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Abstract. The Keller-Segel system is a linear parabolic-elliptic sys-
tem, which describes the aggregation of slime molds resulting from their
chemotactic features. By chemotaxis we understand the movement of an
organism (like bacteria) in response to chemical stimulus, for example
by certain chemicals in the environment.
In this paper we use the results of a paper of Zhou and Saito to validate
our Finite-Volume solution method with respect to blow-up analysis and
equilibrium solutions. Based on these results we study model variations
and there blow-up behaviour numerically.
We will discuss the question if conservative numerical methods are able
to model a blow up behaviour in the case of non global existence of
solutions.
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1 Introduction

In this paper we will study models for chemotaxis, commonly known as the
Keller-Segel system.

It describes the movement of cells, specifically the Dictyostelium discöıdeum,
which is a species of soil-living amoeba, commonly known as slime mold. The
Keller-Segel system, named after the American physicist Evelyn Fox Keller and
the American mathematician Lee Aarom Segel, consists of an elliptic and a
parabolic partial differential equation coupled with initial and homogenous Neu-
mann boundary conditions [4]. The Neumann boundary conditions imply that
there is no flow through the boundary of the domain, meaning that there are no
cells leaving or entering the system. Both boundary and initial conditions are
needed in order to find a solution to the Keller-Segel system. The mere question
of the solvability of such a system in general is very challenging and stands in
focus of current research. Additionally, it is difficult to state an universal method
to solve partial differential equations.

The finite volume method is used because of its conservation properties.
If a solution of a system of partial differential equations becomes pointwise

larger and larger until it eventually becomes infinite in finite time, we speak
of numerical blow-up. The cell aggregation of the system is counterbalanced by



diffusion, but if the cell density is sufficiently large, the chemical interaction
dominates diffusion and may lead to finite-time blow-up of the cell density. This
behaviour is often referred to as the most interesting feature of the Keller-Segel
equations.

2 Chemotaxis and Keller-Segel system

For a wide description of the Chemotaxis/Keller-Segel model we refer to the
thesis [7] and the review paper [3]. There one can find extensive explanations
and derivations of the models.

In its original form the Keller-Segel system consists of four coupled reaction-
advection-diffusion equations. These can be reduced under quasi-steady-state
assumptions to a model for two unknown functions u and v which will form the
basis for our study. With an appropriate non-dimensionalization and some very
natural assumptions starting from the original Keller-Segel system one can get
the following systems of partial differential equations.

ut = ∇ · (D∇u− χu∇v)

0 = ∇2v + u− v
(1)

and

ut = ∇ · (D∇u− χu∇v)

vt = ∇2v + u− v
(2)

(1) and (2) are the so called minimal models with the density of the cellular
slime molds u, the concentration of the chemical substance/attractant v and the
diffusion coefficient of cell D.

The important term of equation for u

Φchemo = χu∇v,

is the so called chemotactic flux (see Müller et al. [5]) where χ depends on the
density of the attractant, called chemotactic sensitivity.

The equations (1), (2) are considered in a bounded domain Ω ∈ Rd, d =
1, 2, 3. The mathematical models are closed by zero flux boundary conditions
(homogeneous Neumann) on Γ = ∂Ω and initial conditions u(x, 0) = u0(x) and
v0(x, 0) = v0(x) (only necessary for (2)).

The first substantial mathematical analysis of the Keller-Segel model was
done by Gajewski and Zacharias [1] introducing a Lyapunov function for the
system (2). All other mathematical investigations of Keller-Segel systems fol-
lowed the ideas of [1]. As the result of the analysis global existence of solutions
in the sub-critical case were shown.

For the parabolic-elliptic Keller-Segel system one can find a mathematical
and numerical analysis of the system (1) in the paper of Zhou and Saito [6].



The Keller-Segel system admits several a priori estimates which reflects the
basic modeling assumptions which have been mentioned above: the solution re-
mains positive

u(t, x) > 0 (3)

and the total mass is conserved∫
Ω

u(t, x)dx =

∫
Ω

u0(x)dx =: m0, (4)

which imply the conservation of the L1 norm:

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω), t ∈ [0, T ].

2.1 Variations of the minimal Keller-Segel system

From the view of mathematical biology it’s interesting to consider modifications
of the standard Keller-Segel system. The mathematical meaning of the modifi-
cations is more or less a regularisation. This leads to different behaviour of the
solutions and in some cases blow up effects can be surpressed.

