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Abstract. In the last years various systems have been developed foptiomg, planning and predicting the traffic of persons

and vehicles, in particular under security aspects. Goaypd pure counting and statistical models, approaches foend

to be very adequate and accurate which are based on wellrknomncepts originally developed in very different research
areas, namely continuum mechanics and computer scientte present paper, we outline a continuum mechanical approa
for the description of pedestrain flow.
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INTRODUCTION

In this section we present an extension of a two-dimensiomatroscopic pedestrian flow model based on the
compressible Euler equation by introducing local, in aaarsense microscopic effects.

In macroscopic traffic/pedestrian flow models based on flyithchic equations, all quantities are usually given and
computed in Eulerian coordinates. Thus it is (only!) polesib state that a person at tirhat pointX has, e.g. velocity
V(X,t) etc. For instance, it is conceptually impossible to endowoag of pedestrians with a constant predefined target
direction throughout the whole simulation, whereever trisup will be at any time. This disadvantage gives rise
to introduce effects or forces that are considered in Lagjeancoordinates, i.e. which depend on the spatial starting
pointX, = X(t,) of the simulation time interval.

These extensions can be used to model and simulate diffgrenps of pedestrians with different behavior
throughout the model time. Thus it can be used to incorpdeatget directions, "pedestrian jams” due to mixing
of crowds with different targets, and temporal changes deggian groups.

In the following, we present the underlying macroscopic elad pedestrian flow, describe the idea of introducing
extensions based on the Lagrangian coordinates and showhi®wan be realised with a modern Finite Element
software.

A HYBRID MODEL OF PEDESTRIAN MOVEMENTS BY EXTENSION OF A
MACROSCOPIC FLUID DYNAMIC MODEL

Traffic and pedestrian flow modeling can be divided into twgety, the microscopic and the macroscopic approach.
In the former, all vehicles/persons are treated indiviguahd equations for their velocity and interactions areggbs
The main types of this model class are cellular automata aut-body systems. By contrast, in the macroscopic
approach all vehicles/persons are considered as a contirlathis case, a mathematical model for density, velocity
and other relevant quantities is formulated.

In a realistic model of pedestrian movements, forces batwadividual persons have to be taken into account: For
example, if the density of persons is very high and thus teadce between them becomes small, a repelling force
between the individual persons arises. This motivates skenfia gas kinetic and particle-oriented approach based on
the Boltzmann equation. Solving this equation directldieagain to microscopic models.

Introducing mean values in the Boltzmann equation is one teagerive the well-known equations of fluid
mechanics, and this is a motivation for using the latter frigle and pedestrian movements. On the other hand, one
may directly make the continuum assumption for the whol& btivehicles/persons. This directly leads to models that
have strong relation to compressible fluid dynamic equatians for example the Burgers (in one space dimension) or
Euler equations (in two dimensions). In pedestrian movasmeéwo dimensional effects are crucial. This marks the



main difference to (vehicle) traffic models, which mainlynsests of several one-dimensional models, one for each
lane of vehicle traffic.

THE EULER EQUATIONS FOR TWO-DIMENSIONAL PEDESTRIAN FLOW

In 2-D compressible flow, the relevant quantities are dgmsitelocity vectov = (u,v), and energy. For special gases,
the energy can be eliminated using the temperafuteollowing Helbing [1], the equations are formulated forane
values (denoted b¥)) of velocity and density. Here, the analogue of the tempeeah pedestrian flow is the variance
6:= <(vH - <VH>)2> of the veIocitva parallel to the intended velocity direction. The basic gairg equations for

pedestrian flow in this model then read

pe+0-(pV) = 0
Vi +V-0V+ 50(p8) = F} 1)
6+0-(6v) = 0

in Q C R2. This nonlinear set of equations has the form of the Euleatigus with (formally) an adiabatic index
y=2.

The form of external and also internal forcesis subject to further modeling concepts, see again [1]. AdsD
additional diffusivity term may be introduced. Appropadioundary and initial conditions have to be added.

