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Abstract. With the aim of the drag reduction or a decreasing reattachment length

in the wake of the step, acoustic manipulations of the boundary layer in front of the

step were performed by experiments and numerical simulations ([1], [3] and [6]).

The numerical investigations were done as direct numerical simulations and large

eddy simulations.

Optimal control strategies are not realistic yet. Therefore robust control strategies

are identi�ed using the unsteady simulation results for various control parameter

sets.

1 Mathematical model

We consider a backward facing step channel and we investigate the ow for

a Reynolds number of 2500 up to 3500 built with the velocity u

0

of the block

inow pro�le and the step height H (see �g. 1). The top of the channel is

considered as a slip wall and in the lateral direction a periodic behavior is

assumed.
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Fig. 1. channel situation

To describe the ow we get from the nondimensional Navier-Stokes equa-

tion the equation system for the �ltered quantities
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where � is the total eddy-viscosity
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In the case of a direct numerical simulation we have �

t

= 0 and there is no

e�ect of �ltering, and the equations (1) and (2) are the classical Navier-Stokes

equations with u = u and p = p for an incompressible uid.

If we don't resolve all small structures by the spatial discretization �

t

is

the eddy-viscosity of a subgrid-scale model. We use a subgrid-scale model of

Germano-type following Akselvoll/Moin [4]. For �

t

we have
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For the Germano-type subgrid scale model we need two di�erent �lters to

handle the equation of motion, the so-called grid �lter G and the test �lter

b

G, with the �lter with

b
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indicates an average taken over the homogeneous spanwise direction.

The result of the subgrid-scale modelling is concentrated in the variable eddy-

viscosity. The equation of motion is of the same type than the Navier-Stokes

equation.

With the above-discussed boundary conditions which will be speci�ed in the

following section and appropriate initial conditions now we have a mathe-

matical model for the transitional ow over a backward facing step.

2 Fluid physical task

The �gure 2 shows the used manipulation,which results in Dirichlet-boundary

conditions.
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Fig. 2. Acoustic manipulation via a spanwise manipulation slit, �s � 0:05H

For the streamwise length L

x

, the spanwise width L

y

and the vertical

height L

z

we set (L

x

; L

y

; L

z

) = (22H; 6H; 12H). The choice of the vertical

height is based on experiences concerning the dependency of the reattachment

length on L

z

. Only beyond 11H the dependency of the reattachment length

can be neglected. The inlet section or the step has the length L

s

= 5H.

The inow pro�le was assumed as a block pro�le with the velocity u

inflow

=

const:.

Non-uniformgrid spacings for the streamwise and vertical directions are used.

In the x- and the z-directions we consider a re�ned grid around the step. In

z-direction �ne spacings are used near the channel bottom. In the spanewise

direction uniform grid spacings are used.

Because of the absence of detailed information about the blowing and suction

during the acoustic control it was simulated by a sine function of the form

u

jet

= A sin(2� f t) (u

1

= u

2

= u

jet

) and calculations for A = 0:02u

inflow

andA = 0:01u

inflow

using a �xed frequency of f = 50Hz were done. For the

determination of a data base with respect to the robust control the Reynolds

number and the amplitude A were varied.

3 Numerical solution procedure

Equations (1) and (2) may be discretized in spatial dimensions by a �nite

volume method on staggered grids for the velocity components u

i

of the ve-

locity vector and the pressure  

1

.

The �nite volume discretization results in a ode system for the velocity com-

ponents at every grid point
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written in vector form. The approximation is conservative and is of second

order (O(h

2

)). The time integration is done either by a leapfrog method or

1

For a compact description we renounce the lines over u,  .
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an Adams-Bashforth method. Thus, we have to solve in every time step the

equation system

u

n+1

h
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~
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; r

h

� u
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h

= 0 ; (7)

where
~
u

h

is a given result of an estimation by a predictor step, � is the time

step and � is a constant depending on the time integration method used (in

the case of the Adams-Bashforth method � = 1, see also [2]).

The equations (7) are equivalent to the equation:

��

h

 

n+1

h

= �

1

��

r

h

�
~
u

h
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u

n+1

h

is then given by an explicit �ll-in step following (7). Thus, (u

n+1

h

;  

n+1

h

)

can be found either iteratively or by the solution of a Poisson equation for

 

n+1

followed by an explicit �ll-in step to get u

n+1

. Both possibilities are

implemented in the sequential codes (see [2],[7]). In our parallel code im-

plementation the iterative solution method to get (u

n+1

h

;  

n+1

h

) is realized

as a solver for the equation system (7). The numerical simulations are done

with a �nite volume method on staggered grids which is parallelized on a

Cray T3D/T3E using fast Cray-speci�c shared memory transfer utilities or

the platform independent MPI library ([5]). The method is of second order

in space and time. The mass conservation per time step was realized by a

pressure-velocity iteration method.

Non-uniformgrid spacings for the streamwise and vertical directions are used.

In the x- and the z-directions we consider a re�ned grid around the step. In

z-direction �ne spacings are used near the channel bottom. In the spanwise

direction uniform grid spacings are used.

