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Abstract The current pandemic is a great challenge for several research areas. In
addition to virology research, mathematical models and simulations can be a valu-
able contribution to the understanding of the dynamics of the pandemic and can
give recommendations to both physicians and politicians. In this paper we give
an overview about mathematical models to describe the pandemic by differential
equations. As a matter of principle the historic origin of the epidemic growth mod-
els will be remembered. Moreover we discuss models for the actual pandemic of
2020/2021. This will be done based on actual data of people infected with COVID-
19 from the European Centre for Disease Prevention and Control (ECDC), input
parameters of mathematical models will be determined and applied. These parame-
ters will be estimated for the UK, Italy, Spain, and Germany and used in a SIR-type
model. As a basis for the model’s calibration, the initial exponential growth phase
of the COVID-19 pandemic in the named countries is used. Strategies for the com-
mencing and ending of social and economic shutdown measures are discussed. To
respect heterogeneity of the people density in the different federal states of Germany
diffusion effects are considered.
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1 Introduction

The origin of the often used SIR-type models is given with the fundamental paper
of Kermack and McKendrick ([26]; Fig. 1).

Their model was applied on pandemics at the beginning of the 20th century,
especially on the Spanish flu pandemic. The application of the model led to some
important recommendations of prevention to combat the transmissions of pandemic
viruses.

Fig. 2 shows the part of the Kermack and McKendrick paper where they wrote
down the relevant ordinary differential equations for the development of the suscep-
tible (S), infected (I ), and recovered/removed1 (R) people in a pandemic.

The dynamic development of sub-populations of susceptible, infected and re-
moved people in a certain region, for example, the population of a country or a part
of a federation, is the aim of the modeling. First deterministic models are discussed.
These are simple but effective for describing the progression of the pandemic. They
are able to fit the description of the average infection dynamics in macroscopic sub-
populations only.

Given the fact that there is a lot of controversy in the applied math community it
is important to mention that the discussed SIR-type models are an approximation of
the pandemic. They do not claim the absolute and precise description of the COVID-
19 pandemic. But we think that these models will be a valuable contribution to the
dynamics of the epidemic.

The description of the pandemic with a finer resolution of the pandemic is possible
with stochastic agent-based models but this is not considered and discussed in this
paper. Some interesting results in this can be found in [27, 34, 43].

More complex deterministic models based on the original SIR model are also
discussed. These include sub-populations other than S , I , and R (see [24, 32]), but
these models have dynamic properties similar to those of the basic SIRmodel. These
models are presented and also discussed.

Beside the discussion of the undisturbed pandemic, without any pharmaceutical
or non-pharmaceutical intervention, we look for possibilities and conditions to stop
or reduce the spread of the viruses. Suggestions about favorable points in time
at which to commence with lockdown measures based on the acceleration rate of
infections are also discussed.

It is necessary to remark that the considered SIR model is not able to describe
the full asymptotic behavior of a pandemic, as is done in [40]. In addition, the role

Fig. 1 Original title, facsimile
of [26]

1 The term “recovered” includes not only the people who are fully recovered, but the people who are exited
or removed of the pandemic process also, for example the dead people.
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Fig. 2 Original ode-system,
facsimile of [26]

of super-spreaders, investigated in [35] and [8], cannot be described with the basic
macroscopic SIR model2. Beside these limitations the SIR model describes the mean
pandemic behavior in an acceptable quantity and quality.

2 The mathematical SIRmodel

First, we note one important presupposition for the model. We suppose that the dis-
tribution of the included sub-populations is equal, i.e., the density is approximately
constant. This is a very strict supposition, but this is acceptable, for example, for
cities and congested urban areas like New York or the Ruhr area in Germany. At the
beginning of the pandemic, exponential growth of the number of infected people
is supposed.

In the so-called SIR model of Kermack and McKendrick [26], I denotes the
infected people, S denotes the susceptible people, and R denotes the recovered or
removed people.3 It is a deterministic model. Here we constrain the investigations
to the species I , S , and R only. The dynamics of infections and recoveries can be
approximated by the following system of ordinary differential equations:

dS

dt
D �ˇ

S

N
I (1)

dI

dt
D ˇ

S

N
I � �I (2)

dR

dt
D �I : (3)

ˇ represents the number of others that one infected person encounters per unit time
(per day). � is the reciprocal value of the typical time from infection to recovery. N

is the total number of people involved in the epidemic disease, and N D S C I C R

and it follows from the equation that N is constant. It was supposed that an infected
person of compartment I is immediately infectious. This supposition was given

