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Abstract

The actual pandemic is a great challenge for quite different research areas.
Beside the virology research mathematical models and simulations can be a
valuable contribution to the understanding of the dynamics of the pandemic
and can give recommendations to physicians and politicians for their decisions.

Based on actual data about COVID-19 infected people from the European
Centre for Disease Prevention and Control [2] (ECDC) parameters will be deter-
mined and applied in mathematical models. Parameters for several countries
like UK, USA, Italy, Spain, Germany and China will be estimated and used in
a SIR-type model following the fundamental paper of W.O. Kermack and A.G.
McKendrick [1]. Strategies for the commencing and ending of social and eco-
nomic shutdown measures are discussed.

We will not be overbearing regarding the results of our numerical simula-
tions, but we understand the results no more and no less as a contribution to
the actual controversial discussion of the different scientific communities.

We disclaim qualitative mathematical consideration like existence and unique-
ness of solutions and concentrate our interest on the practical application and
numerical experiments. The numerical solution of the ordinary differential equa-
tion system of the modified SIR model is being done with a Runge-Kutta inte-
gration method of fourth order [4].

Suggestions about appropriate points in time at which to commence with
lockdown measures based on the acceleration rate of infections conclude the pa-
per. At the end the applicability of the SIR model could be shown, but weakness
and strength of the modeling will be discussed also. This paper is an improved
sequel of [5].

1 Introduction

The dynamic development of susceptible, infected and recovered people in a certain
region, for example the population of a country or a part of a federation, is the aim
of our modeling. At first we note one important presupposition for our modeling.
We suppose that the distribution of the susceptible people is equal, i.e. the density
is approximately constant. This is a very strict supposition, but this is acceptable
for example for cities and congested urban areas like New York or the Ruhr area
in Germany. At the beginning of the pandemic an exponential growth of infected
people is supposed.
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2 The mathematical SIR model

In the so called SIR-model of Kermack and McKendrick [1] I denotes the infected
people, S stands for the susceptible and R denotes the recovered people. There are
also multitudes of generalizations of the SIR-model but we constrain our investiga-
tions to the species I , S and R only, because the basic behavior of SIR-type models
can be described by the following simple one. The dynamics of infections and re-
coveries can be approximated by the system of ordinary differential equations

dS

dt
= −β S

N
I (1)

dI

dt
= β

S

N
I − γI (2)

dR

dt
= γI . (3)

We understand β as the number of others that one infected person encounters per
unit time (per day). γ is the reciprocal value of the typical time from infection to
recovery. N is the total number of people involved in the epidemic disease and
there is N = S + I +R.

The empirical data currently available suggests that the corona infection typi-
cally lasts for some 14 days. This means γ = 1/14 ≈ 0,07.

The choice of β is more complicated and will be considered in the following.

3 The estimation of β based on real data

We use the European Centre for Disease Prevention and Control [2] as a data for
the COVID-19 infected people for the period from December 31st 2019 to April 8th
2020.

At the beginning of the pandemic the quotient S/N is nearly equal to 1. Also, at
the early stage no-one has yet recovered. Thus we can describe the early regime by
the ordinary differential equation

dI

dt
= βI

with the solution
I(t) = I0 exp(βt) . (4)

Especially in medicine, psychology and other life sciences the logarithm behav-
ior of data is usually considered. Thus, we consider the following logarithmic table.

day log(number of infected people)
t1 log I1
t2 log I2
...

...
tk log Ik

The logarithm of (4) leads to

log I(t) = log I0 + βt



and based on the logarithmic table the functional

L(I0, β) =
k∑
j=1

[log I0 + βtj − log Ij]
2 , (5)

is to minimize. The solution of this linear optimization problem is trivial and it is
available in most computer algebra systems as a ”black box” of the logarithmic-
linear regression.

The following figures show the results for the same periods as above for Spain,
the UK, the USA and Italy.

Figure 1: log-lin-result for Spain (Jan-
uary 31st 2020 to March 20th 2020)

Figure 2: Logarithm of the Spanish re-
sult (January 31st 2020 to March 20th
2020)

Figure 3: log-lin-result of the UK (Jan-
uary 30th 2020 to March 20th 2020)

Figure 4: Logarithm of the UK result
(January 30th 2020 to March 20th 2020)

Figures 1-8 show that the logarithmic-linear regression implies poor results. It
must be said that evaluated β-values are related to the stated period. For the logarithmic-
linear regression method we guessed the respective periods for every country by a
visual inspection of the graphs of the infected people over days.