The parallelized numerical model (DNS/LES) was validated by comparisons

of the numerical DNS/LES results of [6] and the experimental data of [1] and

[8]. The following �gures 3-6 show the result of comparison for the mean veloc-

ities and the rms-values. For these comparisons a neutral, non-manipulated

backward facing step ow for the transitional Reynolds number 3000 was

considered. For the direct numerical simulations about 10 million grid points

are needed for the spatial discretization (516� 132� 196). In the case of the

large eddy simulations it is possible to work with about 475 thousands of

spatial grid points (132� 60� 60). The experimental results were produced

by LDA-measurements (denoted by stars in the �gures).

In addition to the named mpp systems we are also very successful using the

SGI O 200 for the solution of moderate problems with less than 10

6

grid

points.

4 Results

The results of the reattachment length reduction in the case of the acoustic

manipulation over a slit show a good agreement with the known experimental
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measurements. This is valid for both the large eddy simulation and the direct

numerical simulation.

The �gures 7 and 8 show the resulting wall shear stress distribution (u

�

) of a

large eddy simulation with acoustic manipulation (A = 0:01u

0

) compared to

u

�

of the unmanipulated step ow (neutral step ow). There were no visible

di�erences in the wall shear stress distribution of a LES and a DNS. To
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get an impression of the instantaneous ow situation at the channel bottom

behind the step we look at the velocity and pressure �elds of the large eddy

simulation. The �gures 9 and 10 show the streamwise velocity contours in

the plane z = 0:01H (the �rst inner point plane of the computational grid

parallel to the bottom) took from instantaneous snapshots of the LES.

The �gures 11 and 12 show the pressure contours in the plane z = 0:01H

Further results especially colour �gures of pressure and vorticity contours

of the investigated backward facing step ow are presented on my webpage

http//www.math.tu-berlin.de/~baerwolf.
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Fig. 9. U contours at z = 0:01H, neutral
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Fig. 10. U contours at z = 0:01H, manipulated

5 Control

For the solution of a genuine optimal control problem we have to �nd the

minimum of a functional F (A), which measures the quality of the result

with respect to the drag reduction (decrease of the recirculation length) for

example for a given amplitude of the manipulation.

To get a minimum of F (A) we have to calculate the gradient of F and this

means

a) the solution of the unsteady Navier-Stokes equation for a given amplitude

function A(t); t 2 [0; T ], where [0; T ] is an interesting time interval of our

problem, and

b) the solution of the adjoined problem over the reverse time interval [T; 0].
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Fig. 11. P contours at z = 0:01H, neutral
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Fig. 12. P contours at z = 0:01H, manipulated

Because of the huge amount of cpu time and memory it is not possible to

solve the optimal control problem in a moderate �nite time.

Thats why we go another way. We do a numerical simulation using a pre-

scribed time dependend amplitude function A(t); t 2 [0; T ]; T = 8 sec shown

in �gure 13. The resulting time dependend recirculation length is shown in

�gure 14.

We do these numerical simulations for several Reynolds numbers (2500, 3000,

3500) and maximal amplitudes of 0:01u

0

and 0:02u

0

. Thus we create a data

base for the indenti�cation of a linear equation of the type

a

n

y

(n)

+ a

n�1

y

(n�1)

+ : : :+ a

0

y = b

0

u+ : : :+ b

m

u

(m)

; (9)

where y := X

r

stands for the recirculation length and u := A stands for

the amplitude A of our manipulation. We understand by the instantaneous
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recirculation length the last point of interaction of the wall shear stress dis-

tribution with the x�axis.

The parameters a

j

; j = 0; :::; n; b

i

; i = 0; :::;m, are �tted in the result of the

identi�cation of our above discussed data base. The �rst identi�cation results

show the su�ciency of n;m � 2.

With the linear robust controller (9) its now possible to answer a measured

recirculation length by an suitable amplitude.

To overcome the di�culty of measuring the recirculation length by analyzing

the wall shear stress distribution we use the fact, that the recirculation lenght

X

r

correlates in a certain manner with the maximumof pressure uctuations

at the channel bottom in the wake region.

In the practical realization of the control strategy the pressure fuctuations

will be measured by an array of microphones at the channel bottom. The

controller is now implemented in our wind tunnel with the backward facing

step.
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0

0.002
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0.008
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0.012

Fig. 13. amplitude A(t); t 2 [0; 8 sec]

6 Conclusion

The comparison of the LES and DNS of the neutral backward facing step

ow without a manipulation (A = 0) to the controlled cases with a �xed

frequency of f = 50Hz and a Reynolds number of 3000 for an amplitude of

A = 0:01u

inflow

gives a decrease of the reattachment length X

r

of more than

30%. This agrees with the experimental experiences of Huppertz (1994).

The experimental found decrease of the reattachment length X

r

and the de-

velopment of lateral structures behind the step in the case of a manipulation

by a moved boundary were con�rmed by the numerical simulations.
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Fig. 14. reattachment length XR(t) t 2 [0;8 sec]

Because of the good agreement of the large eddy and direct numerical simula-

tion results with the experimetal data of [1] for qualitative parameter studies

the LES will be su�cient.

The results of the unsteady numerical simulations using amplitude functions

like in �gure 13 with variations of the Reynolds number and A

max

are suit-

able for the identi�cation and the construction of robust linear controllers.

The results are just summarizing in [9].
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