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Abstract. We presented a deductive model for multi-lane vehicular traf-
fic simulation in [1]. In the current text, variable safety distance policy is
added to the previous model; in addition, we give a detailed parameter
calibration. As a result, fundamental diagram close to empirical studies
can be reproduced. The original model was devised for both asymmetric
and symmetric traffic systems. Our test result shows very similar overall
density-flow relationships in both systems.
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1 Introduction

The study of vehicular traffic serves the purpose of optimal utilization of road
resources for transportation as well as enhanced safety consideration of such ac-
tivities. Various simulation models have been applied for design, planning and
condition prediction of real-world traffic systems. Basically, there are two cat-
egories in the modelling and simulation. Macroscopic methods concentrate on
the overall system dynamics. In comparison, microscopic methods focus on the
individual objects in the system which are often named “agent”s (see [4] for an
overview). In the latter category, car-following models study the problem from a
perspective of individual vehicles under the active control of their drivers; state
equilibrium and numerical integration of these individual units are applied in the
description of system dynamics (see the discussion in [8]). [5] introduced the first
application of cellular automaton (CA) in microscopic modelling of single-lane
traffic systems. In this model, discrete positions (also called “site”s) on the lanes
resemble the “cell”s in the context of a CA; the system dynamics can be thus
described by the state transition of all the cells in the simulation system. With
x and v denoting position and speed of the vehicles respectively, every vehicle is
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subject to a set of four simple transition rules:

v ⇐ min(v + 1, vmax), (1a)

v ⇐ min(x′ − x− 1, v), (1b)

v ⇐ max(0, v − 1), executed with a given probability, (2)

x ⇐ x+ v. (3)

The superscript ′, as seen in (1b), is used to denote a vehicle’s immediate neigh-
bour (the leader of the current vehicle) in the flow direction. Let x′ denote
the position of the leading vehicle. (1a) describes the possible acceleration of
the current vehicle. In comparison, (1b) shows the maximum possible position
transition without risk of collision with the leading vehicle ahead. The final po-
sition transition of this vehicle is given in (3). The rule of (2) is introduced as
a stochastic element; it reflects the random “dawdling” behaviour of the drivers
which most of them are unaware of. Without this element, the simulation would
become deterministic. A simulation cycle consists of application of these four
rules on all vehicles in the system. In the original model [5] and many of its
extensions (for example, the two-lane extension [7]) each site in the traffic lane
has a length of 7.5m; this value has been selected to be slightly larger than the
length of an average passenger vehicle. The simulation cycle has a time length
∆t = 1 s, with this, a discrete maximum speed vmax = 5 renders a maximum
physical speed of 135 km · h−1.

2 A Deductive Multi-lane Model

lc − lv

lc

2lc − lv

2lc

Fig. 1. Real distance between vehicles (drawn as small rectangles) in the traffic lane.
The collision-free distance between two vehicles at adjacent sites (drawn as enclosing
rectangles) is lc−lv (instead of lc or 0); the collision-free distance of a vehicle to another
one at position d sites away is d · lc− lv. The flow direction in the current text is always
from left to right in the horizontal axis.

We presented a generalized model for vehicular traffic with multiple lanes [1].
We consider this model to be deductive (according to the definition of [3]), since
system parameters are derived from known physical quantities. We explain this
model briefly.
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2.1 System Settings

In our model, safety distance will play a significant role, so first we take a closer
look of the distance between the vehicles. The traffic lane will be divided into
sites with an equal length lc. Let lv denote the average length of a typical vehi-
cle. The collision-free distance of two vehicles at the x-th site and the (x+ d)-th
site would be d · lc − lv, cf. Fig. 1. A very realistic estimate for an average pas-
senger car would be lv = 5m. Respecting this measurement and the site length
lc = 7.5m, it is almost for sure that in the model of [5] the distance between the
vehicles is too small.