In this paper we will discuss and numerical analyse the following models.

Signal-dependent sensitivity models

Consideration of signal-dependent sensitivity leads to the receptor model

ut = ∇ · (D∇u− χu

(1 + αv)2
∇v)

vt = ∇2v + u− v
(5)

and the logistic model

ut = ∇ · (D∇u− χu1 + β

v + β
∇v)

vt = ∇2v + u− v
(6)

For α → 0 model (5) tends to the minimal model (2), and for β → ∞ the
model (6) approaches the minimal model.

Density-dependent sensitivity models

For the volume-filling model

ut = ∇ · (D∇u− χu(1− u

γ
)∇v)

vt = ∇2v + u− v
(7)

we get the minimal model by γ → ∞. Another type of a density-dependent
sensitivity model is given by



ut = ∇ · (D∇u− χu 1

1 + εu
∇v)

vt = ∇2v + u− v
(8)

where ε→ 0 leads to the minimal model.

Signal and cell kinetics models

The nonlinear signal kinetics model reads as

ut = ∇ · (D∇u− χu∇v)

vt = ∇2v +
u

1 + Φu
− v (9)

and approximates the minimal model for Ψ → 0. The cell kinetics model is
of the form

ut = ∇ · (D∇u− χu∇v) + ru(1− u)

vt = ∇2v + u− v
(10)

and in the limit of zero growth r → 0 it leads to the minimal model.

3 Finite volume scheme

We will next determine the terms which are necessary for the construction of
the finite volume method. We will then present a linear finite volume scheme
and take a look at the conservation laws.

We will follow the notation described in Zhou et al. [6] and Eymard et al. [2].
Let Ω be a convex polygonal domain in R. First, we will define a very important
notion following Eymard et al. [2]:

Definition 1 (Admissible mesh). Let Ω be an open bounded polygonal subset
of R, d = 2 or d = 3. An admissible finite volume mesh of Ω, denoted by T ,
is given by a family of control volumes, which are open polygonal convex subsets
of Ω, a family of subsets of Ω contained in hyperplanes of Rd, denoted by E
(these are edges (two-dimensional) or sides (three-dimensional) of the control
volumes), with strictly positive (d − 1)-dimensional measure, and a family of
points of Ω denoted by P satisfying the following properties (in fact, we shall
denote, somewhat incorrectly, by T the family of control volumes):

i) The closure of the union of all the control volumes is Ω, Ω =
⋃

K∈T
K.

ii) For any K ∈ T , there exists a subset EK of E such that ∂K = K\K =⋃
σ∈EK

σ. Furthermore, E =
⋃

K∈T
EK .

iii) For any (K,L) ∈ T 2 with K 6= L, either the (d − 1)-dimensional Lebesgue
measure of K ∩ L is 0 or K ∩ L = σ for some σ ∈ E, which will then be
denoted by K|L.



iv) The family P = (xK)K∈T is such that xK ∈ K (for all K ∈ T ) and, if
σ = K|L, it is assumed that xk 6= xL, and that the straight line DK,L going
through xK and xL is orthogonal to K|L.

v) For any σ ∈ E such that σ ⊂ ∂Ω, let K be the control volume such that σ ∈
EK . If xK /∈ σ, let DK,σ be the straight line going through xK and orthogonal
to σ, then the condition DK,σ ∩ σ 6= ∅ is assumed; let yσ = DK,σ ∩ σ.

Let T be an admissible mesh. As defined above, an element K ∈ T is called
control volume. We introduce the neigbourhood of K ∈ T :

NK := {L ∈ T |L ∩K 6= ∅}.

Let K|L (or σK,L) denote the common edge L∩K of control volumes K and L.
We introduce the set of interior (resp. boundary) edges inside Ω (resp. on Γ ):

Eint = {K|L | ∀K ∈ T ,∀L ∈ NK},
Eext = E \ Eint.

For every control volume K, let PK (or denoted by xK) be the control point.
And the segment PKPL is perpendicular to K|L for all K ∈ T , L ∈ NK .

Set

dK,L := dist(PK , PL), τK,L :=
m(K|L)

dK,L
, K, L ∈ T ,

dK,σ := dist(PK , σK,Γ ), τK,σ :=
m(σK,Γ )

dK,σ
, τK,σ ∈ Eext,

Here, m(O) = md−1(O) denotes the (d − 1)-dimensional Lebesgue measure
of O ⊂ Rd−1.

