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Abstract. The essential criterion for stability and fast convergence of
CFD-solvers (CFD - computational fluid dynamics) is a good quality
of the mesh. Based on results of [29] in this paper we use the so-called
centroidal Voronoi tessellation (CVT) not only for mesh generation and
optimization. The CVT is applied to develop a new mesh motion method.
The CVT provides an optimal distribution of generating points with re-
spect to a cell density function. For a uniform cell density function the
CVT results in high-quality isotropic meshes. The non-uniform cases
lead to a trade-off between isotropy and fulfilling cell density function
constraints. The idea of the proposed approach is to start with the CVT-
mesh and apply for each time step of transient simulation the so-called
Lloyd’s method in order to correct the mesh as a response to the bound-
ary motion. This leads to the motion of the whole mesh as a reaction to
movement. Furthermore, each step of Lloyd’s method provides a further
optimization of the underlying mesh, thus the mesh remains close to the
CVT-mesh. Experience has shown that it is usually sufficient to apply
a few iterations of the Lloyd’s method per time step in order to achieve
high-quality meshes during the whole transient simulation. In compar-
ison to previous methods our method provides high-quality and nearly
isotropic meshes even for large deformations of computational domains.

Key words: Mesh Motion; Centroidal Voronoi Tessellation; Finite Vol-
ume Method

1 Introduction

Currently there are numerous areas of applications in which the shape of the so-
lution domain is variable for every time step of the simulation. Examples for such
cases are prescribed boundary motion in pumps, internal combustion engines,
free-rising bubbles in water as well as wind turbine simulations. One problem of
such simulations is the propagation of the displacement at the surfaces into the
volume mesh. It is well known that the essential criterion for stability and fast
convergence of CFD-solvers is a good quality of the mesh. Maintaining these cri-
teria for the internal mesh is a quite difficult task if the domain suffers from large
deformations. In this paper we present a method based on centroidal Voronoi



tessellation that provides a high-quality mesh even for large boundary motions.
The algorithm is implemented as an extension to the OpenFOAM R© framework
[15].

2 Previous work

Several methods for mesh deformation have been presented in the literature
during the past decades. In [29] we discussed the properties, advantages and dis-
advantages for example of Laplacian smoothing [22], the spring analogy method
of [4, 2, 6, 3, 10, 27], a finite element method proposed in [11], interpolation of
the boundary displacements to the interior mesh by radial basis functions pro-
posed by [24], and a new method based on a disk relaxation algorithm recently
developed by Xuan Zhou [28].

Regardless of all methods described above, each is just suitable for certain
degrees of deformations, because these approaches describe the mesh motion
simply through relocation of mesh vertices. The cell topology, however, remains
unchanged.

3 Contribution

Up to now the CVT has been used primarily for mesh generation and optimiza-
tion [18, 7, 17, 13]. CVT provides an optimal distribution of generating points
with respect to a given cell density function. For a uniform cell density function
the CVT results in high-quality isotropic meshes. The non-uniform cases lead to
a trade-off between isotropy and fulfilling of the cell density function constraints.

The idea of the approach is to start with a CVT-mesh and to apply for
each time step of transient simulation the so-called Lloyd’s method [20, 21, 19]
to correct the mesh with respect to the boundary motion. This leads to the
motion of the whole mesh if the boundary is moved. Furthermore, each step of
Lloyd’s method provides a further optimization of the underlying mesh, thus the
mesh remains close to the CVT-mesh. In order to create the initial CVT-mesh
from a given arbitrary mesh, we also apply Lloyd’s method. An integral part
of our work is to develop an efficient CVT implementation that allows a mesh
generation close to CVT at each simulation step. Our code is written in C++ as
extension to the OpenFOAM R© framework. This package enables the developer
through, a convenient class hierarchy to extend the built-in code without great
effort.

Compared to previous approaches our technique provides nearly isotropic
polyhedral meshes even for large boundary deformation. Another advantage of
our approach is the operation on already existing cells, so the interpolation of
fields between two different meshes is avoided.