Figure 5: log-lin-result of the USA
(February 10th 2020 to April 4th 2020)

Figure 6: Logarithm of the USA result
(February 10th 2020 to April 4th 2020)

Figure 7: log-lin-result of Italy (January
31st 2020 to March 20th 2020)

Figure 8: Logarithm of the Italian result
(January 31st 2020 to March 20th 2020)

Instead of the above table of logarithmic values the following one is used with
the aim of a better approximation. We are looking for periods in the spreadsheets of
infected people per day where the course can be described by a function of type (4).
Starting with a spreadsheet like

day number of infected people
t1 I1
t2 I2
...

...
tk Ik

for a certain country and a chosen period [t1, tk] we search for the minimum of
the functional

F (I0, β) =
k∑
j=1

[I0 exp(βtj)− Ij]2 ,



i.e.
min

(I0,β)∈R2
F (I0, β) . (6)

We solved this non-linear minimum problem with the damped Gauss-Newton method
(see [4]). The results of the above discussed logarithmic-linear method for β and α
proved as good start iterations for the Gauss-Newton method. We found the subse-
quent results for the considered countries. Thereby we chose different periods for
the countries with the aim to approximate the infection course in a good quality.
The following figures show the graphs and the evaluated parameter.

Figure 9: German course from January
31st 2020 to March 20th 2020

Figure 10: Italian course from January
31st 2020 to March 20th 2020

Figure 11: Spanish course from January
31st 2020 to March 20th 2020

Figure 12: UK course from January 30th
2020 to March 20th 2020

We found some information on the parameters of Italy in the literature, for ex-
ample β = 0,25, and we are afraid that this is a result of the logarithmic-linear
regression.

A deeper look at the real data shows that the exponential behavior of the dy-
namic of the infected people we found only in the very beginning of the pandemic.
Let us have a look at the data of New-York-City. The results are shown in the figures
15, 16 and 19



Figure 13: USA course from February
10th 2020 to April 4th 2020

Figure 14: Chines course from Decem-
ber 31st 2019 to January 28th 2020

Figure 15: log-lin-result of NY-City
(March 3rd to April 18th 2020)

Figure 16: Logarithm of the NY-City re-
sults (March 3rd to April 18th 2020)

In the German hotspot Bavaria we found the following results for the period
from February 24th to April 20th 2020 (see figures 17, 18 and 20). The attempt to fit
an exponential behavior with the NY-City data is shown in fig. 19.

At the end we can state that estimation of the parameter β is complicated, but
successful in most of the considered countries and regions. The results of the solu-
tion of the minimum-problem (6) to evaluate β are in most of the cases with respect
to the fitting of the real data better than the results of the minimization of functional
(5).

4 Some numerical computations for Germany and Spain

With the choice of β-value 0,215 (see fig. 9) which is evaluated on the basis of the
real data of ECDC and γ = 0,07 one gets the course of the pandemic dynamics
pictured in fig. 211. R0 is the basis reproduction number of persons, infected by

1I0 denotes the initial value of the I species, that is January 31th 2020. Imax stands for the
maximum of I . The total number N for Germany is guessed to be 70 millions.



Figure 17: log-lin-result of Bavaria
(February 24th to April 20th 2020)

Figure 18: Logarithm of the Bavarian re-
sults (February 24th to April 20th 2020)

Figure 19: NY-City course (March 3rd to
April 18th 2020)

Figure 20: Bavarian data from February
24th to April 20th 2020

the transmission of a pathogen from one infected person during the infectious time
(R0 = β/γ) in the following figures2 .

Neither data from ECDC nor the data from the German Robert-Koch-Institut and
the data from the Johns Hopkins University are correct, for we have to reasonably
assume that there are a number of unknown cases. It is guessed that the data covers
only 15% of the real cases. Considering this we get slightly changed results and in
the subsequent computations we will include estimated number of unknown cases
to the initial values of I .

For Spain we use the β-value 0,249 (see fig. 10) and γ = 0,07 we get the course
pictured in fig. 22. N is set to 40 millions.

Let us now discuss the case of strict social distancing. To do this we reduce the
β-values after a few days to β = 0,14 for both, Germany and Spain.

