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Abstract. We present a two-dimensional automaton model to simulate pedestrian flows. In this model, pedestrians may be
allocated have preassigned or randomly chosen starting points and destinations, and they may get influenced by additional
repelling or indicating factors. Interior walls and other obstacles can be abstracted as repellors. We apply Bresenham’s
algorithm [1] of line rastering to calculate the ideal forward step which a single pedestrian may take on a two-dimensional
grid. We introduce a flexible choice of step sizes to improve the basic algorithm.
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INTRODUCTION

In the pioneering work [2] a one-dimensional cellular automaton was proposed to simulate traffic flows in a circled
closed system. In the two-dimensional case, [3] introduceda driven random walk model in which the pedestrian, in
the following calledparticle, has in a single simulation step may take basically one out ofthree choices to go forward,
up or down on a two-dimensional grid with the possibilities

P(forward) = D +
1−D

#unoccupied cells
, P(upward) =

1−D
#unoccupied cells

, P(downward) =
1−D

#unoccupied cells
,

whereD ∈ [0,1] is the so-called drifting constant. This implies
and demands a normalisation in accordance with∑P.

Combining this with the new idea of “floor fields”, [4] and [5] offered new ansatzes focusing on the case ofvmax= 1,1

i.e. , the possible moves that a particle at the position(cx,cy) may take are confined to be towards its immediate
neighbours at(cx +∆x,cy +∆y) for ∆x,∆y∈ {−1,0,1}.

We would like to consider the casevmax > 1. Of specific interest are strategies for conflict resolution of the particle
movements that also give adequate consideration to computational efficiency.

MODEL

In our model, the geometry is defined on a two-dimensional Cartesian gridΩ = [0, lxnx]× [0, lyny] ⊂ R
2, with lx,

ly and nx, ny being the length, width and number of the cells on thex-, y-axis respectively. From a sociological
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1 Mathematically, this should be written asvmax·∆t = cell length (width), where∆t denotes the time span of each simulation step. In this text, cell
length and width are scaled to be 1.



perspective,lx = ly = 0.7m might be a proper choice for persons from western cultures, whereas in the oriental
cultures, smallerlx, ly values would be accepted or even preferred. Scaled bylx andly, this can be written in discrete
form, Ω = {1, . . . ,nx}×{1, . . . ,ny}. The grid is not confined to be of rectangular shape, when the cells adjacent to the
boundary are of the repellor type, will be discussed in the next section. Our assumtions are:

1. The contents of the cells will be calledobjects. An empty cell is of the object type “empty”.
2. The pedestrians, i.e. the particles, may differ in terms of their behavior. Their individual characters can be

controlled by various parameters. In general, this appliesto all the non-empty objects.
3. The particles possess no a priori knowledge of how to reacha local optimum. A single particle aiming at a fixed

exit gathers the information at each simulation of the best choice of step at each simulation step.
4. The particles are neither “cooperative” (to reach an overall optimum) nor “competitive” (so that the overall

optimisation would be hindered by local optima).

With the characterisation of ”Cell”, ”Object” and ”Neighbourhood”, the general aim of particles and the definition
of rules in the case of collisions and obstacles (confilcts) we can evaluate the actual flow direction and realise steps.

ALGORITHM, STEP CHOICE AND CONFLICT RESOLUTION

In the most studied casevmax = 1, we see, as shown in the left of Figure 1, that a particle at the position(cx,cy) may
access the cells(cx + 1,cy) and(cx,cy + 1) in one step. This particle may also access the upper right cell located at
(cx +1,cy +1) in one step. This implies that in doing so the particle must cover 41% more space than that in a usual
step along thex- or y- axis.

Bresenham’s Algorithm for Circles

In our model for the generalised casevmax ≥ 1, we denote the time lapse of a single update by∆t and the local
velocity of a particlep by vp. Thus, at the position(cx,cy), the particle could reach any cell with a distancerp = vp ·∆t.
We call the circle2

(x−cx)
2 +(y−cy)

2 = r2
p (1)

the accessibility circle ofp at (cx,cy). In the discrete case, this circle can be approximated on thegrid Ω by a series of
cells (partly drawn in gray on the right of Figure 1) using thecircle variant of Bresenham’s algorithm. If an ideal move
had been computed, which however becomes impossible due to conflict with others, the particlep still has alternatives.
Theorectically, going diagonally to the right or going backis also an option.

cy

cx

rp = vp · ∆t

FIGURE 1. Possible steps for a single particle. Left: Up to the right ordiagonally to the right. Right: An example of Bresenham’s
algorithm in the first and second octants. The particle may have a relatively larger step width, the cells within reach form an arc.
This arc can be computed by the circle variant of Bresenham’salgorithm.