2 To grasp super-spreader events it is necessary to apply the SIRmodel on the relevant cluster in a relevant
sub-region.
3 The compartment R includes the people who passed away.
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Fig. 3 Regime of the pandemic, ˇ -value from the logarithmic-linear regression. (a) Result for Spain
(January 31, 2020 to March 20, 2020), (b) Result of the UK (January 30, 2020 to March 20, 2020)

Fig. 4 Comparison of the real data and the curves with the evaluated parameter ˇ from January 31, 2020
to March 20, 2020. (a) German regime from January 31, 2020 to March 20, 2020, (b) Spanish regime from
January 31, 2020 to March 20, 2020

up later in more complex models. The phenomenon of a delayed occurrence of an
infection or the ability to transmit the virus can also described with delay differential
equations (see for example [31], [19]).

The currently available empirical data [14] suggest that the corona virus infection
typically lasts for about 14 days. This means that � D 1=14 � 0.07. The choice of
ˇ is more complicated and will be considered in the following.

The equation system (1)–(3) belongs to the mathematical category of dynami-
cal systems.

3 The estimation of ˇ based on real data

We use the European Centre for Disease Prevention and Control [15] as data for the
COVID-19 infected people for the period from January 31, 2019 to April 8, 2020.
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At the beginning of the pandemic the quotient S=N is nearly equal to 1. Also, at
the early stage no-one has yet recovered. Thus we can describe the early regime by
the ordinary differential equation

dI

dt
D ˇI

with the solution

I.t/ D I0exp.ˇt/ : (4)

The logarithm of (4) leads to

logI.t/ D logI0 C ˇt :

Based on the table .tj ; logIj /; j D 1; :::; k, of logarithms of the infected people
versus time the functional

L.I0; ˇ/ D
kX

j D1

ŒlogI0 C ˇtj � logIj �2 ; (5)

is to minimize. The ansatz (5) is very popular because it has a very simple structure,
leads to a linear regression problem and is often used in medical science.

Fig. 3 shows the results for the same periods as above for Spain and the UK.
Fig. 3 shows that the logarithmic-linear regression implies unsatisfactory results

of the approximation of the real data by the ansatz (4). It must be said that evaluated
ˇ-values are related to the stated period.

Instead of the above used table of logarithmic values the table .tj ; Ij /; j D
1; :::; k, is used with the aim of a better approximation. We are looking for periods
from the beginning of the pandemic in the spreadsheets of infected people per day
where the run can be described by a function of type (4).

Choosing a period Œt1; tk � for a certain country we search for the minimum of the
functional

F.I0; ˇ/ D
kX

j D1

ŒI0exp.ˇtj / � Ij �2 ;

i.e.

min.I0;ˇ/2R2F.I0; ˇ/ : (6)

We solved this non-linear minimum problem with the damped Gauss-Newton
method. The results of the logarithmic-linear method for ˇ and ˛ as discussed
above proved as good start iterations for the Gauss-Newton method. We found the
subsequent results for the considered countries. Thereby we choose such periods for
the countries with the aim to approximate the infection succession in a good quality.
Fig. 4 shows the graphs and the evaluated parameter for Germany and Spain.
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Fig. 5 Comparison of the real data and the curves with the evaluated parameter ˇ for Italy from January
31, 2020 to March 20, 2020. (a) Result of Italy with the ˇ -value from the logarithmic-linear regression,
(b) Result of Italy with the ˇ -value form the non-linear minimization

We found some information on the parameters in Italy in [16], for example
ˇ D 0.25, and we presume that this is a result of the logarithmic-linear regression
by the Italian health administration.

A deeper look at the real data shows that the exponential behavior of the dynamic
of the infected people we found only at the very beginning of the pandemic. In the
German hot-spot Bavaria we found the results for the period from February 24 to
April 20, 2020 the ˇ D 0.22658 with the non-linear regression. With the log-linear
approach we found the quite similar value ˇ D 0.23.

At the end we can state that the estimation of the parameter ˇ is complicated,
but successful in most of the considered countries and regions. The results of the
solution of the minimum-problem (6) to evaluate ˇ are in most of the cases with
respect to the fitting of the real data better than the results of the minimization of
functional (5).

To illustrate the different quality and quantity of the ˇ-estimation we use Italy as
an example with Fig. 5. This was also confirmed by the comparison of the numerical
simulations based on the evaluated ˇ-values with the real data [15].

