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Abstract: In this paper an optimization problem for a Boussinesq equation system will be
formulated. To approach a given velocity field we are looking for an appropriate temperature
profile on the boundary of the considered region of the thermal coupled flow problem. For a
tracking type minimization functional the evaluation of the first order necessary optimality
condition leads to an optimality system consisting of the forward and adjoint mathematical
model.
The optimization concept will be applicated to a crystal growth flow and results of twodi-
mensional and threedimensional model problems will be presented.
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1. Introduction - Motivation

During the growth of crystals crystal de-
fects were observed under some conditions of
the growth device. A transition from the
twodimensional flow regime of a crystal melt
in axisymmetric zone melting devices to an
unsteady threedimensional behavior of the ve-
locity and temperature field was found exper-
imentally. This behavior leads to striations
as undesirable crystal defects. To avoid such
crystal defects it is important to know the
parameters, which guarantee a stable steady
twodimensional melt flow during the growth
process.
There are several possibilities for parameter
finding. In this paper optimization problems
will be discussed. From the experiment and
the practical crystal production process it is
known that an unsteady behavior of the melt
and vorticies near the fluid-solid-interphase

decrease the crystal quality. Thus it makes
sense to look for example for

(i) flows, which are nearly steady and

(ii) flows, which have only a small vorticity in
a certain region of the melt zone.

This leads to tracking type optimization prob-
lems (i) with functionals like

J(~u, θc) =
1

2

∫ T

0

∫
Ω

|~u − ~u|2 dΩdt
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α
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ct
) dΩdt (1)

and problems with optimization functionals
of the form

J(~u, θc) =
1
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|curl~u|2 dΩdt
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(θ2
c + θ2

ct
) dΩdt . (2)



~u is the velocity vector field in the melt and
~u is a desired state, which represents a physi-
cally favourable flow situation. θc is the con-
trol temperature on the control boundary Γc.
The discussed methods of deriving optimiza-
tion and the iterative algorithms of the eval-
uation of necessary optimality conditions are
investigated by the solution of typical crys-
tal growth problems. Because of the difficul-
ties to construct or to prescribe desirable flow
fields we use ~u which we got by a certain for-
ward solution of the Boussinesq equation sys-
tem or we set ~u equal to zero. But with the
optimization strategy we are ready to com-
pute an optimal control for a given desirable
flow field ~u by crystal growth engineers.

2. Mathematical model

The crystal melt is described by the
Navier-Stokes equations for an incompress-
ible fluid using the Boussinesq approximation
coupled with the convective heat conduction
equation and the diffusion equation. Heat
conductivity and viscosity depend on the tem-
perature. Thus we have a Boussinesq equa-
tion system for the velocity ~u = (u, v,w), the
pressure p and the temperature θ

~ut + (~u · ∇)~u − ∆~u + ∇p − Gr θ ~g = 0, (3)

−div ~u = 0, (4)

θt + ~u · ∇θ −
1

Pr
∆θ − f = 0 , (5)

on the space-time cylinder ΩT = Ω × (0, T ).
The vector ~g is directed in the z-direction,
i.e. ~g = (0, 0, 1). We will now discuss the
case f = 0 because we are mainly interested
in boundary control. ~u is the velocity vector.
u, v,w and p are the primitive variables of the
velocity vector and the pressure, ρ and θ de-
note the density and the temperature, Gr is
the Grashof number, Pr is the Prandtl num-
ber, and f stands for an energy source.

The boundary conditions are of the form

u = ud, v = vd, w = wd on ΓT ,

θ = θc on the control boundary ΓcT , (6)

θ = θd, on Γd × [0, T ] ,

where ΓT means the boundary-time cylinder
Γ × [0, T ].

Dirichlet data on the control boundary as a
first choice are used, because there are some
results of Kurz [3], who solved an inverse
problem to find a heating strategy for catch-
ing a given temperature profile on the bound-
ary. Our idea is to find optimal tempera-
ture profiles during the optimization method,
described in this paper. And after that the
heater identification method of Kurz/Müller
[4] can be used to find the optimal heating
strategy.
In the case of the Czochralski crystal growth
technique with ud, vd, wd we have the possi-
bility to describe a certain crystal and cru-
cible rotation. In the case of zone melting flow
ud equals zero. The initial state is assumed
as the neutral position of the crystal melt
(~v = 0) and a temperature field, which solves
the non convective heat conduction equation
with the boundary conditions θ = θd on Γd

and θ = θ0 on Γc. The material properties
and the dimensionless parameters for the in-
vestigated crystals close the initial boundary
value problem for the description of the melt
flow.

