2) % di agonal of S, constant for all cells

gpmax = eps+l;

whil e (dpmax > eps) do

dpmax = 0;

doi =1,n; j =1, m

dg = -((u(i,j)-u(i-1))/h + (v(i,j)-v(i,j-1))/k)/divp;q(i,j) = q(i,j) + dg;

if (i <n) u(i,j) =u(i,j) + tau*dg/h;if (1 <i) u(i-1,j) =u(i-1,j) - tau*dg/h;
if (j <m v(i,j) =v(i,j) + tau*dg/k;if (1 <j) v(i,j-1) = v(i,j-1) - tau*dg/k;
dpmax = max(dpmex, abs(dp));

enddo

endwhi | e

The iteration method (12)- (14) is very flexible with respgchon-trivial region geometries because of its explic-
itness it is used as a basic tool in a lot of CFD codes. This otelfas the property that an inexact solution, be it by
a limitation of the number of iteration steps per time lew#lby a coarse error bourd does not lead to an error
accumulation during the further time levels. This is gettimvestigated in a diploma thesis [4] at our university.

Numerical Examples

As an example for the application of the above discussedadstive consider a twodimensional stationary driven
cavity problem € =0, v = 1/Re H cavity hight,B width of the cavity, no slip boundary conditions on solid Isal
constant tangential velocity at the top boundary of thetgvi

We compare the above discussed prediction correction m€it)-(14) with Newtons method for the solution of

C,(uu)+G,g—V,u=0, —-Du=0.

In Tables 1, 2 and 3 we compare the methods.



TABLE 1. Comparison of the inexact iterative method to Newtons nmnbthiver.
method/Newton< 1 means iterative method is more efficient then Newtons naetho

H:B mxn Re iter. method/Newton €=0.1 001 0001 Q0001

1:1 50x 50 700 0.47 0.60 0.91 1.30
1:1 50x 50 1000 0.49 0.74 1.32 1.82
1:1 100x100 1000 0.63 1.37 2.07 2.84
1:2 50x 100 1000 0.72 1.50 2.29 2.87
1:2 100x200 1000 0.69 1.32 1.99 2.59

TABLE 2. Results of the iterative method

H:B mxn Re iterations time(sec) €=0.1 0.01 0001 Q0001

1:1 50x 50 700 4096 0.95 1.38 2.10 2.97

1:1 50x 50 1000 7675 1.15 1.92 3.44 5.42

1:1 100x 100 1000 19774 1732 37.73 6054 83.21

1:2 50x100 1000 17663 465 11.07 16.83 2341

1:2 100x200 1000 32987 99.00 196.01 294.93 396.20
CONCLUSION

Especially for problems which do not require very strongotmess, i.ec = 0.1,0.01, the iterative methods are more

time efficient then Newtons method. Thus, it is worth to useithration method (12)-(14) as a real alternative to
Newtons method.
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TABLE 3. Results of Newtons method

H:B mxn Re iterations time(sec) €=0.1 0.01 0001 Q0001
1:1 50x% 50 700 7 1.99 2.30 2.30 2.30
1:1 50x 50 1000 9 2.33 2.61 2.61 2.98
1:1 100x 100 1000 14 2764 2764 2930 29.30
1:2 50x100 1000 10 6.50 7.36 7.36 8.16
1:2 100x200 1000 29 14424 148.54 14854 153.12




