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Abstract. In the last years various systems have been developed for controlling, planning and predicting the traffic of persons
and vehicles, in particular under security aspects. Going beyond pure counting and statistical models, approaches were found
to be very adequate and accurate which are based on well-known concepts originally developed in very different research
areas, namely continuum mechanics and computer science. Inthe present paper, we outline a continuum mechanical approach
for the description of pedestrain flow.
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INTRODUCTION

In this section we present an extension of a two-dimensionalmacroscopic pedestrian flow model based on the
compressible Euler equation by introducing local, in a certain sense microscopic effects.

In macroscopic traffic/pedestrian flow models based on fluid dynamic equations, all quantities are usually given and
computed in Eulerian coordinates. Thus it is (only!) possible to state that a person at timet at point~x has, e.g. velocity
~v(~x,t) etc. For instance, it is conceptually impossible to endow a group of pedestrians with a constant predefined target
direction throughout the whole simulation, whereever thisgroup will be at any timet. This disadvantage gives rise
to introduce effects or forces that are considered in Lagrangian coordinates, i.e. which depend on the spatial starting
point~x0 =~x(t0) of the simulation time interval.

These extensions can be used to model and simulate differentgroups of pedestrians with different behavior
throughout the model time. Thus it can be used to incorporatetarget directions, ”pedestrian jams” due to mixing
of crowds with different targets, and temporal changes of pedestrian groups.

In the following, we present the underlying macroscopic model of pedestrian flow, describe the idea of introducing
extensions based on the Lagrangian coordinates and show howthis can be realised with a modern Finite Element
software.

A HYBRID MODEL OF PEDESTRIAN MOVEMENTS BY EXTENSION OF A
MACROSCOPIC FLUID DYNAMIC MODEL

Traffic and pedestrian flow modeling can be divided into two types, the microscopic and the macroscopic approach.
In the former, all vehicles/persons are treated individually and equations for their velocity and interactions are posed.
The main types of this model class are cellular automata and multi-body systems. By contrast, in the macroscopic
approach all vehicles/persons are considered as a continuum. In this case, a mathematical model for density, velocity
and other relevant quantities is formulated.

In a realistic model of pedestrian movements, forces between individual persons have to be taken into account: For
example, if the density of persons is very high and thus the distance between them becomes small, a repelling force
between the individual persons arises. This motivates the use of a gas kinetic and particle-oriented approach based on
the Boltzmann equation. Solving this equation directly leads again to microscopic models.

Introducing mean values in the Boltzmann equation is one wayto derive the well-known equations of fluid
mechanics, and this is a motivation for using the latter for vehicle and pedestrian movements. On the other hand, one
may directly make the continuum assumption for the whole bulk of vehicles/persons. This directly leads to models that
have strong relation to compressible fluid dynamic equations, as for example the Burgers (in one space dimension) or
Euler equations (in two dimensions). In pedestrian movements, two dimensional effects are crucial. This marks the



main difference to (vehicle) traffic models, which mainly consists of several one-dimensional models, one for each
lane of vehicle traffic.

THE EULER EQUATIONS FOR TWO-DIMENSIONAL PEDESTRIAN FLOW

In 2-D compressible flow, the relevant quantities are density ρ, velocity vector~v= (u,v), and energy. For special gases,
the energy can be eliminated using the temperatureθ . Following Helbing [1], the equations are formulated for mean
values (denoted by〈·〉) of velocity and density. Here, the analogue of the temperature in pedestrian flow is the variance
θ := 〈(v||−〈v||〉)

2〉 of the velocityv|| parallel to the intended velocity direction. The basic governing equations for
pedestrian flow in this model then read

ρt +∇ · (ρ~v) = 0
~vt +~v ·∇~v+ 1

ρ ∇(ρθ ) = F
θt +∇ · (θ~v) = 0







(1)

in Ω ⊂ R
2. This nonlinear set of equations has the form of the Euler equations with (formally) an adiabatic index

γ = 2.
The form of external and also internal forcesF is subject to further modeling concepts, see again [1]. Also, an

additional diffusivity term may be introduced. Appropriate boundary and initial conditions have to be added.

NUMERICAL METHODS

The PDE system presented above (without diffusion term) is of hyperbolic type. Thus steep gradients, shocks and
discontinuities may occur. When applying finite elements, the numerical treatment requires sophisticated stabilisation
schemes to obtain a solution. Basically two terms are added to weak form of the equations: A streamline upwinding
part and a small and successively reduced anisotropic diffusion term, see for example [2]. Our computations were
performed in the modeling and simulation environment COMSOL MULTIPHYSICS™[3].