3. Optimization

For the calculus of optimization and the
derivation of an optimality system we use the
above desrcibed dimensionless mathematical
model (3), (5) with the boundary conditions
(6). For t = 0 we have the initial condition
~u = 0 and a temperature field, which solves
the non convective heat conduction equation
with the given temperature boundary condi-
tions θ = θ0 on Ω.
The use of formal Lagrange parameter tech-
nique with respect to the functional of type
(1) means the consideration of the Lagrange
functional

L(~u, p, θ, θc, ~µ, ξ, κ, χ) = J(~u, θc)

+ < ~µ,mo >ΩT
− < ξ, div ~u >ΩT

+ < κ, en >ΩT
+ < χ, θ − θc >ΓcT

. (7)

mo and en stand for the left sides of the
equations (3) and (5), and for example for
< ~µ,mo >ΩT

we have

< ~µ,mo >ΩT
=∫

ΩT

[~ut + (~u · ∇)~u − ∆~u + ∇p − Gr θ ~g] · ~µ dΩT .



~µ, ξ, κ and χ are Lagrange parameters. We
will not discuss the functional analytical as-
pects of the used Lagrange method, i.e. func-
tion spaces, smoothness properties etc. in de-
tail. A very good overview over the functional
analytical background and the foundation of
the optimization of Navier-Stokes problems is
developed in [2].
To find candidates ~u(θc) and θc, which min-
imize the functional (1) we have to analyze
the necessary optimality conditions

L~u
~̃u = J~u

~̃u+ < ~µ,mo~u >ΩT

− < ξ, div ~̃u >ΩT
+ < κ, en~u >ΩT

= 0, (8)

Lpp̃ =< ∇p̃, ~µ >ΩT
= 0, (9)

Lθθ̃ =< −Gr~g θ̃, ~µ >ΩT

+ < κ, enθ >ΩT
+ < χ, θ̃ >ΓcT

= 0, (10)

Lθc
θ̃c = Jθc

θ̃c+ < −χ, θ̃c >ΓcT
= 0 . (11)

The derivatives of the Lagrange functional (7)
to the Lagrange parameters ~µ, ξ, κ, χ and the
necessary condition

grad L = (L~µ~̃µ, Lξ ξ̃, Lκκ̃, Lχχ̃)T = 0 (12)

means the constraints of the optimization
problem, i.e. the initial boundary value prob-
lem (3),(4),(5),(6). The evaluation of the con-
dition (8), which was described in detail in
[8] leads to the following equations, boundary
and final conditions for the adjoint variables.
For the adjoint velocity we get from the con-
dition (8)

−~µt − ∆~µ + (∇~u)t~µ − (~u · ∇)~µ + ∇ξ

+κ∇θ = −(~u − ~u) in ΩT , (13)

with the boundary condition ~µ = 0 on Γ ×
(0, T ), and the final condition ~µ(T ) = 0 in Ω.
Equation (9) yields

−div ~µ = 0 in ΩT . (14)

The condition (10) implies

−κt −
1

Pr
∆κ − ~u · ∇κ = Gr~g · ~µ in ΩT ,

(15)
with the boundary condition κ = 0 on Γ ×
(0, T ), and the final condition κ(T ) = 0 in Ω,
and the choice of χ as

χ = −
1

Pr

∂κ

∂n
on ΓcT .

Condition (11) gives

α(−θctt
+ θc) = χ (= −

1

Pr

∂κ

∂n
) on ΓcT ,

(16)
with the time boundary conditions

θc(0) = θ0 and θct
(T ) = 0 , (17)

where θ0 means a temperature distribution on
Γc at the beginning of the melting process,
which is physical and technological founded.
Now we can summarize, and the fully opti-
mization system consists of

1) the forward model with the Boussinesq
equations (3),(4),(5), the boundary condi-
tion (6) and the given initial state for the
velocity field ~u, the pressure p and the tem-
perature θ, and

2) the adjoint model with the equations
(13),(14),(15),(16), and the boundary and
final conditions for the adjoint variables ~µ,
ξ, κ and the control θc,

and we will call it the optimality system. The
global existence of a solution of the forward
problem is well known [5]). In three dimen-
sions only the local uniqueness of the forward
solution could be shown. Hinze/Kunisch [2]
have shown the existence and uniqueness of a
solution of the adjoint model. Minimization
functionals of the considered types (1) are in-
vestigated for example by Hinze [2]and Gun-
zburger et al. [6]. The main reason for such
quadratic functionals is the technological aim
of the crystal growth methods. This purpose
dominates qualitativ mathematical questions
- for example like existence of a minimum -
which are still under consideration.

