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Abstract. We present a two-dimensional automaton model to simuladegigan flows. In this model, pedestrians may be
allocated have preassigned or randomly chosen startinggpand destinations, and they may get influenced by addition
repelling or indicating factors. Interior walls and othdrstacles can be abstracted as repellors. We apply Bres&nham
algorithm [1] of line rastering to calculate the ideal fordiatep which a single pedestrian may take on a two-dimeakion
grid. We introduce a flexible choice of step sizes to imprdweehiasic algorithm.
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INTRODUCTION

In the pioneering work [2] a one-dimensional cellular auddom was proposed to simulate traffic flows in a circled
closed system. In the two-dimensional case, [3] introduediven random walk model in which the pedestrian, in
the following calledparticle, has in a single simulation step may take basically one othtree choices to go forward,
up or down on a two-dimensional grid with the possibilities

1-D 1-D 1-D

P(forward) =D + #unoccupied cell$ P(upwarg = #unoccupied cell$ P(downward = #unoccupied cells
whereD € [0,1] is the so-called drifting constant. This implies
and demands a normalisation in accordance Wikh

Combining this with the new idea of “floor fields”, [4] and [Sfered new ansatzes focusing on the case@f= 1,
i.e. , the possible moves that a particle at the positinc,) may take are confined to be towards its immediate
neighbours afc, + Ax, ¢y + Ay) for Ax, Ay € {—1,0,1}.

We would like to consider the casgax > 1. Of specific interest are strategies for conflict resotutibthe particle
movements that also give adequate consideration to cotignabefficiency.

MODEL

In our model, the geometry is defined on a two-dimensionateS&@n gridQ = [0, Ixn x [0,Iyny] C R2, with I,
ly and ny, ny being the length, width and number of the cells on xhey-axis respectively. From a sociological

# unoccupied cells P(forward) P(upward), P(downward) SP
1 1 1-D 3-2D
2 548 5-5 3-5
3 1% 1

1 Mathematically, this should be written ggax- At = cell length (width), wherét denotes the time span of each simulation step. In this tekt, ¢
length and width are scaled to be 1.



perspective)y = Iy = 0.7m might be a proper choice for persons from western cultuereas in the oriental
cultures, smallek, |y values would be accepted or even preferred. Scaldd &ydly, this can be written in discrete
form,Q = {1,...,nc} x {1,...,ny}. The grid is not confined to be of rectangular shape, whenehe adjacent to the
boundary are of the repellor type, will be discussed in the section. Our assumtions are:

1. The contents of the cells will be calletjecs. An empty cell is of the object type “empty”.

2. The pedestrians, i.e. the particles, may differ in terrhs¢heir behavior. Their individual characters can be
controlled by various parameters. In general, this appied! the non-empty objects.

3. The particles possess no a priori knowledge of how to radohal optimum. A single particle aiming at a fixed
exit gathers the information at each simulation of the bketae of step at each simulation step.

4. The particles are neither “cooperative” (to reach an aVeptimum) nor “competitive” (so that the overall
optimisation would be hindered by local optima).

With the characterisation of "Cell”, "Object” and "Neighbhood”, the general aim of particles and the definition
of rules in the case of collisions and obstacles (confilcesran evaluate the actual flow direction and realise steps.

ALGORITHM, STEP CHOICE AND CONFLICT RESOLUTION

In the most studied casgax= 1, we see, as shown in the left of Figure 1, that a particleeptsition(cy, c,) may
access the celle, + 1,¢y) and(cy, ¢y + 1) in one step. This particle may also access the upper rightoogited at
(cx+1,¢cy+1) in one step. This implies that in doing so the particle mustcd1% more space than that in a usual
step along the- or y- axis.

Bresenham’s Algorithm for Circles

In our model for the generalised cagg.x > 1, we denote the time lapse of a single updateAbynd the local
velocity of a particlep by v,. Thus, at the positiofcy, ¢y ), the particle could reach any cell with a distamge= v, - At.
We call the circlé

(x—c)?+(y—6)?=r3 )
the accessibility circle op at (¢, ¢y). In the discrete case, this circle can be approximated ogriti€ by a series of
cells (partly drawn in gray on the right of Figure 1) using tirele variant of Bresenham’s algorithm. If an ideal move
had been computed, which however becomes impossible doafitcctwith others, the particlp still has alternatives.
Theorectically, going diagonally to the right or going baglalso an option.
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FIGURE 1. Possible steps for a single particle. Left: Up to the righdiagonally to the right. Right: An example of Bresenham’s
algorithm in the first and second octants. The particle ma larelatively larger step width, the cells within reachnfcain arc.
This arc can be computed by the circle variant of Bresenhalg&rithm.