Special feature of the hybrid modeling concept: Realisation of terms in Lagrangian
coordinates

The main additional feature that is missing in macroscopic models coming from fluid dynamics, as the Euler
equations, is that all quantitiesρ,~v,θ are given as functions of timet and the current location~x of the fluid particle
(i.e. pedestrian). It is thus easy to introduce forces at fixed locations (for example an ”attraction” as a shop window
that attracts everybody who comes near to it, maybe with a certain probability). On the other hand, it is impossible
to endow one or even several pedestrian group(s) with a persistent intention (e.g. for a certain target direction), no
matter in which positions~x the members of the group are located at timet. For this purpose we extend the model by
introducing terms in Lagrangian coordinates. This means that the initial positions~x0 :=~x(t0) are propagated in time
during the simulation. The current positions~x = (~x0,t) satisfy the initial value problem

d
dt

~x(t) = ~v(~x,t), ~x(t0) = ~x0. (2)

This ODE system is solved together with (1) in the following way:

1. Choose one or more pedestrian groupsG j , j = 1, . . . , jmax, by defining their discrete initial domainsΩ j
0
= {~x ji

0
:

i = 1, . . .Nj} and forces~f ji
k

, wherek refers to a discrete timet = tk.
Such a force may describe an intended direction of a group member with indexi which at timet = tk is at the
point~x ji

k
. The force may use the distance vector of this point to an attraction or target point~xtar. Since we use an

integral form of the equations (1) it is necessary to define the force not only pointwise, but in a neighborhood of



~x ji
k

, e.g.

~f ji
k

(~x) :=







c j ~x j
tar−~x

‖~x j
tar−~x‖

, ‖~x ji −~x‖ ≤ r j

0, elsewhere







,

r j ∈ R
+,c j ∈ R.

Setk = 0.
2. Compute a solution of (1) including appropriate boundaryconditions and initial values on an interval(tk,tk+1],

adding~F = ∑ ji
~f ji

k
(~x) as force on the right-hand side. In this step, it is possible –and maybe necessary due to

stabilisation reasons – to compute the solution on intermediate timestk = tk0
< tk1

< .. . < tknk
= tk+1.

3. Propagate the trajectories of the members of the pedestrian group(s)G j , i.e. the points in the set{~x ji
kn

: j =

1, . . . , jmax, i = 1, . . .Nj ,n = 1, . . . ,nk}, by solving (2) on the discrete gridtk = tk0
< tk1

< .. . < tknk
= tk+1 using

~v(~x ji
kn

,tkn),n = 1, . . . ,nk.
4. Incrementk→ k+1 and proceed with step 2.

Numerical Example

As a simple example we consider the movement of two pedestrian groups with opposite target directions.

FIGURE 1. Start situation

FIGURE 2. Intermediate time

Fig. 1 - Fig. 3 show the realised pedestrian movement by the mathematical model. The blue (dark) pedestrian group
starting on the right is attracted by the left boundary, whereas the red (light) group starting from the left is moving to
the left. From left to right: Initial time, meeting of the twogroups, after passing. The top and bottom boundary indicate
walls.



FIGURE 3. After passing

OPTIMISATION PROBLEMS

Optimisation goals can be, for example, minimising the timeto evacuate buildings or computing the maximal flow rate
through a narrow channel. As a state variable we consider thedensity of pedestrians which is described by a discrete
or continuous model resulting in a partial differential equation. In this, the shape of a channel or the size of doors serve
as control variables.

Based on experiences in shape optimisation problems of fluiddynamics with the adjoint optimisation calculus an
optimisation can be achieved. To evaluate gradients of Lagrange functionals, we use both the automatic differentiation
tools (AD-tool, for example ADIfor) and the numerical solution of the Karush-Kuhn-Tucker system (KKT system).

CONCLUSION

Next to models based on the microscopic (cellular automata)approach, the macroscopic (continuous) approach yields
very flexible tools to describe, analyse, predict and control many, in their complexity varying situations. In the present
paper we have have presented the hybrid macroscopic model based on the mass and impulse balance (s. also [4]). The
numerical examples gave plausible results, which will be compared to results of microscopic models in the next future.
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