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Abstract. In order to do flow control it is necessary to solve the Navier-Stokes equations using efficient and robust numerical
methods. Based on a Finite-Volume spatial discretisation of the Navier-Stokes equation, simple time discretisation methods
will be characterised and discussed for the solution of bothunsteady problems and of asymptotic steady state problems.An
easy-to-implement semi-implicit time integration methodof the Navier-Stokes equation will be compared to a Newton method
for the solution of the stationary Navier-Stokes equation.
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INTRODUCTION

Modeling and numerical simulations of incompressible flow problems are essential in the research fields of fluid
dynamics and chemical engineering. For example it is important to know and to manipulate flow fields for an
optimisation of vehicle geometries or the design of chemical reactors. In all these cases efficient and adequate
numerical solution mehtods are required.

THE MATHEMATICAL PROBLEM

From the mass and impulse balance for an incompressible fluidwe get the following partial differential equation
system

∂ty+(y ·∇)y = −∇p+ν∆y+ f , (1)

−∇ ·y = 0 , (2)

which is valid in the integration regionΩ ⊂R
n (n= 2,3). With appropriate boundary conditions, for example Dirichlet

datay = g on ∂ Ω, i.e. the boundary ofΩ, and an initial conditiony|t=0 = y0 on Ω∪ ∂ Ω, we have together with (1),
(2) an initial boundary value problem for the description ofan incompressible flow problem.y and p denote the
velocity and the pressure field,ν indicates the kinematic viscosity andf is volume force. By adding a convective heat
conduction equation it is possible to describe a thermally coupled flow problem, where the coupling could be realised
by f via a Boussinesq approximation.

Spatial discretisation of the problem

In a threedimensional case we use four staggered grids for the spatial discretisation of equations (1) and (2), three
staggered grids for the componentsyi of the velocityy, and one grid for the pressurep. If ω is a finite volume or in
general a finite cell with the boundary∂ ω , we use the theorem of Gauß

∫

ω

∇ ·vdV =
∫

∂ω

v ·ndO, (3)



in which v denotes a vector field. To use this theorem we write eqution (1) in the so-called divergence or conservative
form. For the components of (1) applying the equation (2) we get with y = (y1,y2,y3), f = ( f1, f2, f3)

∂tyi +∇ ·





y1yi
y2yi
y3yi



 = −∇ ·





pδ1i
pδ2i
pδ3i



+∇ · (ν∇yi)+ fi , i = 1,2,3 , (4)

with the Kronecker-deltaδi j . The application of (3) to the equations (4) and (2) leads to acanonical finite volume
discretisation of the Navier-Stokes equation, which one can find in [1], [2] or [3]. I will describe the discretised
Navier-Stokes equation including the discretised boundary conditions by

∂tu+Ch(u,u) = −Ghq+Vhu+ fh , −Dhu = 0 (5)

in whichCh andVh are the FV-discretisations of the convective and viscous terms of the impulse balance, andGh, Dh
imply the discretisation results for the gradient and divergence operator.u = (u1,u2,u3) is the velocity considered in
the centers of the velocity grid cells andq is the pressure located in the center of the pressure grid cells.

The time discretisation

The equation system (5) is a differential algebraic system (DAE), which is not easy to solve. There are special
routines, for example DASSL as a MATLAB-tool for DAEs, but these tools are not able to solve non-linear systems
of type (5) efficiently.

There are several possible time discretisations of which I will consider here the implicit discretisation

un+1−u
τ

+Ch(u,u) = −Ghqn+1 +Vhun+1 + fh , −Dhun+1 = 0 (6)

and the semi-implicit discretisation (s. also [1], [2])

un+1−u
τ

+Ch(u,u) = −Ghqn+1 +Vhu+ fh , −Dhun+1 = 0 (7)

with time step parameterτ . The indexh stands for a spatial discretisation parameter. The upper index means the
time level, i.e.un+1 = u((n+ 1)τ). Quantities without an upper index are considered at the time level n. In both
discretisations it is necessary to hold a CFL-condition‖u‖τ/h≤ 1 because of the explicitness of the convective term
Ch(u,u).

The systems (6) or (7) are saddle point problems of the form
(

Ah Gh
G′

h 0

)(

un+1

qn+1

)

=

(

Rh(u)
0

)

(8)

and the operatorAh is a symmetric positive one. In the case of (6) we have

Ah =
1
τ

Id−Vh and for (7) it is Ah =
1
τ

Id .

G′
h = −Dh is the transpose or adjoint ofGh and thus the coefficient matrix of (8) is a symmetric one. For the solution

of the saddle point problems (8) we apply the operatorG′
hA−1

h to the first row of system (8) with the result of

G′
hA−1

h Ghqn+1 = G′
hA−1

h Rh(u) (9)

and the coefficient matrixS= G′
hA−1

h Gh is called Schur complement matrix. Especially in the case of(7), the matrixS
is of a simple structure, i.e. we have

S= −τDhGh = −τ∆h and r(u) = G′
hA−1

h Rh = −τDhRh(u)

and the equation (9) is a discrete Poisson equation for the pressure

Sqn+1 = r(u) . (10)



Numerical solution of the equation (8) and (10) respectively

The direct solution of (10) is possible with sparse matrix packages but it is important to note that the Schur
complement matrixS∈R

M×M is singular with the rankM−1 because of the Navier-Stokes property of non-uniqueness
of the pressure. Only the pressure gradient is unique.

