
Object Detection via Time-Of-Flight Technology
Minjie Chen Günter Bärwolff Hartmut Schwandt

Abstract—In the current work we propose a new method based on
the modulation-based Time-Of-Flight (TOF) ranging technology for
the automatic trajectory extraction of moving objects. We introduce
a new data structure called TOF-tree for the segmentation of data
in a sequence of frames. A key feature of this data structure is the
monotonicity in height values acquired from distance measurement. This
tree-like data structure enables an efficient calculation of the segmented
objects (which we call TOF-objects) on arbitrary height levels. We apply
a simple matching on the segmented TOF-objects to reconstruct the
original objects and compute, accordingly, the position evolution of the
detected objects in the scene. Automatic trajectory extraction of this
kind can be easily adapted for industrial use, for example, automatic
passenger counting in public transportation.

Index Terms—Time-Of-Flight, object detection, trajectory extraction

I. INTRODUCTION

In the current text we propose a new method based on the
Time-Of-Flight (TOF) measuring technology for the trajectory
extraction of moving objects.

Many traditional laser-based methods of distance measurement
require precise measurement of light travel duration. For a short
distance, this task is very hard to perform. The so-called pulse-based
TOF technology measures the direct light travel duration on a scale
of picoseconds by means of single-photon avalanche diode (SPAD)
detectors [? ?]. The other category of TOF is modulation-based [?
? ?]. Instead of the direct light travel duration, in modulation-based
TOF the phase shift ∆φ between an amplitude-modulated light wave
and its reflection from the target object will be measured. Within a
certain range, this phase shift ∆φ of an amplitude-modulated light
wave with frequency f is proportional to the actual flight duration,
and can thus be used to determine the distance to measure (with c
denoting the speed of light):

∆φ =
4πf

c
· d. (1)

Obviously, the more challenging task of measuring very short flight
duration is no longer necessary. The maximum distance range to
guarantee the unambiguity of (1) is dmax = c

2f
. The calculation

of ∆φ via sampled intensity values of the light signal is explained
in [?]. For a detailed error analysis of the measurement [?] can be
consulted.

II. SYSTEM CONSTRUCTION

In our system, a TOF sensor will be installed perpendicular to
the ground of the scene. The recording of the scene through the
sensor provides us with ranging data stored in a sequence of n
frames (F0, . . . , Fn−1), and in each of these frames, a cloud of
sample points. The positions of these points, as in the so-called sensor
coordinate system, can be easily converted into the local coordinate
system of the scene. For simplicity’s sake, we choose the x-y-plane
(z = 0) of the local coordinate system to be the floor of the scene.
The z-axis is set to be the reverse of the optical axis of the sensor. The
radial distances of the sample points to the sensor will be projected
onto the z-axis to retrieve the height information of these points.

Manuscript created March 31, 2014; revised April 25, 2014.
The authors are with the Institut für Mathematik, Technische Univer-

sität Berlin, Germany. Emails: {minjie.chen, baerwolf, schwandt}@math.tu-
berlin.de

Depending on the hardware resolution, for every sample point, its
(x, y)-position in the local system can be rescaled into the index of a
two-dimensional array representing the original region of observation
Ω, see Fig. 1. The algorithmic description of our method is therefore
independent of hardware specifications.

Fig. 1. Installation of the TOF sensor at a height of h0 in the local coordinate
system. The radial distance d to the object will be converted into the z-
component of the coordinates.

Our previous work [?] proposed a quadtree-like data structure
called “TOF-node”. A TOF-node stores the z-value associated with a
sampled position (x, y) and holds pointers to up to four different child
TOF-nodes (written as W , N , E and S). A child node is required
to have a smaller z-value (height), thus a TOF-node exhibits a local
maximum in height among all its descendant nodes. A simplified
representation is given in Fig. 2. The child nodes, written as W (west,

Fig. 2. Schematic representation of the TOF-node. The TOF-node “node”
may or may not be de-referenced by a parent node. The compass shows the
relative positions respecting the four possible child nodes.

with (∆x,∆y) = (−1, 0)), N (north, with (∆x,∆y) = (0, 1)), E
(east, with (∆x,∆y) = (1, 0)) and S (south, with (∆x,∆y) =
(0,−1)), refer to the immediate neighbouring positions where the
z-values are lower. A TOF-node, which is itself not de-referenced by
any other TOF-node, will be referred to as a “TOF-tree”. Since the
monotonicity respecting the z-values is imposed, the root node of a
TOF-tree is always associated with a local maximum of height in the
scene. Consequently, a convex object can be represented by a TOF-
tree. We notice that the original geometric information is completely
preserved in this data structure.

