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Abstract. This paper considered cross-diffusion equations. With those
equations the concentration developement in a certain region during an
interesting time-interval can be described.
Cross-diffusion means the diffusion of some species which influence each
other. The population dynamics of different species is a famous example
of cross-diffusion.
The implicit time-integration of such parabolic equations leads to non-
linear equation systems which requires a huge computational amount.
To avoid this amount we discuss a linear scheme proposed by Murakawa
[2] and investigate his properties.
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1 Introduction

This paper deals with the so called cross-diffusion equations. These are nonlin-
ear parabolic partial differential equations and there components influence each
other. This means that every component of the solution we are looking for was
influencing the other ones and vice versa. Compared to classic diffusion equa-
tions it is necessary to solve nonlinear equation system in the case of implicit
time integration schemes (Euler backward). But we will discuss special linear
schemes which are easy to implement. These schemes are very sensitive but they
are a good alternative to the huge amount in the case of the solution nonlinear
equation system with a certain kind Newtons method.

1.1 Some necessary terms and definitions

In tis paper Ω describes a 1d or 2d bounded region with a smooth boundary ∂Ω.
On this region we investigate the concentration during the time in the interval
[0, T ] where T > 0. Our cross diffusion system lives on the space-time cylinder
Q = Ω× (0, T ]. M ∈ N is the number of considered species which influence each
other. For vector valued functions (for example z : RM → RM ) we denote the
i-th component by zi (i = 1, . . . ,m). With Zn we denote the approximation of
a function z at the the n-th time step. With a bold sub-index, for instance z0 or
Z0 we denote the given initial conditions.



1.2 The cross-diffusion equations

With the above discussed preparations we will now formulate the cross-diffusion
equations. We are looking for a function z = (z1, . . . , zM ) : Ω̄ × (0, T ] → RM ,
M ∈ N with

∂z

∂t
= ∆β(z) + f(z) in Q

β(z) = 0 on ∂Ω × (0, T ], (1)

z(·, 0) = z0 in Ω.

The functions β = (β1, . . . , βM ) and f = (f1, . . . , fM ) are defined as functions

β, f : RM → RM .

z0 = (z01, . . . , z0M ) : Ω → RM are the given initial conditions. To illustrate
the nonlinearity of the cross-diffusion problems we write down an example of
Shigesada, Kawasaki and Teramoto [1] for two different components

∂z1
∂t

= ∆[(a1 + b1z1 + c1z2)z1] + (g10 − g11z1 − g12z2)z1,

∂z2
∂t

= ∆[(a2 + b2z2 + c2z1)z2] + (g20 − g21z1 − g12z2)z2, (2)

This model describes the competition of two different populations which in-
fluence each other. ai, bi, ci and gij are non-negative constants (i = 1, 2, j =
0, 1, 2). z1, z2 describe the population density of the species. gi0 is the growth-
rate of the i-th species while gii stands for an intra-specific concurrence value
and gij , i 6= j stands for the inter-specific concurrence value.

The obvious time integration scheme, for example used by Chen and Jüngel
[4], is

Zn − Zn−1

τ
= ∆β(Zn) + f(Zn) in Ω,

β(Zn) = 0 on ∂Ω, (3)

where τ is the used time-step. But the time-discretisation (3) means the solution
of a nonlinear equations system

Zn − τ∆β(Zn)− τf(Zn) = Zn−1

in every time-step.
The scheme (3) is applicable but there some disadvantages like very huge

non-symmetric matrices because of the necessary spatial discretisation which
will discussed a bit later. To overcome the named problems Murakawa [2] devel-
oped an approximative time integration scheme for the solution of cross-diffusion
problems of type (1). This algorithm should be discussed in the next sections.