Here, we will discuss an iterative solution method for (10).In [2] and [1] the following method was proposed. (10)
means in detail

−τDhGhqn+1 = −Dh(u− τ [Ch(u,u)−νVhu− fh]) (11)

and the idea of [2] and [1] was that of prediction correction method. The first step consists of a velocity prediction

ũ = u− τ [Ch(u,u)−νVhu− fh] .

With the predicted velocity ˜u an iteration for the computation ofun+1,qn+1 is initiated. It is obvious that the iteration
process

diag(S)δq(s+1) = −ωrDhu(s) (12)

q(s+1) = q(s) +δq(s+1) , q(0) = 0 , (13)

u(s+1) = u(s)− τGhδq(s+1) , u(0) = ũ , (14)

provides in the case of convergence withun+1 = lims→∞ u(s) andqn+1 = lims→∞ q(s) the solution of the problem (8).
The iteration formulas (12)-(14) are explicit and very easyto implement. Similar to the iterative solution theory

of linear equation systems, a single step iteration with relaxation (straightforward SOR-type method) is expected to
be more efficient then a Jacobi type method.ωr ∈]0,2[ is a relaxation parameter which works only in the single step
iteration. In a Jacobi type methodωr must be equal to 1. The following pseudo code is an iteration loop for a single
step iteration described (2d, equidistant FV grid, spatialgrid parameterh, k, rectangular region).

...
divp = tau/(h^2+k^2) % diagonal of S, constant for all cells
qpmax = eps+1;
while (dpmax > eps) do
dpmax = 0;
do i = 1,n; j = 1,m
dq = -((u(i,j)-u(i-1))/h + (v(i,j)-v(i,j-1))/k)/divp;q(i,j) = q(i,j) + dq;
if (i < n) u(i,j) = u(i,j) + tau*dq/h;if (1 < i) u(i-1,j) = u(i-1,j) - tau*dq/h;
if (j < m) v(i,j) = v(i,j) + tau*dq/k;if (1 < j) v(i,j-1) = v(i,j-1) - tau*dq/k;
dpmax = max(dpmax,abs(dp));
enddo

endwhile
...

The iteration method (12)- (14) is very flexible with respectto non-trivial region geometries because of its explic-
itness it is used as a basic tool in a lot of CFD codes. This method has the property that an inexact solution, be it by
a limitation of the number of iteration steps per time level,or by a coarse error boundε , does not lead to an error
accumulation during the further time levels. This is getting investigated in a diploma thesis [4] at our university.

Numerical Examples

As an example for the application of the above discussed methods we consider a twodimensional stationary driven
cavity problem (f = 0, ν = 1/Re, H cavity hight,B width of the cavity, no slip boundary conditions on solid walls,
constant tangential velocity at the top boundary of the cavity).

We compare the above discussed prediction correction method (12)-(14) with Newtons method for the solution of

Ch(u,u)+Ghq−Vhu = 0 , −Dhu = 0 .

In Tables 1, 2 and 3 we compare the methods.



TABLE 1. Comparison of the inexact iterative method to Newtons method; iter.
method/Newton< 1 means iterative method is more efficient then Newtons method

H : B m×n Re iter. method/Newton ε = 0.1 0.01 0.001 0.0001

1 : 1 50×50 700 0.47 0.60 0.91 1.30
1 : 1 50×50 1000 0.49 0.74 1.32 1.82
1 : 1 100×100 1000 0.63 1.37 2.07 2.84

1 : 2 50×100 1000 0.72 1.50 2.29 2.87
1 : 2 100×200 1000 0.69 1.32 1.99 2.59

TABLE 2. Results of the iterative method

H : B m×n Re iterations time (sec.) ε = 0.1 0.01 0.001 0.0001

1 : 1 50×50 700 4096 0.95 1.38 2.10 2.97
1 : 1 50×50 1000 7675 1.15 1.92 3.44 5.42
1 : 1 100×100 1000 19774 17.32 37.73 60.54 83.21

1 : 2 50×100 1000 17663 4.65 11.07 16.83 23.41
1 : 2 100×200 1000 32987 99.00 196.01 294.93 396.20

CONCLUSION

Especially for problems which do not require very strong exactness, i.e.ε = 0.1,0.01, the iterative methods are more
time efficient then Newtons method. Thus, it is worth to use the iteration method (12)-(14) as a real alternative to
Newtons method.
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TABLE 3. Results of Newtons method

H : B m×n Re iterations time (sec.) ε = 0.1 0.01 0.001 0.0001

1 : 1 50×50 700 7 1.99 2.30 2.30 2.30
1 : 1 50×50 1000 9 2.33 2.61 2.61 2.98
1 : 1 100×100 1000 14 27.64 27.64 29.30 29.30

1 : 2 50×100 1000 10 6.50 7.36 7.36 8.16
1 : 2 100×200 1000 29 144.24 148.54 148.54 153.12