We start with lc = 15m and ∆t = 2.4 s. In this case, position change of
one site in the lane in each simulation cycle refers to a temporary speed of
22.5 km · h−1, whereas the speed change (acceleration) is 9.375 km · h−1 every
second (approximately eleven seconds from 0 to 100 km · h−1), which resembles
the capacity of an average modern passenger car.

2.2 Safety distance

>From a practical perspective, it is suggested that a minimum safety distance
in metres as the half of vehicle speed measured in kilometres per hour should be
attended. In Germany, this is sometimes even obligatory. We introduce a safety
distance coefficient c (c ≥ 1) which is to be understood as a multiplier of the
minimum safety distance.

Respecting a discrete speed v (v = 0, . . . , vmax), we have the discrete safety
distance:

sc,v =
c
2
· v · lc ·

1 h

∆t
· 10−3

lc
. (4)

For ∆t = 2.4 s, (4) becomes

sc,v =
3cv

4
. (5)

Given a discrete distance d to the immediate leading vehicle, a collision-free
speed v requests

v + sc,v ≤
d · lc − lv

lc
= d−

lv

lc
. (6)

The safety distance sc,v can be shortened as sv, if the safety distance coeffi-
cient c is clear in the context.

2.3 Driving Strategy

We notice that in the two border lanes lane changing is allowed only in one di-
rection, whereas in the middle lanes lane changing is possible in both directions.
Without loss of generality, we consider exactly these three types of lanes and
they will be given indices l = 0, 1, 2, counted from the inner side. Furthermore,
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positions on the lanes l = 0, 1, 2 will be written in x, y and z respectively. As
in (1b), we use the superscript ′ to address the immediate leading vehicle in the
flow direction: respecting a vehicle at position y, the vehicle directly ahead of it
will be at position y′; by x′ and z′ we mean the positions of the leading vehicles
in the neighbouring lanes. In addition, the speed of the vehicle at position x will
be written as vx.

Same as (1a), local vehicle speed will always be increased whenever possible.
After this, lane changing will be considered.

Check inner lane This is the case when a vehicle at position y′ seeks to change
into the inner lane. This step is mandatory in an asymmetric traffic system.
Obviously, this driving manoeuvre is only possible when l > 0. With

x′′ − y′ − 1− sv
y′

≥ vy′ , (7a)

and

vy′ > vx, (7b)

a lane changing ∆l = −1 will be possible for the current vehicle with a speed vy′ .
(7a) is the forward causality taking into consideration of safety distance (4). (7b)
refers to the backward causality: a higher speed of the current vehicle guarantees
a collision-free lane changing.

Check current lane This is the case when the vehicle inspects the situation
in the current lane. With

y′′ − y′ − 1− sv
y′

≥ vy′ , (8)

no lane changing will be necessary (∆l = 0) and the current speed vy′ can be
maintained. Since no lane changing is involved, backward causality will not be
considered, since this will be covered by the forward causality of the immediate
following vehicle in the same lane. In an asymmetric traffic system, (8) is gen-
erally easier than (7a) to meet, since vehicles in outer lanes usually have higher
speeds and consequently the density should be lower, the latter further leads to
y′′− y′ > x′′− y′. This explains why vehicles have no reason to change lanes too
often.

Check outer lane Now the current vehicle—still at position y′, since the above-
mentioned two operations have been without success—seeks to change into the
outer lane. To perform this operation, there must be l < 2 and

z′′ − y′ − 1− sv
y′

≥ vy′ , (9a)
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and

y′ − z ≥ vmax. (9b)

In such a case, a lane changing ∆l = +1 can be performed at the current speed
vy′ . In addition to the forward causality (9a), backward causality is now recov-
ered in (9b). We do not request vy′ > vz, since a reliable estimate of the speed
is difficult with the increasing vehicle speed in the outer lane (in an asymmetric
traffic system). Instead, we apply vmax in (9b) to ensure maximum safety.