2 Murakawas method

We consider the discretisation of the time interval [0, T ] with the time-step τ =
T/NT , NT ∈ N. Instead of a straight-forward Euler-backward method Murakawa
proposed the following linear scheme

Un − τ

µ
∆Un = β(Zn−1) +

τ

µ
f(Zn−1) in Ω,

Un = 0 on ∂Ω, (4)

Zn := Zn−1 + µ(Un − β(Zn−1)) in Ω .

µ is a free parameter which can be used to optimise the method. U is an ap-
proximation of β(Z). Zn is an approximation of z(·, nτ).

There are also other boundary conditions than the second line of (4) possi-
ble, for example homogeneous or inhomogeneous Neumann boundary conditions.
The advantage of the scheme (4) consists in the very friendly equation for the
solution of Un which is elliptic and leads after the spatial discretisation to a
linear equation system with a positiv definit coefficient matrix.

3 Some mathematical properties of the scheme (4)

With the choice of appropriate Hilbert-spaces it is possible to formulate (4) in a
weak form. Murakawa proved the existence of weak solutions U and Z and if we
interpret these solutions as piece-wise constant interpolations during the time
the following proposition holds. The main assumptions on the initial value and
the functions β and f are

1) β is Lipschitz-continuous with β(0) = 0
2) f is Lipschitz-continuous
3) There is a constant a > 0 with

M∑
i=1

((βi(ξ)− βi(η))(ξi − ηi) ≥ a|ξ − η|2

for a.e. ξ, η ∈ RM
4) It should be z0 ∈ L2(Ω)M

With 1) to 4) the main assumptions of the propositions of convergence and
stability of the discussed methods are valid. The conditions 1) and 3) guarantee
the parabolicity of the above noted cross-diffusion system. In the following should
only mentioned some basic results of the method.

Theorem 1. We have for the weak solution z ∈ L2(Ω)M the global error

E := ||β(z)−U||L2(Ω)M + ||
∫ t

0

(β(z)−U)dt||L∞(0,T ;H−1(Ω))M

+||z− Z||L∞(0,T ;H−1(Ω))M



and the estimation

z ∈ L2(Ω)M −→ E + ||z− Z||L2(Q)M = O(
√
τ)

z ∈ H1
0 (Ω)M −→ E + ||z− Z||L2(Q)M = O(τ)

This means convergence and stability.
To prove this theorem one need several lemmata and theorems of the theory

of Hilbert- and Sobolev-spaces (compactness and imbedding theorems) which
can found in the papers of Murakawa [2] and [3].

To get an idee of finding a good choice of the parameter µ we consider the
equivalent formulations of (1) and (4)

1

β′(z)

∂β(z)

∂t
= ∆β(z) + f(z)

∂z

∂t
=

1

β′(z)

∂β(z)

∂t

and

µ
Un − β(Zn−1)

τ
= ∆Un + f(Zn−1),

Zn − Zn−1

τ
= µ

Un − β(Zn−1)

τ

If we compare the continuous and the time-discrete system we find that

µ ≈ 1

β′(z)

is a good choice. But the choice of µ can and should also be supported by
numerical experiments.

4 Discretisation of (3) and (4) in space

We use a finite-volume method for the spatial discretisation. This means we
consider the balance of the fluxes on the boundary of finite volumes, in a number
K 1d finite intervals and in 2d finite cells. Therefore we discretise Ω by a union
of finite cells ωj

Ω = ∪j=1ωj , ωj ∩ ωi = N, measure of N equals zero .