The results in figures 23 and 24 compared to the results without the reduction of
β (21 and 22) show the consequences. The climax of the number of infected people

2The values of R0 in all of the following figures are applied to the β-value of the beginning of the
pandemic.



Figure 21: German course of one year,
starting end of January 2020, S-green, I-
red, R-blue

Figure 22: Spanish course of one year,
starting end of January 2020, S-green, I-
red, R-blue

Figure 23: German course of one year
with reduced β, starting end of January
2020, S-green, I-red, R-blue

Figure 24: Spain course of one year with
reduced β, starting end of January 2020,
S-green, I-red, R-blue

moved to the autumn of the year with hard inconveniences for the population, but
the wanted flattening is achieved.

To investigate the influence and sensitivity of the simulation results by the pa-
rameter β and the number N (sum of infected, susceptible and restored people) we
used the German data and variation of it. In fig. 25 we see, that variation of the
amount N leads more or less to a proportional scaling3. The variation of β showed
a non-monotone and non-linear influence of β on the results, pictured in fig. 25.

3N = 12 millions is the population of Bavaria.



Figure 25: German course of one year
depending on a β-variation

Figure 26: Course of one year depending
on N (β = 0 215)

5 Looking for other strategies of a temporary lockdown
and extensive social distancing

In all countries concerned by the Corona pandemic a lockdown of the social life is
discussed. In Germany the lockdown started on March 16th 2020. The effects of
social distancing to decrease the infection rate can be modeled by a modification of
the SIR model. The original differential equation system (1)-(3) is modified to

dS

dt
= −κβ S

N
I (7)

dI

dt
= κβ

S

N
I − γI (8)

dR

dt
= γI . (9)

κ is a function with values in [0,1]. For example

κ(t) =

{
0,5 for t0 ≤ t ≤ t1
1 for t > t1, t < t0

means for example a reduction of the infection rate of 50% in the period [t0, t1] (∆t =
t1 − t0 is the duration of the temporary lockdown in days). A good choice of t0 and
tk is going to be complicated.

If we respect the chosen starting day of the German lockdown, March 16th 2020
(this conforms the 46th day of the concerned year), and we work4 with

κ(t) =

{
0,2 for 46 ≤ t ≤ 76
1 for t > 76, t < 46

we got the result pictured in figures 27 and 28.
The numerical tests showed that a very early start of the lockdown resulting in a

reduction of the infection rate β results in the typical Gaussian curve to be delayed
by I ; however, the amplitude (maximum value of I) doesn’t really change.

4We will understand 20% of normality by a lockdown, this means κ = 0 2.



Figure 27: German course of one year,
starting end of January 2020, S-green, I-
red, R-blue, 30 days lockdown, starting
time March 16th 2020

Figure 28: Spain course of one year,
starting end of January 2020, S-green, I-
red, R-blue, 30 days lockdown, starting
time March 16th 2020

One knows that the development of the infected people looks like a Gaussian
curve. The interesting points in time are those where the acceleration of the numbers
of infected people increases or decreases, respectively.

These are the points in time where the curve of I is changing from a convex to a
concave behavior or vice versa. The convexity or concavity can be controlled by the
second derivative of I(t).

Let us consider equation (2). By differentiation of (2) and the use of (1) we get

d2I

dt2
=

β

N

dS

dt
I +

β

N
S
dI

dt
− γ dI

dt

= − β
N

2

SI2 + (
βS

N
− γ)(

βS

N
− γ)I

= [(
βS

N
− γ)2 − (

β

N
)2SI]I .

With that the I-curve will change from convex to concave if the relation

(
βS

N
− γ)2 − (

β

N
)2SI < 0⇐⇒ I >

(βS
N
− γ)2N2

β2S
(10)

is valid. For the switching time follows

t0 = min
t
{t > 0, I(t) > (

βS(t)

N
− γ)2N2)/(β2S(t))} . (11)

A lockdown starting at t0 (assigning β∗ = κβ, κ ∈ [0,1[) up to a point in time
t1 = t0 + ∆t, with ∆t as the duration of the lockdown in days, will be denoted as a
dynamical lockdown (for t > t1 β

∗ is reset to the original value β).
t0 means the point in time up to which the growth rate increases and from which

on it decreases. Fig. 29 shows the result of such a computation of a dynamical
lockdown. We got t0 = 108 (κ = 0,2). The result is significant. In fig. 31 a typical
behavior of d2I

dt2
is plotted (in fig. 32 d2I

dt2
in the dynamical lockdown case).