The interested readers are invited to make their own experiences with the real
data of the beginning of the pandemic. The German data of the development of
infected people from February 13, 2020 to of March 19, 2020 [14] are given in an
Appendix and interested people can try to determine the parameter ˇ by themselves
with their own programm codes (python, MATLAB,..) as an exercise. This can be
done for other countries based on the data of the Johns-Hopkins University [17]
also.

For the numerical solution of the SIR model initial value problem (1)–(3) we
use a fourth-order Runge–Kutta method. The result with the ˇ-value 0.215 for
Germany is shown in Fig. 6. The term “undisturbed” means a propagation of the
pandemic without any pharmaceutical or non-pharmaceutical measures by political
and medical authorities.
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Fig. 6 “Undisturbed” one-year
pandemic course of Germany
with initially 15 infected persons
on day 0, starting on February
13, 2020

As a time-step we used �t D 1 day. The initial values are S.0/ D N � 15,
I.0/ D 15 and R.0/ D 0. As a population we assumed N D 70 million4.

4 Some properties of the SIRmodel

In the following we prove some typical properties of the SIR model. All these
features can be transmitted to generalizations of SIR-type models, but owing to
readability we will show it for the basic SIR model. A good survey on these issues
are discussed in [41].

Because of the continuity of the right-hand side of the equation system (1)–(3)
there is at least one local solution .S; I; R/ W Œt0; T � ! R3 for given initial values
.S.t0/; I.t0/; R.t0// D .S0; I0; R0/ as a consequence of the existence theorem of
Peano5.

Theorem 1 For initial values S0 > 0, I0 > 0 and R0 D 0 and positive parameters
ˇ and � the solution .S.t/; I.t/; R.t// has the properties

a) I.t/ > 0 8t 2 Œt0; 1Œ,

b) S.t/ > 0 and dS
dt

.t/ < 0 8t 2 Œt0; 1Œ and

c) R.t/ > 0 and dR
dt

.t/ > 0 8t 2�t0; 1Œ.

Proof a) For the Eq. (2) we find

dI

dt
D
�

ˇ
S

N
� �

�
I H) dI

I
D
�

ˇ
S

N
� �

�
dt

4 We suppose here a population of 70 million because not all members of the 83 million German population
are affected by the pandemic. But this assumption does not change the principal trend.
5 The practical application of the model and its numerical treatment yields appropriate solutions as a good
approximation of the modeled problem of the pandemic.
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lnjI j D �� t C ˇ

Z t

t0

S

N
dt C c

I.t/ D I0exp

�
�� t C ˇ

Z t

t0

S

N
dt

�
> 0

with exp.c/ D I0. Using the initial value of I one gets rid of the absolute value of
I .
b) The integration of Eq. (1) gives

dS

dt
D �ˇ

I

N
S H) S.t/ D S0exp

�Z t

t0

ˇ
I

N
dt

�
> 0 .

Because of ˇ; S; I > 0 follows dS
dt

< 0.
c) The proof of property c) is analogous with those of b).

Theorem 2 For the limits applies

limt!1S.t/ D S1 > 0; limt!1I.t/ D I1 D 0; limt!1R.t/ D R1 D N �S1 :

Proof It is easy to see that S C I C R D N D const. and because of S; I; R > 0

and the monotonicity the existence of the limits follows. S > 0 and dS
dt

< 0 implies
the existence of S1 2 Œ0; N Œ.

Case S1 > 0: The assumption I1 > 0 and therefore limt!1 dS
dt

.t/ D const. < 0
contradicts the result S > 0.

Case S1 D 0: We assume I1 > 0. Then for large t the term ˇS
N

� � is strictly
negative and the contradiction follows from Eq. (2) for I .

This implies I1 D 0. For the third limit follows R1 D N �S1�I1 D N �S1.
In the general discussion of a pandemic the term “herd immunity” plays an

important role. The mathematical background should be mentioned in the following.
Considering the differential equation for the infected people

dI

dt
D I

�
ˇ

S

N
� �

�

it follows

dI

dt
> 0 ” S >

�

ˇ
N and

dI

dt
< 0 ” S <

�

ˇ
N :

Consequently we experience an abatement of the pandemic, if we have

S D N � I � R <
�

ˇ
N ” I C R > N � �

ˇ
N WD H :

K



Modeling of COVID-19 propagation with compartment models

For the German realistic values ˇ � 0.21 and � � 0.07 we got with

H D 2

3
N

the term “herd-immunity”. We summarize this discussion in the following theorem.