Move in current lane In the current lane, by (5) (if ∆t is configured to be
2.4 s) and (6), the maximum local speed with consideration of safety distance
can be deduced:

v ⇐ min

(

4

4 + 3c
·
(

y′′ − y − lv
lc

)

, v

)

. (10)

The value of v is in general not an integer. Yet it is still unknown whether the
space y′′ − y′ − 1 is sufficient for the current vehicle to move forward in the flow
direction. For this, we propose:

v ⇐

{

y′′ − y′ − 1, if v ≥ y′′ − y′ − 1,

v∗, otherwise,

with

v∗ =

{

⌊v⌋+ 1, if p < v − ⌊v⌋,

⌊v⌋, otherwise,

where p is a random number from [0, 1) and ⌊·⌋ refers to the largest integer no
greater than the argument. With the construction of v∗, the position update of
the vehicle can be performed exactly.

The above-mentioned four steps refer to the asymmetric case. In a symmet-
ric traffic system, the vehicles are requested—partly owing to the heavy traffic
loads—to stay in their lanes whenever possible. On the other side, when a lane
changing is necessary, it is allowed on both sides. Hence, lane changing in the
symmetric case will be considered on an equal basis; apart from this, another
significant change concerns the forward causality (9b), which is to be revised
into

vy′ > vz.

for the sake of symmetric behaviour.

2.4 Space-time diagram

To test our model, periodical boundary of the lanes has been applied. Since the
vehicles are now placed in a closed circulating traffic system, the actual physi-
cal length of the lanes is no longer relevant for test results. We start with our
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Lane 0
v0=3
v =0..6
c =1.00
p0=0.20
p1=0.20
p2=0.20
p3=0.20
asymmetric

Lane 1
v0=3
v =0..6
c =1.00
p0=0.20
p1=0.20
p2=0.20
p3=0.20
asymmetric

Lane 2
v0=3
v =0..6
c =1.00
p0=0.20
p1=0.20
p2=0.20
p3=0.20
asymmetric

Lane 3
v0=3
v =0..6
c =1.00
p0=0.20
p1=0.20
p2=0.20
p3=0.20
asymmetric

Fig. 2. Space-time diagram of four asymmetric lanes with p0 = p1 = p2 = p3 = 0.2

(standard configuration with minimum safety distance).

standard configuration l = 15m, ∆t = 2.4 s. Only minimum safety distance
is requested (c = 1). The vehicles are assigned a default speed of 3 (that is,
67.5 km · h−1), this initial speed has no significant impact on the overall dy-
namics of the system, since by (1a), all vehicles are subject to local acceleration
whenever possible. The maximum possible speed is set as vmax = 6 (135 km· h−1).

Lane 0
v0=3
v =0..6
c =1.00
p0=0.20
p1=0.20
p2=0.20
p3=0.20
symmetric

Lane 1
v0=3
v =0..6
c =1.00
p0=0.20
p1=0.20
p2=0.20
p3=0.20
symmetric

Lane 2
v0=3
v =0..6
c =1.00
p0=0.20
p1=0.20
p2=0.20
p3=0.20
symmetric

Lane 3
v0=3
v =0..6
c =1.00
p0=0.20
p1=0.20
p2=0.20
p3=0.20
symmetric

Fig. 3. Space-time diagram of the same settings as above in the symmetric case.

In Fig. 2 and Fig. 3 we see two examples of the so-called space-time diagram

in which the trajectories of the individual vehicles are recorded. In these two
examples, the lanes are initialized with an equal density p0 = p1 = p2 = p3 = 0.2.
The average vehicle speed and the vehicle density in the lanes are drawn in gray
and black line segments respectively, the straight line segment on the right sight
refers to both the maximum speed vmax and the maximum density 1. It can be
seen that in the asymmetric case, the average speed increases (accompanied by
a slight decrease in the density) in the outer lanes, whereas in the symmetric
case, the change of the average speed in the lanes remains small.
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3 Model Calibration

3.1 Density and Flow

Now we have a look of the fundamental diagram of density and flow, the latter
of which is defined as the product of vehicle density and average speed in the lane.

max. density:    67    per km
max. speed  :   135 km per hour

0 1

1

asymmetric
c=1.00

Lane 0
Lane 1
Lane 2
Lane 3

max. density:    67    per km
max. speed  :   135 km per hour

0 1

1

symmetric
c=1.00

Lane 0
Lane 1
Lane 2
Lane 3

Fig. 4. Sample points of density (horizontal axis) and flow (vertical axis), generated
from test runs with various initial lane densities, in both asymmetric and symmetric
cases.