III. ALGORITHM

A. Construction of TOF-trees

We review the process of constructing all the TOF-trees in a frame:

procedure BUILD:
parameter: global information

repeat
find point p with maximum height;
create TOF-node node with p;

call BUILD TREE with node;
until all points processed

return

This procedure searches for the local maxima in the global scene
and constructs a TOF-tree with each of these:

procedure BUILD TREE:
parameter: node

allocate memory for W , N , E and S;
mark node as processed;
call BUILD TREE W with relevant candidate position and W ;
call BUILD TREE N with relevant candidate position and N ;
call BUILD TREE E with relevant candidate position and E;
call BUILD TREE S with relevant candidate position and S;

return

The construction of a single TOF-tree is a recursive procedure.
The expansion of this TOF-tree may follow in all four directions of
W , N , E and S. For example, in the direction of W (that is, with
a relative position (−1, 0)) the recursion looks like:

procedure BUILD TREE W:
parameter: candidate position, node

if candidate position not defined in Ω

save state “boundary west”; // in other directions (∗)
// “boundary north”, “boundary east” and
// “boundary south” respectively

elseif candidate position not already processed
and associated height value not increasing
set W as TOF-node pointer to candidate;
call BUILD TREE with node;

fi

return

The other three components BUILD TREE N, BUILD TREE E
and BUILD TREE S are analogous.

Since BUILD processes all the sample points in the scene, the
result of this procedure is a segmentation of the sample points
in the observation area Ω. Sample points with extra noises (due
to measurement inaccuracy or error etc.) would lead to isolated
TOF-trees. These TOF-trees have generally very small sizes and
can be easily filtered out. Although this results later in holes of
the reconstructed objects, the side effects of this phenomenon (for
example, in retrieving geometric information of the objects) are in
most cases neglectable.

B. Processing of TOF-trees

Once we have the segmentation in the frames, the TOF-trees can
be processed. The basic geometric information about the TOF-trees
can be retrieved in a similar way as in the above recursive procedure
BUILD TREE. A special task of the processing of a TOF-tree is to
retrieve its boundary information like (∗) in BUILD TREE W on
any arbitrary height level, but this time it includes the information
about the neighbouring TOF-trees. In other words, in every frame
Fi (i = 0, . . . , n− 1), we have a segmentation of the sample points,
composed of a collection of TOF-trees ti,0, . . . , ti,fi−1 (with fj
denoting the number of the TOF-trees constructed in the frame Fj ,
j = 0, . . . , n− 1).

We observe the fact that a geometrically convex object can be
represented by a unique TOF-tree. Consequently, the objects detected
in the scene can, in general, be represented by sets of connected TOF-
trees. Let Ti = {0, . . . , fi− 1} be the set of the indices of the TOF-
trees. Let further 2Ti denote the power set of Ti. For every nonempty

element B of 2Ti (B ⊆ Ti, B 6= ∅), we examine the boundary
information of the TOF-trees associated with this index set B: when
these are connected,1 we will construct a so-called “TOF-object” with
these indices.2 A TOF-object can be thus considered as a union of the
TOF-trees associated with the indices from the set B; it serves as a
candidate for a real object to be detected in the scene. We notice the
almost exponential complexity of this step through introducing the
power set 2Ti , so the pre-processing (smoothing etc.) of the original
sampled data and the filtering of the irrelevant TOF-trees are very
necessary. Empirically speaking, however, above a certain scale, the
growth of the complexity in this step is evidently much lower than
being exponential.3 The geometric information of the TOF-objects
can be easily computed once we know the corresponding TOF-trees.