The algorithm affects solely the cell topology and thus allows to keep the
field affiliation to each cell. Only the face fluxes must be calculated for a new
generated CVT-mesh. Moreover, our algorithm can be run in parallel, because



the computation of each Voronoi cell is carried out independently from other
cells.

4 Theoretical background of the CVT

We restrict our treatment of the Voronoi tessellation to 3D-space. Given an open
set Ω ⊆ R3, the set {Vi}ni=1 is called a tessellation of Ω if Vi ∩ Vj = ∅ for i 6= j
and ∪ni=1Vi = Ω. Let ‖·‖ denote the Euclidean norm on R3. Given a set of points

{xi}ni=1 belonging to Ω, the Voronoi region V̂i corresponding to the point xi is
defined by

V̂i = {x ∈ Ω | ‖xi − x‖ < ‖xj − x‖ for j = 1, . . . , n with j 6= i}. (1)

The points {xi}ni=1 are called generating points or generators. The set {V̂i}ni=1

is a Voronoi tessellation of Ω, and each V̂i corresponds to the Voronoi region of
the generator xi. Given a region V ⊆ R3 and a cell density function ρ, defined
on V , the centre of mass x∗ of V is defined by

x∗ =

∫
V

xρ(x)dx/

∫
V

ρ(x)dx. (2)

A centroidal Voronoi region V ∗
i is a Voronoi region V̂i with the property:

xi = x∗i . (3)

A Voronoi tessellation where all regions satisfy the condition in (3) is called
centroidal Voronoi tessellation.

One of the algorithms for CVT computation is the Lloyd’s method. This
is an iterative algorithm consisting of the following simple steps: starting from
an initial Voronoi tessellation corresponding to an old set of generators, a new
set of generators is defined by the centres of mass of the old Voronoi regions.
A mathematical scheme of the Lloyd’s method is given in algorithm 1. In the

Algorithm 1 Lloyd algorithm

For a given domain Ω with cell density function ρ defined on Ω and the initial set
of generators {xi}ni=1 perform following iterations:
for k=1,2,...,nIterations do

Construct the Voronoi tessellation {V (k−1)
i }ni=1 of Ω with generators

{x(k−1)
i }ni=1.

Take the centres of mass of {V (k)
i }ni=1 as the new set of generators {x(k)i }ni=1.

Break if some stopping criterion is met.
end for

sequel we give a short mathematical argumentation for Lloyd’s method. For a



detailed mathematical treatment we refer to [20]. Let us define the set

M := {
(
x1, x2, · · · , xn

)T | xi ∈ Ω for i = 1, · · · , n} . (4)

Then we know that considering (1) for a fixed boundary ∂Ω each Vi depends
on xi and a neighbourhood of xi. Therefore we can say that, Vi depends on

X :=
(
x1, x2, · · · , xn

)T ∈ M. Then for each step of the Lloyd’s iteration we
have:

x
(k+1)
i =

∫
Vi(X(k))

xρ(x)dx∫
Vi(X(k))

ρ(x)dx
. (5)

Further we define the map

T :M 7→M, X(k) 7→ X(k+1), such that Ti(X
(k)) := x

(k+1)
i . (6)

Considering (2) and (3) we obtain in case of CVT the following equality:

X(k) = T (X(k)) or X = T (X). (7)

In view of (7) Lloyd‘s method may be viewed as a fixed point iteration. This
shows that, Lloyd‘s method has a linear convergence rate. And according to [19]
this convergence rate decreases as the number of generators gets large. Some
accelerating techniques like the Lloyd-Newton method are given in [19]. Apart
from this fact Lloyd’s method is very well suited for the mesh motion, because
the time step of the simulation should be set smaller while the number of cells
gets larger. This is done in order to bound the Courant number by one.

Unfortunately, and despite great advantages of the CVT, its computation
becomes difficult for complicated domain boundaries. The most widely used
approach to construct the Voronoi tessellation in 3D-space is the computation
of a dual data structure referred as Delaunay triangulation. See for example
[18, 16, 8]. We propose an alternative approach for the generation of Voronoi
tessellations.