Theorem 3 The pandemic ends, if with

I C R > H

the herd immunity is reached.
It must be said that models which include the compartment of vaccinated people

V influences the herd immunity positively because the herd immunity is reached if
I C R C V is greater than H .

In the daily reports of the state medical-hygienic institutions (the Robert-Koch
Institut (RKI) is responsible for that in Germany) by this they use the term “repro-
duction number” R which is defined as

R D ˇ

�

S

N
:

At the beginning of the pandemic we have S � N and the reproduction number
simplifies to

R0 D ˇ

�
;

the basic reproduction number. R0 of Germany in January 2020 was approximately
equal to 3. Considering the Eq. (2) it is obvious that there is no pandemic, i.e. the
development of I will decrease, if we have the situation R0 < 1. At the beginning
of the consideration we have S � N and from (2) follows

dI

dt
� .ˇ � �/I

with the solution

I.t/ D I.0/exp.ˇ � �/ D I.0/exp.�.R0 � 1// :

We can also conclude that the number of infected people will decrease if R < 1
applies. Will we summarize this behavior in the following theorem.

Theorem 4 The pandemic does not start if R0 < 1 applies.
The number of infected people decreases if R < 1 applies.
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If we combine the differential equations (1) and (2) by a formal division we get
with � D �

ˇ
N

dI

dS
D I.ˇS � �N /

IˇS
D �1 C �

S
: (7)

The integration of (7) gives with

E D I.t/ C S.t/ � �logS.t/ D I.0/ C S.0/ � �logS.0/ D const. (8)

a conserved quantity (also called first integral), which is constant on the trajectories
of the .I; S/-phase space. The Eq. (8) gives with

Imax D �� C �log� C I.0/ C S.0/ � �logS.0/ � N � � C �log

�
�

S.0/

�

the maximal number of infected people during the pandemic for S.t/ D �, because
the function f .S/ D �logS � S has its maximum at S D �. At the end we get with
S.0/ D N and I.0/ D 0 (and � D N

R0
)

Imax D N

R0
.R0 � 1 � logR0/ .� 21 million/:

5 Analytic solution of the SIR equation system

The general SIR initial value problem will be solved numerically, especially if the
model parameters are not constant. For example it’s possible to work with a time-
dependent function ˇ instead of a constant value.

But for the investigation of the long-time behavior of the pandemic and for certain
stages of the pandemic analytical solutions are possible (see for example [25]).

The formal division of the equations (1) and (3) gives

dS

dR
D � Sˇ

N�
D �S

�
;

with the solution

S.t/ D S0exp

�
�R

�

�
:

Therefore Eq. (3) implies

dR

dt
D �I D �.N � R � S/ D �

�
N � R � S0exp

�
�R

�

��
: (9)
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For small R
�
it is possible to approach the exponential function by the Taylor expan-

sion around R
�

exp
�
�R

�

�
� 1 � R

�
C 1

2

R2

�2
C :::

and the Eq. (9) can be approximated by the Riccati equation (see for example [38])

dR

dt
D �

�
N � S0 C

�
S0

�
� 1

�
R � S0R

2

2�2

�
(10)

with the solution

R.t/ D �2

S0

��
S0

�
� 1

�
C ˛tanh

�
˛�t

2
� �

��
(11)

using ˛ and the phase �, defined by

˛ D
s�

S0

�
� 1

�2

C 2
S0.N � S0/

�2
and � D tanh�1

�
1

˛

�
S0

�
� 1

��
:

With the Eq. (3) and the formula (11) we get for the infected people the approxi-
mation6

I.t/ D 1

�

dR

dt
D ˛2�2

2S0
sech2

�
˛�t

2
� �

�
: (12)

Using this approximation Kermack/McKendrick [26] could approach the regime of
the plague epidemic of 1905/1906 in Bombay/India very well. The interested reader
is invited to discuss this formula as an exercise (see also the Appendix).

If we suppose S0 > � and I0 D 0 it applies ˛ D S0
�

� 1 and therefore

R.t/ D �2

S0

�
S0

�
� 1

��
1 C tan h

�
�

2

�
S0

�
� 1

�
t � �

��
:

And with limt!1tanh
�

˛�t
2 � �

� D 1 we get an approximation for the magnitude
of the pandemic R.1/ D N � S.1/

R.1/ D 2�

�
1 � �

S0

�
:

6 sech D 1=cosh is the secans hyperbolicus function, which we get with the differentiation of the tanh-
function.
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If we have S0 D � C �, � > 0, at the beginning of the pandemic we get

R.1/ D 2�
�

� C �
D 2� ;

and S.1/ D N � 2�. This means during the pandemic the number of susceptible
people was reduced by 2�.