C. Matching of TOF-objects

The last two steps are performed within the individual frames. We
now consider another data structure which we call “TOF-trajectory”.
A TOF-trajectory is a record of TOF-objects in a continuous
sequence of frames. Given such a record, the physical trajectory (or
position evolution) of the corresponding real object detected in the
scene can be reconstructed.

In the start frame F0, we may initialize a series of incomplete
TOF-trajectories l0,0, . . . , l0,f0−1 by the present TOF-trees in F0.
In the next frame F1, these trajectories will be marked as active, if
not otherwise closed (completed).

In a following frame Fi (i = 1, . . . , n−1), a TOF-trajectory li−1,k

will be marked as active, if li−1,k contains a TOF-object (addressed
by k) from the frame Fi−1. In other words, li−1,k is active, if it
has not been closed in the previous frame Fi−1 already. Assume,
in frame Fi, we have constructed a collection of TOF-objects Oi =
{oi,0, . . . , oi,|Oi|−1} (with obviously |Oi| ≤ 2|Ti| − 1); at the same
time, we have a collection of incomplete TOF-trajectories Li−1 =
{li−1,0, . . . , li−1,|Li−1|−1} derived from the previous frame Fi−1. It
is then possible to construct a distance matrix Di with |Oi| · |Li−1|
items:

Di =
(
di,u,v

)
, for u = 0, . . . , |Oi| − 1, v = 0, . . . , |Li−1| − 1, (2)

where di,u,v is the distance from the TOF-object oi,u ∈ Oi to
the active TOF-trajectory li−1,v ∈ Li−1. The distance function to
compute di,u,v in (2) can be defined independently.

A very straightforward suggestion for di,u,v can be:

di,u,v = |oi,u − oi−1,v|2, (3)

where oi−1,v denotes the TOF-object stored in the TOF-trajectory
li−1,v in the previous frame Fi−1 (in other words, oi−1,v is the last
record in the active TOF-trajectory li−1,v in frame Fi). The geometric
centre of a TOF-object oi,u, which is again the weighted average of

1Our formal definition for “being connected”: either B is composed of
exactly one element; or in case B is composed of two elements, there exists a
common boundary shared by the TOF-trees associated with these two indices;
or otherwise for every pair (p, q) with p, q ∈ B, p 6= q, there exists a
sequence of elements α, . . . , ω from the rest of B, that is, {α, . . . , ω} ⊆
B \ {p, q}, so that all the pairs (p, α), . . . , (ω, q) are connected as in the
case of a subset B with two elements.

2A note on the plural form: obviously this does not exclude that B is
composed of exactly one element in which case this index alone will be used
to construct a TOF-object.

3Although the examination of all the elements B in 2Ti remains of a task of
exponential complexity, the overall cost of this step can be considered roughly
as linear with large constants, since most elements of 2Ti—which are indices
of the TOF-trees—are not qualified for the construction of TOF-objects (with
the corresponding TOF-trees being not connected).

the centres of the associated TOF-trees generated by the index set B,
can be used to describe its position:∑

b∈B ti,b∑
b∈B |ti,b|

.

The next step is to match the current TOF-objects with the active
TOF-trajectories and update the TOF-trajectories for the next frame
Fi+1:

procedure MATCH:
parameter: Oi, Li−1

mark incomplete TOF-trajectories from Li−1 as active;
compute Di and set all items in Di as active;

repeat
select minimum di,u,v from all active items in Di;
if di,u,v below threshold

add oi,u to li−1,v ;
deactivate li−1,v ;

else
construct an incomplete TOF-trajectory by oi,u
for the next frame Fi+1;

fi
deactivate all items di,u′,v′ in Di

for all u′ = 0, . . . , |Oi| − 1, u′ 6= u that oi,u ∩ oi,u′ 6= ∅
and v′ = 0, . . . , |Li−1| − 1; (∗∗)

until no active item in Di left

if there are active TOF-trajectories left
// but there should be no TOF-object
mark all active TOF-trajectories as closed;

else
// there are active TOF-objects left
// but there should be no TOF-trajectory
repeat

construct an incomplete TOF-trajectory by an active
TOF-object for the next frame Fi+1;
deactivate all other overlapping active TOF-objects;