5 Centroidal Voronoi Generator

There are numerous preprocessors for the efficient generation of tetrahedral
meshes. We presume that the fluid domain is already meshed. We are interested
in construction of the CVT from a given tetrahedral or polyhedral mesh. Now
we use Lloyd’s algorithm as described above. The sum of the absolut values of
the differences between old generators and new generators serves as convergence
criterion for Lloyd’s method. One step of Lloyd’s method includes the following
tasks:

1. Calculate the cell density distribution in the whole domain.
2. Compute the new generators with respect to the cell density function.



3. Compute the tessellation of the cuboid containing the underlying domain.
4. Clip the cuboid-mesh with the given domain boundaries.

In general there does not exist a pure CVT for the domains with non-flat bound-
aries. We are also forced to distinguish between internal cells and patch cells. We
think with patch on the set of the faces, which compound the domain boundary.
In general the mesh patches can get or loose some faces during the simulation.
For this purpose, we use additional bounding surfaces, which bound the domain.
So we have the boundary part of the volume mesh (the set of the patch faces)
as well as the bounding surfaces. The boundary motion means in our work the
motion of the bounding surfaces. This allows us to keep the topology of the
boundary representation fixed.

In general we can handle both parametric surfaces and triangulated surfaces
as boundary representation of the domain. Here we focus on managing trian-
gulated surfaces. In this work we use two different techniques to handle the
boundary cells described in subsection 5.2. The next subsection shows how the
cell density function can be calculated.

5.1 Computation of the cell density function

As described above we start with a discretized model. This means that the user
has defined an appropriate mesh edge size for each edge of the model. Further we
refer to the mesh edge size as feature size. Qiang Du [18] proposed to take for the
cell density function the inverse 5th power of the feature size. Some experiments
have confirmed that this strategy provides the best description of the cell density
function. Let eij and ni be edges and number of edges of the Voronoi cell Vi,
then we define its feature size as

si =

∑ni

j=1 ‖eij‖
ni

. (8)

The cell density ρi of Vi is defined by:

ρi =
1

s5i
. (9)

In order to determine the distribution of the cell density in the interior of the
domain we first compute the distribution of the feature size in the whole domain,
and than we get the cell density using the equation (9). For the distribution of
the feature size in the interior we solve the Laplace equation:

∇ · (d2∇s) = 0, (10)

where d square denotes the diffusion coefficient for the feature size. In order to
solve the equation (10) we employ the Finite-Volume method using the mesh
from the previous Lloyd’s iteration. So we get the feature edge size on the cell
centres of the mass. After that we use linear interpolation in order to get the
feature edge size on the vertices of the mesh.



An appropriate mesh grading can be achieved by variation of the diffusion
coefficient. It turned out that, the inverse distance from the boundaries often
provides an optimal mesh grading. The algorithm for computing of the distance
to the nearest patch was implemented in OpenFOAM R© [15]. With the cell den-
sity function on the cell centres we interpolate it to the mesh vertices.

5.2 Computation of generators

For the internal cells we take the centres of mass as the new generators. The
centre of mass for a polyhedron Vi with respect to the cell density function ρ can
be computed as follows. First, Vi is decomposed into n tetrahedra as proposed by
[18]. This straightforward decomposition technique is very efficient and always
feasible for convex polyhedra. Let xj and mj be the centres of mass and the
masses of the tetrahedra forming the polyhedron Vi. Than the centre of mass yi
of Vi can be computed from

yi =

∫
Vi

yρ(y)dy/

∫
Vi

ρ(y)dy =

n∑
j=1

xjmj/

n∑
j=1

mj .

The centre of mass and the mass of each tetrahedron can be computed by any
quadrature rule. We now distinguish between so-called constrained centroidal
Voronoi tessellation (CCVT) and unconstrained (only clipped) CVT. In our
work we use both methods depending on the given geometry.