For example by balancing the equations (4) over ωj we get a system of K equa-
tions of type

Un
j −

τ

µ
∆hU

n
j = β(Zn−1j ) +

τ

µ
f(Zn−1j ) j = 1, . . . ,K,

Znj := Zn−1j + µ(Un
j − β(Zn−1j )) j = 1, . . . ,K , (5)



where we closed the system by including the boundary conditions.
∆h is a finite approximation of the Laplacian ∆. In the finite volume dis-

cretisation method the discretisation of a diffusion term ∆u is done as follows.
We start with the integral balance ∫

Ω

∆udv

and ∫
Ω

∆udv =

K∑
j=1

∫
ωj

∆udv

is obvious. Now we use the theorem of Gauß-Ostrogradski (divergence-theorem)
to move to flux integrals∫

ωj

∆udv =

js∑
s=1

∫
γjs

∇u · nγjs d∂γjs (6)

where js is the number of boundary pieces γjs of the finite-volume/cell ωj .
The fluxes or directional derivatives ∇u · nγjs are now approximated by finite
differences of values of the u-values in the cell-centers. In the case of simple
structured grids the cells are rectangles and the number of boundary parts of
all cells are equal to 4. The sum of the right side of (6) together with the
approximated fluxes is the finite approximation of ∆u.

For the Euler-backward time integration method we get, starting from (3)

Znj − Zn−1j

τ
= ∆hβ(Znj ) + f(Znj ) j = 1, · · · ,K, (7)

(also by closing the system by using the boundary information). The term
∆hβ(Znj ) is more complicated as the corresponding term ∆uU

n
j .

We have to mention that in the 1d case or in the case of structured equidistant
grids in 2d probblems the finite-volume method is very close to finite-difference
methods.

5 Solution methods for the linear equations (5) and the
non-linear systems (7)

The linear systems (5) are solved by iterative Krylov-space methods or by direct
methods (Gauß). For the nonlinear systems (7) we use the Trust-Region-Dogleg-,
the Trust-Region- and the Levenberg-Marquard-Algorithm. We took these algo-
rithms given by Matlab or Octave. The non-linear algorithms are realised by the
fsolve-command und the linear solution one get by the backslash-command.

But during our numerical experiments we observed, that the ressources of
Matlab or Octave are not good enough to solve problems with very fine spatial
discretisations.



6 Numerical experiments - 1d

First we considered a 1d examples with 2 species (M = 2). To recognise the
functions β and f we state the relevant equation system

∂z1
∂t

= ∆[(a1 + b1z1 + c1z2)z1] + (g10 − g11z1 − g12z2)z1,

∂z2
∂t

= ∆[(a2 + b2z2 + c2z1)z2] + (g20 − g21z1 − g12z2)z2,

Based on this system we define 2 test-examples. The first one reads as

∂z1
∂t

= ∆[(0, 04 + 0, 04αz2)z1] + (2, 8− 1, 1z1 − z2)z1,

∂z2
∂t

= ∆[(0, 04 + 2αz1)z2] + (3, 0− z1 − 1, 1z2)z2, (8)

We work with α = 1. For α = 0 the initial value (z1, z2) = ( 8
21 ,

50
21 ) gives a stable

steady state solution. Therefore we use the initial value

z1(x, 0) =
8

11
+

8

11
R/100

z2(x, 0) =
50

11
+

50

11
R/100

where R ∈ R is an equally distributed random number of the intervall (0, 1). As
Ω we use in this 1d example the unit interval. For all species we use homogeneous
Neumann boundary conditions.

space grid size h τ = 2−5 τ = 2−5 τ = 2−7 τ = 2−7

(linear) (nonlinear) (linear) (nonlinear)
1/8 0,14 7,57 4,28 21,15
1/16 0,25 11,77 8,00 36,44
1/32 0,49 16,48 15,44 66,37
1/64 0,95 63,27 30,47 249,51
1/128 1,90 241,09 60,61 958,09
1/265 3,83 970,58 121,92 3913,63

This table shows the computational times to reach a steady state solution (on a
quad core personal computer, the times can be proportional scaled to computers
with higher performance). For the solution with the linear algorithm we got
a linear growth of the times with respect to the used grid refinement. On the
other hand the growth of the computational times of the nonlinear algorithm is
exponential. The influence of µ in this example was not significant. We used for
all species µ = 1.