Fig. 4 shows the density-flow relationship with standard configuration lc =
15m, ∆t = 2.4 s and c = 1. Naturally, the maximum density “1” in the horizon-
tal axis is given by the inverse of the site length in the lane, that is, 1

lc
, which

is approximately 67 vehicles per kilometre in our case. The maximum flow “1”
in the vertical axis refers to the product of maximum density and maximum

speed vmax

lc
= 135 km· h

−1

15m
= 9000 vehicles per hour. practically, this maximum

flow quantity cannot be realized. Both subfigures exhibit very similar patterns
of the generated sample points. They differ in lane distribution of the sample
points by definition (asymmetric vs. symmetric).

The same tests can be carried out on a system-wide basis: instead of having
density and speed (and consequently flow) measured in separate lanes, we can
have these quantities measured over all the lanes. In Fig. 5 we show the test
results on a system-wide basis with different safety distance coefficients. Median
flow quantities have been collected from sample points in the equidistant inter-
vals respecting density. The speed-flow relationship is given in addition in the
right subfigure. In the left subfigure, the maximum flow of over 5000 vehicles per
hour is reached at a density of somehow 15 vehicles per kilometre with minimum
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Fig. 5. Fundamental diagram of various safety distance settings in both asymmetric
and symmetric cases. Left: Fundamental diagram of density and median flow volume.
Right: Diagram of speed and median flow volume. Relative scale is applied with addi-
tional labelling of the actual quantities.

density
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ow
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source 1
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Fig. 6. Re-plot of two fundamental diagrams collected from empirical data concerning
two different two-lane highways, both with speed limit 120 km · h

−1. Source 1: [2]
(page 87), original sample points are roughly covered in the dotted region, median flow
values with various densities are shown in black dots. Source 2: [6], no median flow
value had been provided, the original quantities referred to measurements made in two
lanes, these have been adjusted in the current plot.

safety distance (c = 1).
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When the relative scale (with “1” as maximum) is applied, the overall shape
of the fundamental diagram of density and flow becomes “flatter” with the in-
crease of the safety distance coefficient c. We also notice that given constant lv,
lc, ∆t and c, the length of the lanes and the discrete maximum speed vmax have
no impact on the overall density-flow diagram. vmax affects only the scale in the
vertical axis.

In comparison, Fig. 6 presents results acquired from empirical data. There we
see an average peak flow of roughly 2300 vehicles per hour at a density of 20 to 30
vehicles per kilometre. Source 2 of Fig. 6 documented that 13% of the recorded
vehicles had been trucks (of larger sizes and lower speeds), this would suggest a
higher density and flow volume, if only passenger cars were to be considered.

max. density:   100    per km
max. speed  :   129 km per hour

0

0--100kmh: 10.67s

l_v=4.7m; l_c=10.0m;  ∆t=1.96s
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unit speed=18.4kmh; v=0..7
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18 37 55 73 92 110 129

Fig. 7. Fundamental diagram of median flow volume, density and speed with slightly
modified parameters. Owing to the rounding of vmax, the real speed limit as product
of unit speed u and vmax may be higher than the target speed limit 120 km · h

−1.