CCVT By the CCVT we will understand a CVT, where generators of the
patch cells are constrained to be located on the surface. The CCVT for surfaces
in Rn was originally proposed by Qiang Du, see [?]. In his further work [18] he
suggests to project the centre of mass of the patch cell onto the bounding surface.
Unfortunately, this procedure does not have a unique solution. The projection
of sphere centre to the sphere surface, for example, leads to an infinite number
of results. This could occur if the centre of mass is located on the centre of the
osculating circle of the surface. In order to avoid this problem we use another
method. Depending on the number of patch faces of the patch cell we perform
an appropriate step:

1. One patch face: The centre of mass is taken as the generator of the appropri-
ate patch face. We decompose the underlying face into a number of triangles
and use the same technique as for a polyhedron mentioned above.

2. Two patch faces: When both faces contain a common edge we reduce the
problem to a one dimensional problem. Hence, the generator is computed
as the centre of mass lying on the common edge. If both patch faces do not
contain a common edge, we perform the step 1 for the patch face with the
centre nearest to the centre of mass of the cell.

3. At least three patch faces: If we can find three patch faces, which contain
a common vertex, we set the generator to the common vertex. In case of



several common vertices, we take the vertex with the nearest distance to the
centre of mass of the cell. If there are no common vertices, then we search
for the faces with common edges, and perform step 2 for the common edge,
which centre located nearest to the centre of mass of the cell. If we can find
neither a common vertex nor a common edge, we perform step 1 for the
patch face with the centre nearest to the centre of mass of the cell.

It is clear, that the generator produced by the described technique does not reside
exactly on the surface, but is located very close to it. The technique described
here is very simple and leads always to a unique solution.

Clipped CVT Another technique to manage patch cells should be described
in the sequel. It is not necessary that, the generators are constrained to the
boundary. It is also possible to simply clip the boundary cells by the bounding
surface. In such case the generator can be inside as well as outside of the domain.
This has some disadvantages:

– The domain boundary gets new cells or loses cells during the simulation.
As a consequence small patch faces arise on the boundary. This reduces the
mesh quality.

– In comparison to CCVT, there is no optimization of the patch cells.
– For large deformations of the domain boundary per simulation step it can

happen, that cells lie completely outside of the domain.
– The volume of the discretisation domain changes slightly at each step of the

simulation.

A major advantage of the clipped CVT compared to CCVT is the exact fulfilment
of the cell density function constraints. In case of the CCVT the cells stick to the
surface and can not leave this surface. If we have too many cells on the surface
and not enough in the interior, we can not fulfil the required cell density function
constraints.

5.3 Tessellation of the cuboid

With the new generators, we can proceed with the tessellation of the underlying
domain. First, we compute the Voronoi tessellation of the cuboid containing the
whole domain and after that we clip this mesh with domain boundaries. For the
computation of the CVT of the cuboid we opted to use the voro++ library [23].
This library deals directly with Voronoi cells and computes a Voronoi tessellation
by the cuts with perpendicular-bisector planes. The cells are handled and saved
independently by this library. We use only one function from this library to
compute the plane cuts. Now we describe the computation of a new Voronoi
cell.

– First, we initialize each Voronoi cell as cuboid so that the whole domain is
contained in it. The dimensions of the cuboid are cumputed as dimensions
of the domain plus offset. Each neighbouring generator creates with own



generator the corresponding perpendicular-bisector. Our task is to find the
correct indices of the generators, which perpendicular-bisectors would con-
tain a face of the new Voronoi cell. In order to determine these indices we
make use of the connectivity information of the previous mesh.

– We cut the initial cuboid-cell using the perpendicular-bisectors created by
generator indices of the direct neighbours of the previous mesh.

– We use multiple levels of the old neighbouring indices, because each cell of
the new mesh can get new neighbours if the mesh is moved. By neighbours
we understand here all cells, which contain at least one common vertex with
the current cell.

– After each cut the cell gets smaller. So we use the maximal radius of the own
cell in order to determine whether the perpendicular-bisector created by the
relevant neighbouring index cuts the cell. This can significantly speed up the
cutting routine.