NUMERICAL METHODS

The PDE system presented above (without diffusion term¥ isyperbolic type. Thus steep gradients, shocks and
discontinuities may occur. When applying finite elemerits,riumerical treatment requires sophisticated stabdisat
schemes to obtain a solution. Basically two terms are adul@dgak form of the equations: A streamline upwinding
part and a small and successively reduced anisotropicséifiuterm, see for example [2]. Our computations were
performed in the modeling and simulation environmentM30OL MULTIPHYSICS™]3].

Special feature of the hybrid modeling concept: Realisatio of terms in Lagrangian
coordinates

The main additional feature that is missing in macroscopidefs coming from fluid dynamics, as the Euler
equations, is that all quantitigs V, 8 are given as functions of timteand the current locatioR of the fluid particle
(i.e. pedestrian). It is thus easy to introduce forces atifieeations (for example an "attraction” as a shop window
that attracts everybody who comes near to it, maybe with &@iogprobability). On the other hand, it is impossible
to endow one or even several pedestrian group(s) with aspensiintention (e.g. for a certain target direction), no
matter in which positiong the members of the group are located at timigor this purpose we extend the model by
introducing terms in Lagrangian coordinates. This meaasttie initial positions(, := X(t,) are propagated in time
during the simulation. The current positioxis- (X,,t) satisfy the initial value problem

d

aX(t) = V(X,t), X(tO) = XO (2)

This ODE system is solved together with (1) in the followingyw

1. Choose one or more pedestrian gro@sj = 1, ..., jmax by defining their discrete initial domairﬁé = {Xg :
i =1,...N;} and forcesf ', wherek refers to a discrete tirte=t,.
Such a force may describe an intended direction of a groupbeewmith indexi which at timet = t, is at the

pointx/'. The force may use the distance vector of this point to aactttm or target poirk,,. Since we use an
integral form of the equations (1) it is necessary to defiesféince not only pointwise, but in a neighborhood of
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2. Compute a solution of (1) including appropriate boundargditions and initial values on an interv@,t,, ,/,
addingF = Yji ﬁ(” (X) as force on the right-hand side. In this step, it is possibéad maybe necessary due to
stabilisation reasons —to compute the solution on interatedmest, =t <t <... <t =Y.

k

3. Propagate the trajectories of the members of the pedesroup(s)G/, i.e. the points in the se{tilj(‘n: j=
1., jmaxl = 1,...Nj,n= 1,...,n.}, by solving (2) on the discrete grtg:tkO < tkl <L <bo =ty using
k

VR t),n=1,....n
4. Incremenk — k+ 1 and proceed with step 2.

Numerical Example

As a simple example we consider the movement of two pedagirizups with opposite target directions.
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FIGURE 1. Start situation
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FIGURE 2. Intermediate time

Fig. 1 - Fig. 3 show the realised pedestrian movement by thbenaatical model. The blue (dark) pedestrian group
starting on the right is attracted by the left boundary, whsrthe red (light) group starting from the left is moving to
the left. From left to right: Initial time, meeting of the tvgmoups, after passing. The top and bottom boundary indicate
walls.
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FIGURE 3. After passing

OPTIMISATION PROBLEMS

Optimisation goals can be, for example, minimising the timevacuate buildings or computing the maximal flow rate
through a narrow channel. As a state variable we considetehsity of pedestrians which is described by a discrete
or continuous model resulting in a partial differential ation. In this, the shape of a channel or the size of dooreserv
as control variables.

Based on experiences in shape optimisation problems ofdli@mics with the adjoint optimisation calculus an
optimisation can be achieved. To evaluate gradients ofdragg functionals, we use both the automatic differentiatio
tools (AD-tool, for example ADIfor) and the numerical sotut of the Karush-Kuhn-Tucker system (KKT system).

CONCLUSION

Next to models based on the microscopic (cellular autongtpjoach, the macroscopic (continuous) approach yields
very flexible tools to describe, analyse, predict and comtiamy, in their complexity varying situations. In the prese
paper we have have presented the hybrid macroscopic moskd loa the mass and impulse balance (s. also [4]). The
numerical examples gave plausible results, which will bmgared to results of microscopic models in the next future.
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