Note that
τK,L = τL,K ,

which means that it does not make any difference whether we consider the neigh-
bour L of control volume K or neighbour K of control volume L.

We will now introduce a linear finite volume scheme in order to discretize
the Keller-Segel system.

3.1 Linear finite volume scheme

An important issue of the discretisation of the Keller-Segel system is the handling
of the convective terms. Upon computing a convection-diffusion problem, there
often occur problems when the convective term gets by far bigger than the
diffusion term. In our example, when the cell density is very large, the cell
aggregation outbalances diffusion. The error of the upwind scheme is of order
O(h) only, however, the physics of the system is better reproduced than by use of
the central difference quotient. Especially in convection dominated cases like drift
diffusion instead of simple upwind schems Scharfetter-Gummel approximations



which control the order of approximation between one and 2 depending on the
convection velocity are used.

We set the function space Xh for the discrete solution (uh, vh):

Xh = span{φK | K ∈ T },

where φK is the characteristic (or indicator) function of K (φK = 1 in K, φ = 0
otherwise). With the assumptions on the mesh from above, we define the discrete
W 1,p semi-norm for uh ∈ Xh:

|uh|p1,p,T =
∑

K|L∈Eint

τK,Ld
2−p
K,L |uK − uL|

p
, for p ∈ [1,∞), (11)

|uh|1,∞,T = max
K|L∈Eint

|uK − uL|
dK,L

. (12)

We further set the discrete W 1,p norm for Xh: for any uh ∈ Xh,

‖uh‖1,p,T := |uh|1,p,T + ‖uh‖p.

For uh ∈ Xh and K ∈ T , we set uK = uh(PK). Given the initial condition

u0
h ∈ Xh, u

0
h ≥ 0,∫

Ω

u0
hdx =

∑
K∈T

m(K)u0
K ≡ θ > 0, (13)

we state the finite volume scheme for the Keller-Segel system (1)
Find (unh, v

n
h) ∈ Xh ×Xh for n ∈ N+, such that:∑

L∈NK

τK,L(vn−1
K − vn−1

L ) +m(K)vn−1
K = m(K)un−1

K (14)

⇔
∑
L∈NK

m(K|L)

dK,L
(vn−1
K − vn−1

L ) +m(K)vn−1
K = m(K)un−1

K ,

which is the discrete to the elliptic equation

−∆v + v = u,

and

m(K)∂τnu
n
K +

∑
L∈Nk

τK,L(unK − unL)

+
∑
L∈Nk

τK,L

[
(Dvn−1

K,L )+u
n
K − (Dvn−1

K,L )−u
n
L

]
= 0 (15)

⇔ m(K)
unK − u

n−1
K

τn
+
∑
L∈Nk

m(K|L)

dK,L
(unK − unL)

+
∑
L∈Nk

m(K|L)

dK,L

[
max (vn−1

L − vn−1
K , 0)unK −max (−(vn−1

L − vn−1
K ), 0)unL

]
= 0,



which is the discrete to the parabolic equation

ut = ∆u−∇ · (u∇v),

using implicit Euler for the time discretization. For the parabolic v-equation
of (2) we use also the implicit Euler method as in the case of the parabolic
u-equation.

Here, w+ = max(w, 0), w− = max(−w, 0), hence following the technique of
an upwind approximation, and

DvK,L = vL − vK for vh ∈ Xh, DvK,σ = 0 for σ ∈ Eext.

In the scheme, τ > 0 is the time-step increment, tn = τ1 + · · · τn, and ∂τnu
n
K

is the backward Euler difference quotient approximating to ∂tu(tn), which is
defined by

∂τnu
n
K =

unK − u
n−1
K

τn
.

For the modified models (5)-(10) we have the more general equations

ut = ∇ · (D∇u− ϕ(u, v)u∇v) and vt = ∆v + ψ(u)u− v . (16)

For (16) we have to modify the discretisation (15) by insert a factor ϕ(un−1
L , vn−1

L ).
In other words we do a linearisazion.

3.2 Conservation laws

We consider the Keller-Segel system (1). The solution (u, v) satisfies the conser-
vation of positivity

u(x, t) > 0, (x, t) ∈ Ω̄ × [0, T ], (17)

and the conservation of total mass∫
Ω

u(x, t)dx =

∫
Ω

u0(x)dx, t ∈ [0, T ], (18)

which imply the conservation of the L1 norm.

Remark 1. The value of ‖u0‖L1(Ω) plays a crucial role in the blow-up and global
existence of solutions, as we will see later.