– We stop the recursive routine at a level where the previous level of the
old neighbouring indices did not create the perpendicular-bisector, which
intersects the cell. The experiments have shown that this technique works
well and is very efficient.

After performing the described procedure for all cells, we achieve a decomposition
of the cuboid which has the same dimensions as the cuboid used for the initial
cell. It turned out that for each Voronoi cell it is usually sufficient to visit two
levels of the neighbours from the previous mesh. Therefore, we get for each cell
an average computational amount tc, that only depends on the number of the
visited levels of the neighbours. That means that tc is independent of the whole
number of the cells n. Therefore, for the n cells the decomposition of the whole
domain takes the expected time tc · n ≈ O(n).

5.4 Clipping with boundaries

Once we have the decomposition of a cuboid covering the whole domain, we
start clipping the underlying cells with bounding surfaces. Usually we have a
lot of surfaces bounding the domain. Suppose we have found for each surface
at least one intersected cell. So we can perform the cuts for remaining cells
recursively using neighbourhood relations saved during tessellation of the cuboid.
The tessellated cuboid is shown in Fig 1a. Fig. 1b shows the first intersected cell
and its neighbours. Using the example in Fig. 1b we are explaining our procedure.
During the cutting of each cell (magenta cell in Fig. 1b) the next intersected cell
(blue cells in Fig. 1b) is determined by the face containing the edge which is
currently being intersected. So we push the neighbour index into the so-called
FIFO queue and search for the next intersected edge of the cell. Once the cut
of the current cell is completed we pop out the cell index from the queue and
compute the intersection for this cell. This process is terminated when all edges,
that intersect the current surface, have been visited.

As mentioned above for clipping of the underlying mesh with each surface
we need at least one cell intersecting this surface. For that we make use of the



(a) The mesh of the cuboid is coloured
in grey. Boundary surface is coloured in
red.

(b) Boundary surface is coloured
in red. The first intersected cell is
coloured in magenta and its neighbours
are coloured in blue.

Fig. 1: Clipping with domain boundaries.

patch cells from the previous mesh. For each patch we choose an appropriate
cell and compute intersections for each edge of this cell. Now we still need to
know which part of the clipped cell remains in the domain and which must be
removed. That can be done by means of the surface normal.

A similar approach for recursive cutting of the boundary cells with the corre-
sponding surface was proposed by [8]. In comparison to this approach we handle
the Voronoi cells directly instead of using the dual data structure known as the
Delaunay triangulation.

5.5 Merging to the global mesh

After some iterations of Lloyd’s method we achieve a mesh close to CVT within
the limit of the predefined tolerance. Since all cells are computed independently,
we need to merge these to a global mesh. Hence, we need to create the global
vertices and faces from those local entities. The global faces can be created easily
using the fact that each global face belongs to exactly two local faces. In order
to construct the global vertices we march through the local faces and correlate
the vertices for both corresponding faces. We mark the visited local vertices of
both adjacent cells with new created global labels. Only the non-visited local
vertices create new global vertex labels.

This technique works as long as the two corresponding local faces are equal.
As a result of rounding errors there are neighbours with non-equal corresponding
faces. Hence, the number of vertices contained in both faces is not equal. In
such cases these faces are corrected. We compute correlations for both faces
and remove the redundant vertex from the face with greater number of vertices.
Since each vertex belongs to at least three faces the procedure also modifies
other faces from the handled cell. We also have to check the modified local faces
for equality to the corresponding local faces. In case of inequality, we correct the



underlying faces too. Each removal of a vertex leads to non-flat faces. Therefore
the position of the affected vertices is computed by the least squares method, i.e.
each affected vertex forms the smallest distance to the original planes containing
it. Although the described method causes an increasing number of arithmetic
operations the whole computational effort increases only very slightly, because
only very few cells are affected. The proposed technique works reliably and is
substantiated by a series of test cases.