As a second 1d example we consider the cross-diffusion system

∂z1
∂t

= ∆[(10−5 + 10−2z1 + 10−1z2)z1] + (2, 8− 1, 1z1 − z2)z1,

∂z2
∂t

= ∆[(10−5 + 102z1 + 10−2z2)z2] + (3, 0− z1 − 1, 1z2)z2, (9)



As initial conditions we use

z1(x, 0) =
8

11
(1− 0, 1 exp(−x2))

z2(x, 0) =
50

11
(1 + 0, 1 exp(−x2))

for x ∈ (0, 1). Homogeneous Neumann boundary conditions are used. For the
first species we use µ = 7 and or the second one µ = 0.03.

The computational times for thhe solution of the second 1d example are
similar to those of the first example.

7 Numerical experments - 2d

For the 2d experiments we consider

∂z1
∂t

= ∆[(0, 04 + 0, 04z2)z1] + (2, 8− 1, 1z1 − z2)z1,

∂z2
∂t

= ∆[(0, 04 + 2z1)z2] + (3, 0− z1 − 1, 1z2)z2, (10)

on Ω = (0, 1)2. As initial conditions we use

z1(x, y, 0) =
8

11
+

8

11
R/100

z2(x, y, 0) =
50

11
+

50

11
R/100

with the above described random number R.
In the following table we compare the computational times of the linear and

nonlinear methods for the 2d example. We used an equidistant discretisation.

grid size hx = hy linear algorithm nonlinear algorithm
1/4 0,03 0,63
1/8 0,14 8,57
1/16 0,45 151,99
1/32 1,80 1850,22
1/64 7,45 29405,92

As a second 2d example we consider the cross diffusion system

∂z1
∂t

= ∆[(10−5 + 10−2z1 + 10−1z2)z1] + (2, 8− 1, 1z1 − z2)z1,

∂z2
∂t

= ∆[(10−5 + 102z1 + 10−2z2)z2] + (3, 0− z1 − 1, 1z2)z2, (11)

with the inital conditions

z1(x, y, 0) =
8

11
(1− 0, 1 exp(−(x2 + y2)))

z2(x, y, 0) =
50

11
(1 + 0, 1 exp(−(x2 + y2))).



We follow the solution in the time during S = [ 3τ ]1 time steps. We use an
equidistant discretisation hx = hy = 1

64 and τ = 2−6. The solution of this
problem faults with the use of the µ-values of the second 1d example (µ1 = 7
for the first species and µ2 = 0, 03 for the second one).

Here we investigate the behaviour of the nonlinear method for different values
of µ1, namely µ1 ∈ {0, 03 , 0, 5 , 1 , 2, 5}.

The following figures 1,...,4 show that there will be a influence of µ to the time
position of the solution. The figures show that small values of µ show results,
which are closer to the wanted steady state.

Fig. 1: 2d solution, fist and second species, with µ = 2, 5

Fig. 2: 2d solution, fist and second species, with µ = 1, 0

1 The function [q] gives the largest integer back, which is less than q



Fig. 3: 2d solution, fist and second species, with µ = 0, 5

Fig. 4: 2d solution, fist and second species, with µ = 0, 03

8 Resumee

First of all we have to note, that it is very useful to have linear time-integration
schemes to approximate cross-diffusion systems. Thus we can save a lot of com-
putational time compared to nonlinear systems coming from implicit Euler-
backward discretisation. Especially the growth of the computational time with
respect to the spatial grid refinement of the linear scheme is significantly slower
then the time growth of the nonlinear scheme.

The analysis of the test examples in which occur convergence and stability
problems during the numerical solution shows that this is the case if we have
a very strong cross-diffusion, which results in weakening the parabolicity of the
system.

The choice of the parameter µ is also a crucial point with respect to time-
truth of the numerical solution.
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4. L. Chen and A. Jüngel. Analysis of a multidimensional parabolic population model
with strong cross-diffusion. SIAM J. Math. Anal. 36(2006), pages 301-322, 2006