It is quite reasonable that with c = 1, the flow volume would be much higher
than expected. Here are two facts. Firstly, drivers usually keep a larger distance
to others than the mandatory minimum safety distance; and secondly, the road
resources are not at all time completely utilized. On the whole, c ∈ [2, 4] would be
a reasonable range for safety distance coefficient. Before calibrating our model,
we adjust two system parameters. We set lv = 4.7m, this represents the average
length of a mid-sized passenger and should therefore reflect the average size of
the vehicles more exactly; at the same time, in alignment with the empirical data,
maximum lane density is now defined to be 100 vehicles per kilometre, this leads
to lc = 10m. The result of this configuration is given in Fig. 7. Unlike lv and
lc, the average acceleration capacity of the vehicles stays unchanged in the test
case of Fig. 7, therefore we need to calculate the new ∆t (see below). Compared
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to empirical data, it seems that in this test case the peak flow is reached too early.
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Fig. 8. Fundamental diagrams of median flow volume, density and speed with different
values of T . First row: T is larger than that in the standard configuration. Second row:
T is reduced to produce the correct flow volume.

Let u denote the real speed associated with the discrete unit speed v = 1, we
have

u =
1h

∆t
·

lc

1000m
km · h−1. (11)

Given a target speed limit vtarget (for example, vtarget = 120 km · h−1), the
maximum discrete speed is

vmax =
⌈vtarget

u

⌉

. (12)
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whereas ⌈·⌉ refers to the smallest integer no less than the argument.

Let T denote the time length of acceleration from 0 to 100 km · h−1 under
maximum power, there is

T =
100 km · h−1

u
∆t

.

By (11), we have
100

T
=

1h

(∆t)2
·

lc

1000m
,

this gives

∆t =

√

3.6 s · lc · T

100m
. (13)

Although it may sound strange, increasing T leads to a higher flow volume,
since larger T implies weaker acceleration capability of the vehicles. The reason
for this is that in the flow diagram with axes of relative scale, the actual flow
volume concerning a specific configuration (of lv, lc and ∆t) is related with the
shape (flatness) of the density-flow curve represented by the sample points. As
we have pointed out earlier, with a constant configuration, varying vmax has no
effect on the shape of the density-flow curve, yet the flow volume changes, since
the maximum flow on the vertical axis is the product of maximum density and
maximum speed. By (13), we know that ∆t is correlated with the square root of
T ; by (11) and (12), vmax is correlated with ∆t. Consequently, with a larger T

the actual flow volume increases, this can be verified by the test cases in Fig. 8
as well.

In comparison to our initial configuration of ∆t = 2.4 s, ∆t = 1.5 s seems to
be quite reasonable (along with modified lv and lc) to produce flow volume in a
suitable range. However, ∆t = 1.5 s would lead to T = 6.25 s which represents
a much too high acceleration capacity, see the second test case in Fig. 8. As a
solution for this, we introduce an additional acceleration multiplier s (s > 1) that
the vehicle should have a simulated acceleration capacity from 0 to 100 km · h−1

in a time length of Ts. To achieve this, we request that (1a) will be carried out
with a probability of qv, for v = 0, . . . , vmax − 1. Translated into discrete form,
the acceleration from v = 0 to v = vmax should then take vmax · s steps, that is

vmax−1
∑

i=0

1

qi
= vmax · s. (14)

In the trivial case vmax = 1 we may set: q0 = 1

s
. Otherwise, we request

q0 = 1, (15)

qi+1 = qi · q, for i = 0, . . . , vmax − 2. (16)

(15) says that acceleration from a stationary state will always be carried out
(apart from the trivial case); and with (16), acceleration decays with a proba-
bility q (0 < q < 1). With the solution of (14), postponed acceleration can be
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Fig. 9. Calibrated diagrams of median flow volume, density and speed with additional
acceleration multipliers.

simulated. Two further test cases are shown in Fig. 9. For the configuration of
T = 6.25 s and s = 2, c = 3 or 3.5 seems to produce maximum flow volume
in the range of 2300 to 2600 vehicles per hour; for T = 4 s and s = 3, s = 2.5
gives the maximum flow volume of approximately 2300 per hour at a density
slightly above 20 vehicles per kilometre. These two parameter settings represent
a reasonable acceleration capacity (0 to 100 km · h−1 in 12 and 12.5 seconds
respectively) and at the same time, vmax in (12) has integer solution.
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