4. To the numerical solution
method of the full problem

Now we construct a numerical solution
method. The used time discretization should
be demonstrated for the forward problem (3)-
(6), i.e. the boussinesq equation system.
Quantities without upper indices are consid-
ered at the old time level tn = nτ with the
time step τ . The upper index n + 1 indi-
cates the values at the new time level tn+1 =
(n + 1)τ . With τ = T

Z
we have a discretiza-

tion t0 = 0, t1 = τ, t2 = 2τ, . . . , tZ = Zτ = T



of the considered time intervall [0, T ]. We use
an implicit time discretization related to the
conductive terms. Thus we have in the time-
space cylinder ΩT the time integration scheme

~un+1 − ~u

τ
+ (~u · ∇)~u − ∆~un+1 + ∇pn+1

−Gr θn+1~g = 0 (18)

−div ~un+1 = 0 (19)

θn+1 − θ

τ
+ (~u · ∇)θ −

1

Pr
∆θn+1 = 0 . (20)

The divergence of the equation (18) gives

−∆pn+1 = −
1

τ
div ~̂u , (21)

with

~̂u = ~u + τ [(~u · ∇)~u + Gr θn+1~g] . (22)

With the solution pn+1 of the equation (21)
the velocity field ~un+1 we get as the solution
of

1

τ
~un+1 − ∆~un+1 =

1

τ
~u −∇pn+1 . (23)

The used time discretization means the so-
lution of a Poisson equation for pn+1, four
Helmholtz equations for the components of
~un+1 and θn+1. The spatial finite volume dis-
cretization developed in [1] of the equations
(21), (23) and (20) leads to linear equation
systems with symmetric coefficient matrices
which we solve with conjugate gradient meth-
ods.
For the solution of the adjoint problem we use
the following time discretization, which was
developed in detail in [8].

~µn−1 − ~µ

τ
− ∆~µn−1 + (∇~un−1)t~µ

−(~un−1 · ∇)~µ + ∇ξ

= −(~un−1 − ~u) − κn−1∇θ, (24)

−div ~µn−1 = 0, (25)

κn−1 − κ

τ
− ~un−1 · ∇κ −

1

Pr
∆κn−1

= Gr~g · ~µ (26)

in the time-space cylinder ΩT . The equation
(16) for the control with the boundary con-
ditions θc(γ, 0) = θc0 and θct

(γ, T ) = 0 for

γ ∈ Γc will be solved with a finite volume
method in space and time. The solution of the
discretized system (3)-(6) and (13)-(17) is dif-
ficult and expensive, because of the opposite
time direction of the forward system (3)-(6)
and the adjoint system (13)-(17). That means
we have to provide the forward solution ~u, θ
on the whole time interval [0, T ] to get the
adjoint solution ~µ, κ, θc and vice versa.
If we have discretized the time interval [0, T ]
by Z timesteps τ = 1

Z
and the dimensions of

the spatial discretizations are N , M and P a
direct solution of the whole system means the
solution of an algebraic equation system with
2Z×N×M×P×10 equations. For the repre-
sentation of the used iteration method we de-
note with H := −∂tt + id a solution operator,
which describes the solution of the two point
boundary value problem (16),(17) on ΓcT , i.e.

H(θc) = χ or θc = H−1(χ) .

Iterative methods of the form

i) choose a suitable start value of θc,

ii) solve the forward problem and get [~u, θ](θc)

iii) solve the adjoint problem and get
[~µ, κ](~u, θ)
update of θc by θc := σrθc+(1−σr)H

−1(χ),
σr ∈]0, 1[,

iv) until convergence, go to ii),

are used. During one time step of the for-
ward problem we have to solve equations of
the type (21), a Poisson equation, and with
(23),(20) four Helmholtz equations (for the
adjoint problem also five equations of the
same type). The above described fixpoint it-
eration i)-iv) with relaxation works good, and
the results of the numerical simulations will
be demonstrated now.

5. Results of the numerical
solution of the full problem

As a testproblem we consider a zone
melting configuration. The used geometri-
cal and material parameters for the crystal
(Bi0.25Sb0.75)2Te2, a composition of bismuth
point fifty antimony one point fifty telurium
two, are summarized in the table 1 (see also
[1]).