The result of a dynamical 30 days lockdown for Spain is shown in fig. 30, where
we found t0 = 106 (κ = 0,2).



Figure 29: German course of one year,
starting end of January 2020, dynamical
lockdown, S-green, I-red, R-blue

Figure 30: Spanish course of one year,
starting end of March 2020, dynamical
lockdown, S-green, I-red, R-blue

Figure 31: History of the second deriva-
tive of I (de)

Figure 32: History of the second deriva-
tive of I with dynamical lockdown (de)

Data from China and South Korea suggest that the group of infected people with
an age of 70 or more is of magnitude 10%. This group has a significant higher mor-
tality rate than the rest of the infected people. Thus we can presume that α=10% of I
must be especially sheltered and possibly medicated very intensively as a high-risk
group.

Fig. 33 shows the German time history of the above defined high-risk group with
a dynamical lockdown with κ = 0,2 compared to regime without social distancing.
The maximum number of infected people decreases from approximately 1,7 million
people to 0,8 million in the case of the lockdown (30 days lockdown).

This result proves the usefulness of a lockdown or a strict social distancing dur-
ing an epidemic disease. We observe a flattening of the infection curve as requested
by politicians and health professionals. With a strict social distancing for a limited
time one can save time to find vaccines and time to improve the possibilities to help
high-risk people in hospitals.

To see the influence of a social distancing we look at the Spanish situation with-
out a lockdown and a dynamical lockdown of 30 days with fig. 34 (κ = 0,2) for the



Figure 33: German history of the in-
fected people of high-risk groups de-
pending on a dynamical lockdown

Figure 34: Spanish history of the in-
fected people of high-risk groups de-
pending on a dynamical lockdown

10% high-risk people.
The computations with the SIR model show, that the limited social distancing

with a lockdown will be successful with a start behind the time greater or equal to
t0, found by the evaluation of the second derivative of I (formula (11)). If the limited
lockdown is started at a time less then t0 the effect of such a social distancing is not
significant.

Bavaria is one of the origins of the German pandemic and is still a hot-spot.
Therefore we will consider the simulation results for this German hot-spot. As pa-
rameters we use β = 0 215 and N = 12 millions. In the following figures the results
for one year courses without and with lockdowns are shown.

Figure 35: Bavarian one year course
without lockdown

Figure 36: Bavarian one year course
with lockdown

In fig. 37 the consequences of a 40-day social distancing/dynamical lockdown
for the development of the high-risk infected people are shown. Because of the
increasing number of infected people after the 40-day lockdown we simulated a
step-wise return to normality. After the 40-day lockdown follow two 40-day periods
with 60% and 80% respectively of normality. The result of this simulation is shown



in fig. 38.

Figure 37: Bavarian one year course for
the high-risk people

Figure 38: Bavarian one year course for
the high-risk people, green curve for the
step-wise return to normality

6 Closing remarks

If we write (2) or (8) resp. in the form

dI

dt
= (κβ

S

N
− γ)I

we realize that the number of infected people decreases if

κβ
S

N
− γ < 0⇐⇒ S < N

γ

κβ
(12)

is complied. The relation (12) shows that there are two possibilities for the rise of
infected people to be inverted and the medical burden to be reduced.

a) The reduction of the stock of the species S. This can be obtained by immuniza-
tion or vaccination. Another possibility is the isolation of high-risk people (70
years and older). Positive tests for antibodies reduce the stock of susceptible
persons.

b) A second possibility is the reduction of the infection rate κβ. This can be
achieved by strict lockdowns, social distancing at appropriate times, or rigid
sanitarian moves.

The results are pessimistic in total with respect to a successful fight against the
COVID-19-virus. Hopefully the reality is a bit more merciful than the mathematical
model. But we rather err on the pessimistic side and be surprised by more benign
developments.

Note again that the parameters β and κ are guessed very roughly. Also, the
percentage α of the group of high-risk people is possibly overestimated. Depending
on the capabilities and performance of the health system of the respective countries,



those parameters may look different. The interpretation of κ as a random variable
is thinkable, too.

At the end we have to point to a second bump of the course of infected people
as an important issue of a limited lockdown. This must be respected in all decisions
of physicians and politicians in connection with the handling of the pandemic. But
the simulations for Bavaria pictured in fig. 38 show that there are step-wise return
strategies, which can reduce second ramps of the course of infected people.
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