6 Mesh motion cases

This section shows three simple examples with prescribed boundary motion. We
emphasize that, the generated meshes have a very high quality and fulfil the
quality-check criteria of OpenFOAM R© at each time step of the simulations.

Fig. 2 shows a cuboid which top wall is moved down during the simulation.
The cell density function is uniform. The simulation starts with a tetrahedral
mesh (Fig. 2a). After some iterations of the Lloyd’s method we achieve a mesh
close to CVT (Fig. 2b). The cells partition the whole domain perfectly, because
the generators are not constrained to lie on the boundaries (CVT technique). It
can be observed that, the cell density of the cells increases for smaller volumes,
because the number of the cells remains constant during the simulation. In the
last step (Fig. 2e) the simulation arrives at a single thin layer of cells.

Fig. 3 illustrates a volume between two concentric spheres. The radius of
the inner sphere is increased during the simulation. The cell density function
is computed as the inverse third power of the sphere radius. Here we used a
very fine triangle surface mesh, in order to reach a very small gap between both
spheres. See Fig. 3f.

The next example, illustrated in Fig. 4, shows a cylinder with an enclosed
sphere. The cell density function is explicit defined on the boundary and com-
puted in the interior by Laplacian Smoothing as described in subsection 5.1.
The generators are fixed on the parametric surfaces. This keeps the volume of
the interior domain constant, because the boundary-mesh remains unchanged
during any affine transformations of the enclosed sphere surface.

7 Validation of usability within the Finite-Volume
Method

Obviously employing of the centroidal Voronoi meshes for the Finite-Volume
method (FVM) can be very beneficial [?]. As already mentioned above, the pro-
posed mesh motion approach do not affect number of cells during the simulation.
We just move the cells like particles through space. In case of mesh motion the
physical phenomena are described by so-called arbitrary Lagrangian-Eulerian
Formulation. For further details please refer to [12]. For an incompressible and
divergence-free flow the momentum equation and continuity equation is of the



(a) (b) (c)

(d) (e)

Fig. 2: Cuboid, top wall moved down (consequent steps (a)-(e))

(a) (b) (c)

(d) (e) (f)

Fig. 3: Volume between two concentric spheres (consequent steps (a)-(f)).



(a)

(b)

Fig. 4: A cylinder with enclosed sphere (consequent steps (a)-(b)).

form:

∂U

∂t

∣∣∣∣
χ

+∇ · ((U − Um)U)−∇ · (ν∇U) = −∇p (11)

∇ · U = 0 (12)

Where U , Um, ν and p denote respectively the velocity, the mesh velocity, the
kinematic viscosity and the pressure. In order to solve the system of the differen-
tial equations (11)-(12) we use the so-called Semi-implicit Method for Pressure
Linked Equations (SIMPLE). For further details we refer to [1, 9].

For a validation of the developed mesh motion solver we need a simple model,
which has an analytical solution. We decided to simulate the free-falling sphere
in a viscous fluid. Such a case can be also validated by a steady state solution.
For the purpose of comparisons we have to transform the steady state solution
to the reference coordinate system of the transient case. For both simulations
the following parameters were used:

– v = 0.01 m/s - sphere relative velocity
– r = 0.001 m - sphere radius
– η = 0.000885 - dynamic viscosity
– R = 0.05 m - radius of cylinder
– H = 0.4 m - length of cylinder

Before the start of the transient simulation we have to create a quasi-CVT mesh.
After round 60 iteration of the Lloyd’s method we got a quasi CVT-mesh, which
is shown in the Fig. 5a. Considering the Fig. 5b we can note that, the cell density
in the downwind region is significantly less than the cell density in the upwind
region. This phenomenon will be explained in the section 8.



(a) The initial mesh (b) The mesh at the time 0.3585

Fig. 5: The quasi-CVT mesh in the area of the sphere. The whole mesh contains
775380 Voronoi cells. The x-axis points to the right.