(Bi0.25Sb0.75)2Te2-crystals are used for small
cooling devices. The figure 1 shows the phys-
ical domain of the melt zone. For the ve-

melt zone

solid crystal

solid crystal input

output
z

r

R

H

ΩΩ

Γ

Γ

Γc

1

0

Figure 1: Physical domain for the zone melt-
ing growth

locity we have homogeneous dirichlet data on
the whole boundary. For the temperature we
have the boundary conditions

θ = θc, for r = R, 0 ≤ z ≤ H,ϕ ∈ (0, 2π), (27)

θ = θs, for 0 ≤ r ≤ R, z = H, (28)

θ = θs, for 0 ≤ r ≤ R, z = 0. (29)

For t = 0 we start with a given temperature
profile θc = θc0 on Γc and with θs = 613K,
δθ = 25K for θc0 we have

θc0(z) = θs + 4
z

H
(1 −

z

H
)δθ .

The velocity field ~u, which we want to reach
is

parameter symbol value

radius R 0.004 m

height H 0.016 m

melting point θs 613 K

diffusivity a 0.44000e-05 m2

s

viscosity ν 0.36310e-06 m2

s

expansion β 0.96000e-04 K−1

Table 1: Parameters of (Bi0.25Sb0.75)2Te2-
melt and of the melt geometry

a) a typical twodimensional toroidal flow and

b) a non moving melt ~u = 0.

The case b) is artificial but a good test case
because we knew that θc = θs = const. gives
~u = 0 and θ = θs as a solution of the boussi-
nesq equation system. We consider a time
interval [0, T ] = [0, 8 seconds] with Z = 60
time steps of 0.1222 seconds. For the spa-
tial discretization we use 20 × 30 finite vol-
umes. The figures 2 - 4 show the results of
the optimization for the case a) and case b),
i.e. the resulting control temperature on the
boundary-time cylinder and the development
of the functional values, where the tempera-
tures are dimensionless defined by θ̄ = θ−θs

δ
.
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Figure 2: Control temperature (problem a)
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Figure 3: Functional vs. iteration (problem
a)

6. Conclusion

With the Lagrange parameter technique
it’s possible to derive an optimization system
for a given functional, which solution gives an
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Figure 4: Control temperature (problem b)
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Figure 5: Functional vs. iteration (problem
b)

optimal control. The numerical examples of
the fully time-depend 2.5d optimization sys-
tem show the possibility of the practical opti-
mization of a thermal coupled flow problem in
the crystal growth field. The results show the
possibility of boundary control especially in
the case of the zone melting technique. Based
on the results the proposed strategies it is now
possible to do a fully 3d optimization. For
the Czochralski growth configuration the op-
timization works, but the results show, that
these kind of boundary control is not really of
practical interest.

It is necessary to continue numerical ex-
periments to investigate if the optimization
during a boundary control only will be suc-
cessful technology. There are some experi-
ences with other optimization problems which
show the efficiency of volume control, if there
is a possibility of the production of volume
forces (for example by a magnetic field).

The presented optimization method is ap-
plicable to other coupled transport problems

for example the coupling of solutal and natu-
ral convection. The demonstrated derivation
of the adjoint problem to fit the necessary op-
timality condition grad L = 0 (L denotes the
Lagrange function including the differential
equations and the minimization functional) is
the key to process optimization with infinite
degrees of freedom.

References

[1] Bärwolff, G., König, F. and G.

Seifert: Thermal buoyancy convection
in vertical zone melting configurations,
ZAMM 77 (1997) 10

[2] Hinze, M.: Optimal and instantaneous
control of the instationary Navier-Stokes
equations, habilitation thesis, Berlin, Au-
gust 2000 (available on the webpage
www.math.tu-dresden.de/~hinze)

[3] Kurz, M.R.H.: Development of
CrysVUN++, a Software System for
Numerical Modelling and Control of In-
dustrial Crystal Growth Processes, Thesis,
Erlangen 1998

[4] Kurz, M.R.H. and G. Müller : Con-
trol of thermal conditions during crystal
growth by inverse modeling, Journal of
Crystal Growth 208 (2000)

[5] Constantin, P. and C. Foias: Navier-
Stokes Equations, The University of
Chicago Press, 1988

[6] Gunzburger, M., Ozugurlu, E.,

Turner, J. and H. Zhang: Controlling
transport phenomena in the Czochralski
crystal growth process, Journal of Crystal
Growth 234 (2002)
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