Note that in the casenax= 1, (cx £ 1,¢y) and(cx, ¢y + 1) the four grid points are computed by the circle variant
of Bresenham’s algorithm. The remaining four grid poifgs+ 1,cy 4+ 1) and(cx + 1,cy 4 1) might also be taken into

consideration, sinc§ <1<+2.

2 Obviously in (1),X, Y, Cx, ¢y andrp are to be taken as float value before the scaling by cell leagthwidth, because the integer solution for (1)
is not guaranteed.



The problem of step choice is, in a broarder sense, the clufiem accessible cell using the circle variant of
Bresenham’s algorithm. Considering the rational behavabbhuman beings — and since after computinguhector,
we know the ideal moving direction — we approximate this io fpartial stages:

1. search for the first blocking cell using Bresenham'’s atlgor for straight line (see Figure 2 below);
2. make small modifications of the cell position which hasrbsgccessfully accessed last.

Bresenham’s Algorithm for Straight Line

Originally, the famous algorithm of J. E. Bresenham [1] wasdifor digital plotting. This algorithm assumes that
the path of two adjacent points is composed of the mesh poedeest to the desired line segment. Similarly, on the
grid Q, starting at cellp; = pjs and ending at celp, = pscY with p; = (x;,%,) andp, = (x,,Y,) respectively, the
cells closest to the moving direction can be computed by ld@righm.
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FIGURE 2. The cells a particle should go through from positimn= (X;,y;) to p, = (X,,Y,) using Bresenham's algorithm for
straight line. The cell ap,, is blocked by some other object.

If the particles are to a certain level in the simulation sgstense, conflicts tend to take place more frequently for
a particle in the way from its original positiop, = (X;,y;) to the ideal new positiofi,, y,) while holding (1) (see
Figure 1). In this case, we first apply Bresenham'’s algoritbnstraight line to determine all the cells the particle is
expected to go through before reachimg= (x,y). If an object positioned at cep), (see Figure 2) blocks the way,
we try a small modification based on the cell last accepged (Xa,Ya). Again, theorectically, a second accessibility
circle
(X—Xa)? + (Y= Ya)? = (rp— || Pa— Py [])?

can be built and a further choice can be made.

Example of Conflict Resolutions

The following choices may be applied to resolve the conflicts

1. The particle stops (as at positipgpFigure 2). This is an acceptable choice when the time lapsadf simulation
stepAt is small, we may then take for granted that the particle doétave enough time for a further decision.

2. The particle may swerve to the right, given that the neaginig cell is not blocked. This reflects human social
behaviour. A simple example is presented in Figure 3.

3. Try a second accessibility circle. In the implementatiwa chose a small radius in this second sub-steps 1,
with the implication that the particlp suffers a slight time loss due to the blocked celpatThis enables us to
choose one of four grid pointex £ 1,¢y) and(cy, ¢y £+ 1) as a solution. Furthermore, as mentioned above, the
four corner pointgcx = 1,¢,+ 1) and(cx F 1,cy £ 1) might also be considered. The choice may be done on a
random basis, or, slightly more sophisticated, the befterideal moving direction can be kept by a candidate
point, the more should this point be preferred. In Figure hiemwthe ideal moving direction is shown as that on
the right, the cell atcy + 1,¢, + 1) should be preferred as an solution.

4. Finally, if no solution is available, the particle has éormain at the cell last accesse®} (n Figure 2).
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FIGURE 3. Screenshot of a simple test case. Blue, green and blackrepliesent entrances, exits and repellors respectively.
Particles, drawn in red, are located randomly at the enéisaand aim to go to their destined exits.

CONCLUSION

A discrete pedestrian flow model for a multi-aim situationsvemnstructed and implemented (s. also [6]). Interior

walls and other obstacles were considered as repellorsmabgeneities of the pedestrians are possible. The local
velocities of single pedestrians may differ in their vetgadr in their behavior from each other, thus bearing the

physical characteristic of a random distribution of pedass. Experiments and comparisons of simulations with the
developed model are in preparation.
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