The conservation properties (17) and (18) are essential requirements, and it is
desirable that numerical solutions preserve them, when we solve the Keller-Segel
system by numerical methods.

In the following, we will state some important theorems when working with
conservation laws. For the proofs we refer to the paper [6] and the thesis [7]

Theorem 1 (Conservation of total mass). Let {(unh, vnh)}n≥0 ⊂ Xh be the
solution of the finite volume scheme (14-15). Then we have

(vnh , 1) = (unh, 1) = (u0
h, 1), ∀n ≥ 0. (19)

Theorem 2 (Well-posedness and conservation of positivity). Let u0
h ≥ 0,

uh 6≡ 0. Then (14)-(15) admits a unique solution {(unh, vnh)}n≥0 ⊂ Xh×Xh, such
that unh > 0 for n ≥ 1 and vnh > 0 for n ≥ 0.



3.3 Discrete free energy

As mentioned before, the L1 conservation (which follows from the conservation
of positivity and the conservation of total mass) is an important feature of the
Keller-Segel system. Another important feature of the Keller-Segel system is the
existence of free energy. By free energy, we understand the energy in a physical
system that can be converted to do work. It is desirable that the numerical
solution preserves both these properties.

For the free energy

W (u(t), v(t)) =

∫
Ω

(u log u− u)dx− 1

2

∫
Ω

uvdx. (20)

one can show the important energy inequality The free energy is expressed as

d

dt
W (u(t), v(t)) ≤ 0, t ∈ [0, T ] .

In the following, we will discuss a discrete version of the energy equality (20).
For the solution {(unh, vnh)}n≥0 of the finite volume scheme (14)-(15), we set

Hn
h :=

∑
K∈T

m(K)(unK log unK − unK). (21)

For any internal edge K|L ∈ Eint, we set

ũnK,L =
unK − unL

log unK − log unL
, for unK 6= unL. (22)

Let ũnK,L = unK , if unK = unL. Then there exists snK,L ∈ [0, 1] such that

ũnK,L = snK,Lu
n
K + (1− snK,L)unL. (23)

Analogue to the energy function W (u, v), we define the discrete energy func-
tion

Wn
h = Hn

h −
1

2

∑
K∈T

m(K)unKv
n
K .

However, we can not obtain the inequality ∂τnW
n
h ≤ 0. Instead of that, we

have the following estimate on ∂τnW
n
h . For the discrete energy Wn

h holds the
inequality

∂τnW
n
h ≤ −

∑
K|L∈Eint

τK,L

∣∣∣∣∣DunK,L√
ũnK,L

−Dvn−1
K,L

√
ũnK,L

∣∣∣∣∣
2

− τn
2

∑
K∈T

|∂τnvnK |
2

+
∑

K|L∈Eint

τK,L
∣∣∂τn(DvnK,L)

∣∣2+ Ch(unh, v
n
h),



where Ch(unh, v
n
h) is defined by

Ch(unh, v
n
h) :=

−
∑

K|L∈Eint

τK,L

[
(Dvn−1

K,L )2
+(1− snK,L)(unK − unL) + (Dvn−1

K,L )2
−sK,L(unL − unK)

]
,

and it admits the estimate:

|Ch(unh, v
n
h)| ≤ Ch |unh|1,∞,T |v

n
h |1,2,T .

Here, snK,L satisfies (23) and | · |1,p,T is defined by (11) and (12).
Thus the finite volume scheme conserves the energy inequality in the above

noted sense.

4 Numerical blow-up

In the one-dimensional case of (1) a blow-up can never occur, which was shown in
[6]. We will shortly discuss some important properties of the system before turn-
ing to the finite volume scheme and the system of linear equations. After this, we
will turn to the two-dimensional system in section 4.1. We will prove for which
cases there can never occur blow-up and then discuss some important proper-
ties of the system. Throughout this chapter, we will distinguish between the
conservative and non-conservative system and derive the finite volume scheme
and the system of linear equations for the conservative and the non-conservative
schemes, respectively, using both cartesian and polar coordinates.