until no active TOF-objects left
fi

return

Procedure MATCH can be decomposed into three parts. The first
part is the initialization and computation of a distance matrix Di

concerning all the current TOF-objects and TOF-trajectories in the
frame. In the second part, the procedure searches for the minimum
in the distance matrix after every update of the TOF-objects and
TOF-trajectories (the distance matrix Di itself does not need to be
re-calculated). Given the successful search result of a TOF-object
and a TOF-trajectory, we either, if the current minimum distance
is below an empirical threshold value, append the TOF-object to
the TOF-trajectory, or we start a new TOF-trajectory with the
TOF-object. The empirical threshold value applied here needs to be
calibrated with consideration of the external distance function (3)
with which the distance matrix Di is computed and the actual frame
frequency of the sensor data. Line (∗∗) says that once a TOF-object
has been used to construct or update a TOF-trajectory, all the other
TOF-objects with which there is an overlapping of the TOF-trees
must be removed from the current frame Fi. The third part of
this procedure deals with the rest TOF-objects or TOF-trajectories,
but not both (otherwise if there were both TOF-objects and TOF-
trajectories left, there would be also active di,u,v items present in
the distance matrix Di). The TOF-trajectories we have here can be
considered as complete, since no TOF-object will be attached to
them, they will not be activated in the next frame. Similarly, the rest
TOF-objects will be used to construct new TOF-trajectories, since

they are not matched with any active TOF-trajectory in the current
frame. Naturally, we need to run the procedure MATCH through the
frames F1, . . . , Fn−1.

Frames from an example simulation are given in Fig. 3.

IV. POSSIBLE EXTENSION

The above approach can be regarded as a very simple contour-
based object tracking method. The background idea of our method is
to register objects in the scene with their possible contour lines and
then apply a simple matching of position transition on the registered
contours. The generation of contour lines is very different from
other traditional methods, owing to the speciality of the TOF data
delivered by the ranging system. Since ours is a very rudimentary
approach in the processing of TOF data, we have only applied a very
simple matching method to establish the ownership relationship of
an object’s actual position to its possible trace over the time (that
is, trajectory). The distance function in the procedure MATCH is de-
signed deliberately to be an external function for future development.
Numerous established matching methods can be embedded here as
function modules. The distance function in (3) can be extended to
include a prediction of position under the assumption of a constant
velocity:

di,u,v = |oi,u − o′i,v|2, (4)

with o′i,v denoting the position prediction of the TOF-object stored
in the TOF-trajectory li−1,v in the current frame Fi. With a constant
frame frequency (that is, the interval lengths of the recording are
constant), we have:

o′i,v = 2oi−1,v − oi−2,v.

With (4), procedure MATCH requests the information of another frame
Fi−2 for the processing of the current frame Fi in the data sequence.

V. FURTHER DISCUSSION

In the current paper we introduced a new method of moving
object detection and automatic trajectory extraction via the Time-
Of-Flight technology. Since modulation-based TOF has a range limit
of dmax = c

2f
(with f = 20MHz the maximum range would be

7.5m approximately), this method is applicable primarily in smaller
observation regions. The method can be applied in various contexts,
for example in the automatic passenger counting in public transporta-
tion. Our method itself is hardware-independent. The specific TOF
hardware we used is a SwissRanger4000 sensor4 with a resolution
of 176 × 144. In practice, even a much lower resolution would
be feasible, if the range information is collected with a sufficient
precision (so that the geometric information, especially shape, of the
objects can be reconstructed). However, the quality of data collection
depends on further factors like light conditions which are generally
discussed in the context of optical ranging systems.

VI. ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of Federal
Ministry for Economic Affairs and Energy of Germany for the
project VP2653402RR1 and federal state of Berlin/Investitionsbank
Berlin for the project 10153525.

4Produced by Mesa Imaging AG (Switzerland), see homepage http://www.
mesa-imaging.ch.

Fig. 3. Frames from a simulation example of two passengers walking through
a door. The opening of the door was captured in two small trajectories in the
corners. Trajectories of the passengers were shown with bounding-boxes. The
segmentation of the sample points were shown on the right side of the figures.