Note that in the casevmax = 1, (cx±1,cy) and(cx,cy±1) the four grid points are computed by the circle variant
of Bresenham’s algorithm. The remaining four grid points(cx±1,cy±1) and(cx∓1,cy±1) might also be taken into

consideration, since
√

2
2 < 1 <

√
2.

2 Obviously in (1),x, y, cx, cy andrp are to be taken as float value before the scaling by cell lengthand width, because the integer solution for (1)
is not guaranteed.



The problem of step choice is, in a broarder sense, the choiceof an accessible cell using the circle variant of
Bresenham’s algorithm. Considering the rational behaviour of human beings — and since after computing thev vector,
we know the ideal moving direction — we approximate this in two partial stages:

1. search for the first blocking cell using Bresenham’s algorithm for straight line (see Figure 2 below);
2. make small modifications of the cell position which has been successfully accessed last.

Bresenham’s Algorithm for Straight Line

Originally, the famous algorithm of J. E. Bresenham [1] was used for digital plotting. This algorithm assumes that
the path of two adjacent points is composed of the mesh pointsnearest to the desired line segment. Similarly, on the
grid Ω, starting at cellp1 = p(n)

pos and ending at cellp2 = p(n+1)
pos with p1 = (x1,x2) andp2 = (x2,y2) respectively, the

cells closest to the moving direction can be computed by the algorithm.

p1

p2

pbpa

FIGURE 2. The cells a particle should go through from positionp1 = (x1,y1) to p2 = (x2,y2) using Bresenham’s algorithm for
straight line. The cell atpb is blocked by some other object.

If the particles are to a certain level in the simulation system dense, conflicts tend to take place more frequently for
a particle in the way from its original positionp1 = (x1,y1) to the ideal new position(x2,y2) while holding (1) (see
Figure 1). In this case, we first apply Bresenham’s algorithmfor straight line to determine all the cells the particle is
expected to go through before reachingp2 = (x,y). If an object positioned at cellpb (see Figure 2) blocks the way,
we try a small modification based on the cell last accessedpa = (xa,ya). Again, theorectically, a second accessibility
circle

(x−xa)
2 +(y−ya)

2 = (rp−‖ pa− p1‖)2

can be built and a further choice can be made.

Example of Conflict Resolutions

The following choices may be applied to resolve the conflicts.

1. The particle stops (as at positionpa Figure 2). This is an acceptable choice when the time lapse ofeach simulation
step∆t is small, we may then take for granted that the particle does not have enough time for a further decision.

2. The particle may swerve to the right, given that the neighboring cell is not blocked. This reflects human social
behaviour. A simple example is presented in Figure 3.

3. Try a second accessibility circle. In the implementation, we chose a small radius in this second sub-step,rp = 1,
with the implication that the particlep suffers a slight time loss due to the blocked cell atpb. This enables us to
choose one of four grid points(cx±1,cy) and(cx,cy±1) as a solution. Furthermore, as mentioned above, the
four corner points(cx±1,cy ±1) and(cx∓1,cy ±1) might also be considered. The choice may be done on a
random basis, or, slightly more sophisticated, the better the ideal moving direction can be kept by a candidate
point, the more should this point be preferred. In Figure 1, when the ideal moving direction is shown as that on
the right, the cell at(cx +1,cy +1) should be preferred as an solution.

4. Finally, if no solution is available, the particle has to remain at the cell last accessed (pa in Figure 2).



FIGURE 3. Screenshot of a simple test case. Blue, green and black cellsrepresent entrances, exits and repellors respectively.
Particles, drawn in red, are located randomly at the entrances and aim to go to their destined exits.

CONCLUSION

A discrete pedestrian flow model for a multi-aim situation was constructed and implemented (s. also [6]). Interior
walls and other obstacles were considered as repellors. Inhomogeneities of the pedestrians are possible. The local
velocities of single pedestrians may differ in their velocity or in their behavior from each other, thus bearing the
physical characteristic of a random distribution of pedestrians. Experiments and comparisons of simulations with the
developed model are in preparation.
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