4.1 Two-dimensional system

Blow-up behaviour

Theorem 3 (2D Blow-up). In R2, assume
∫
R2 |x|2u0(x)dx <∞.

i) (Blow-up) When the initial mass satisfies

m0 :=

∫
R2

u0(x)dx > mcrit := 8π

then any solution to the Keller-Segel system (1) becomes a singular measure
in finite time.

ii) When the initial data satisfies∫
R2

u0|log(u0(x))|dx <∞ and m0 :=

∫
R2

u0(x)dx < mcrit := 8π,

there are weak solutions to the Keller-Segel system (1) satisfying the a priori
estimates∫

R2

u
[
|ln(u(t))|+ |x|2

]
dx ≤ C(t), ‖u(t)‖Lp(R2) ≤ C(p, t, u0)

for ‖u0‖Lp(R2) <∞, 1 < p <∞.



The mathematical interest here is to prove existence with an energy method
rather than direct estimates based on Sobolev inequalities.

Remark 2. In general bounded domains, with no-flux boundary conditions, the
critical mass is 8π because blow-up may occur on the boundary which intuitively
acts as a reflection wall.

Properties of the system To consider the blow-up solution, the moment is
introduced:

M2(t) =

∫
Ω

u(x, t)|x|2dx = 2π

∫ L

0

u(r, t)r3dr, (24)

which satisfies with θ =
∫
Ω
u0dx

d

dt
M2(t) ≤ 4θ − 1

2π
θ2 +

1

πL2
θM2(t) +

1

2eπ
θ

3
2M2(t)

1
2 . (25)

This implies that if θ > 8π and M2(0) is sufficiently small, then we have

d

dt
M2(t) < 0, t > 0, (26)

which means that M2(t)→ 0 at some time t = tb. Since u > 0 and
∫
Ω
u(x, t) = θ,

the function u actually blows up in finite time tb. We call tb the blow-up time.
We aim to show the discrete version of inequality (25). We have for n =

1, . . . , J ,

Mn
2 −Mn−1

2

τ
≤ 4θ

2π
−
(
θ

2π

)2

+ C1θM
n−1
2 + C2θ

3
2

√
Mn−1

2 + C3hθ
2, (27)

where C1, C2, C3 are independent of h, θ and Mn−1
2 .

We should mention that (27) is not satisfied for the conservative scheme
intruduced above.

4.2 Non-conservative finite volume scheme

We will now consider the numerical scheme without conservation of positivity but
satisfying (27). With the obvious notations for the forward and backward differ-
ence quotients ∇xu =

ui+1,j−ui,j

h , ∇x̄u =
ui,j−ui−1,j

h we obtain this so-called non-
conservative scheme by replacing the conservative discretized parabolic equation
by

∂τu
n
i,j −∇x∇x̄un−1

i,j −∇y∇ȳu
n−1
i,j

+
1

h
(∇xvn−1

i,j uni,j +∇yvn−1
i,j uni,j +∇x̄vn−1

i,j uni−1,j +∇ȳvn−1
i,j uni,j−1),

(28)

We will now state that (27) is satisfied for the non-negative solution of the non-
conservative scheme. In view of (27), for θ > 8π and sufficiently small M0

2 , Mn
2

decreases by n. When Mn
2 approaches 0, we have

Mn
2 −Mn−1

2

τ
≈ 4θ

2π
− (

θ

2π
)2.



Theorem 4. For the non-conservative scheme intruduced above, let J be the
largest time step such that (unh, v

n
h) ≥ 0, for any 1 ≤ n ≤ J . Then we have the

moment inequality

Mn
2 −Mn−1

2

τ
≤ 4θ

2π
−
(
θ

2π

)2

+ C1θM
n−1
2 + C2θ

3
2

√
Mn−1

2 + C3hθ
2,

where C1, C2, C3 are independent of h, θ and Mn−1
2 .

5 Numerical examples

We consider Ω = (0, 1)2 and use a direction equidistant discretisation with
1 < N ∈ N, h = 1

N−1 and τ = τn = 0.2h, N = 41 and N = 61. As initial

conditions we use u = 1 and v = 1 + 0.1 exp(−10((x − 1)2 + (y − 1)2)) on Ω.
In the figure captions one can find the model and the used parameters. For the
simulations we used the conservative scheme. In alle examples we reached the
steady state (global existence of the solution). The solution were going to be
grid-independent.

Fig. 1: cell density, cell density peak evolution, Problem (7),D = 0.1, χ = 5.0, γ =
3.0, steady state

For the minimal Keller-Segel system (2) and the problem (6) we could only
approximate the blow up behaviour with the conservative scheme. The possible
maximum of the cell density depends on the used discretization, but with a very
fine discretisation near the corner (x, y) = (1, 1) a good approximation of the
blow up behaviour is possible.
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