Fig. 6: Velocity field of the steady state and the transient simulations of free-
falling sphere in a viscous fluid. The solutions are plotted over the distance on
the line (0.16, 0., 0.)-(0.24, 0., 0.). The zero point on the x-axis corresponds to
the point (0.16, 0., 0.) in the 3D-space. The steady state case is computed with
9000 iterations of the simpleFoam. The transient case is simulated up to 0.3585
seconds.

Fig. 6 shows the simulation results of both the steady state and the transient
cases. Except for small differences, we get a good agreement of both fields. In
order to make a quantitative comparison, we computed the drag force on the
sphere:

FD =

∮
S

p n dS −
∮
S

τ · ndS, (13)

where p, n and τ denote pressure, outward-pointing normal to face vector and
shear stress tensor. Using the formula (13) for both cases we get following results:

F stD ≈ 1.7451e− 7N (with 9000 simpleFoam steps) (14)

F trD ≈ 1.7358e− 7N (transient up to 0.3585 sec.) (15)

|(F trD − F stD )
/
F trD | ≈ 0.53% (16)



We recognise that the deviation in the drag force is within the acceptable range.
Furthermore, for the considered geometry the drag force can be calculated by
means of the Stokes’ Law:

FD = 6π η v r λ (17)

λ = λRλH = (1 + 2.1 r/R) (1 + 3.3 r/H), (18)

where λ - Ladenburg-correctors for finite vessel dimensions with (r � R, r � H).
Using the equations (15), (17) and (18) we get the following deviation in the drag
force:

FStokeD ≈ 1.7526e− 07N. (19)

|(F trD − FStokeD )
/
F trD | ≈ 0.96% (20)

Summarising the above we can say that the proposed mesh motion method can
be used by Finite-Volume methods. We observed the mesh quality values during
the whole transient simulation. For a detailed description of the mesh quality
criteria please refer to [?]. The maxima of the critical mesh values are shown in
table 1 and compared to a polyhedral mesh of a commercial preprocessing tool.
Table 1 indicates that the CVT provides better quality meshes than classical

Table 1: Mesh quality results
Max aspect ratio Max non-orthogonality Max skewness

CVT mesh 2.33210739 15.20106280 3.14209776
Commercial preprocessor 6.23371 55.1742 1.7585

mesh generators. The mesh skewness in case of the CVT is higher, because we
got higher gradients of the cell density function in the area of the sphere. The
mesh skewness can be improved varying the mesh diffusion coefficient as defined
in the equation (10).

8 Conclusions and future Work

Up to now the CVT has been used for mesh generation and optimization. This
paper shows the possibility to use the CVT for mesh motion. We use the term
mesh motion, because the number of cells remains constant during the simula-
tion. Previous approaches relating to retopologization usually lead to a change
of the number of cells, see [25].

The computational effort of the developed mesh motion method is compara-
ble with one iteration of the pimpleDyMFoam solver (See [15]). We are currently
working on the development of an efficient solution for a treatment of the non-
convex boundaries. To our knowledge, in all previous works, the non-convex
boundaries lead to non-convex star-shaped Voronoi cells, see [8, 14]. A further



decomposition of such cells leads to convex cells, but these decomposed cells are
not centroidal Voronoi cells.

As already mentioned in section 7 we get non-symmetric cell density dis-
tribution in the area of the moving sphere. This is due to the fact that, our
cell motion approach is exclusively based on the CVT. The cells move because
we try to reconstruct the CVT mesh. For that we just perform a few steps of
Lloyd’s method. In case of the sphere motion there are no motion condition for
the laterally placed cells. The cells on the sphere surface just float through the
surrounding cells. This leads to a high cell density in the back of the sphere.
This problem can be solved by adding an additional displacement to the newly
computed generator, which can be determined by the Laplacian of the boundary
displacement. Using this strategy we have already performed some experiments,
which shows that the cell density remains constant in the area of the sphere.

It seems interesting to use error estimators for the construction of appropriate
cell density distribution. But here we are with Finite-Volume methods not in such
a good situation as in the case of Finite-Element methods. But some results of
[5] should be helpful.
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