Up to now we neglect the demographic dynamics in the SIR model. This is
possible if we consider only short time periods of a pandemic. If we are interested
in longer time periods we have to respect the birth and death rates in the model.
With a birth rate g and a death rate d the SIR model is changed to

dS

dt
D gN � ˇ

S

N
I � dS (13)

dI

dt
D ˇ

S

N
I � �I � dI (14)

dR

dt
D �I � dR : (15)

In contrast to the basic SIR model the quantity N is not constant in general. The
addition of the equations (13)–(15) gives the equation of the population dynamics

dN

dt
D .g � d/N :

6 Extensions of the SIRmodel

In the following some extensions of the SIR model will be treated and adumbrated.
The general assumptions are not changed. We assume a homogeneous distribution
of people in a certain region (state, area). The extension consists in a further sub-
division of the compartments of the SIR model [22]. On the other hand stochastic
phenomenona will be introduced. The numerical solutions for the ode systems car-
ried out were done with a fourth-order Runge–Kutta method.

6.1 SEIR model

As we mentioned above there are generalizations of the SIR model. Because of the
latency between the infection of people with the virus and the capability to transmit
the virus one can divide the compartment of infected people into a group of infected
people who are not infectious, called the group of exposed people E, and the group
of infected and infectious people I . This reflection leads to the SEIR model with
the differential equation system

dS

dt
D �ˇ

S

N
I (16)

dE

dt
D ˇ

S

N
I � ˛E (17)
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Fig. 7 “Undisturbed” one-year
pandemic course of Germany
with initially 15 infected persons
on day 0, starting on February
13, 2020, ˇ D 0.215, � D 0.07,
˛ D 0.25, N D 70 million,
I.0/ D 15, S.0/ D N � I.0/,
E.0/ D R.0/ D 0

dI

dt
D ˛E � �I (18)

dR

dt
D �I : (19)

The new parameter ˛ stands for the transmission rate of exposed persons to infectious
ones. The latency period is the reciprocal of ˛.

The properties of this model are quite similar to those of the SIR model, it means
for example the positivity, the boundedness and the behavior of monotony. In Fig. 7
a typical result of the application of the SEIR model is shown.

6.2 SIR-X model

At the beginning of the COVID-19 pandemic was found a super-linear and sub-
exponential growth of the number of infected people, for example in China and
Austria. The phenomenon could not really be well described with the SIR or SEIR
model. A better description was possible with the SIR-X model [32], where the
compartment I of infected people was subdivided into symptomatic and quarantined
people – compartment X and other infected people I . This can be described by the
following equation system.

dS

dt
D �ˇ

S

N
I � �0S (20)

dI

dt
D ˇ

S

N
I � �I � �0I � �I (21)

dR

dt
D �I C �0S (22)

dX

dt
D .� C �0/I : (23)

The parameter �0 describes measures to protect vulnerable people, and � is responsi-
ble for the quarantine efforts. With the Fig. 8 the SIR simulation was compared to the
SIR-X simulation. For the numerical solution we used a fourth-order Runge–Kutta
method.
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Fig. 8 (a) SIRmodel simulation, one year pandemic course of Germany with initially 15 infected persons
on day 0 from February 13, 2020 to February 13, 2021, ˇ D 0.215, � D 0.07, ˛ D 0.25, N D 70
million, I.0/ D 15, S.0/ D N � I.0/, R.0/ D 0; (b) SIR-X model simulation, one year pandemic
course of Germany with initially 15 infected persons on day 0 from February 13, 2020 to February 13,
2021, ˇ D 0.215, � D 0.07, ˛ D 0.25, N D 70 million, I.0/ D 15, S.0/ D N � I.0/, R.0/ D 0,
�0 D � D 0.003

6.3 A multi-compartment model

Contreras et al. [19] considered the following compartments in a huge extension of
the SIR model. This model arises in the actual research of physicists and mathe-
maticians dealing with the modeling of the COVID-19 pandemic.

� S – susceptible people
� EQ – exposed, non-infectious quarantined people
� EH – unrecognized infected, non-infectious people
� I Q – infected and infectious quarantined people
� I H – unrecognized infected and infectious people
� I H;s – unrecognized infected and infectious people with typical symptoms
� R – removed people (restored to health or dead).

Unrecognized infected and infectious people without typical symptoms I H;a follow
from

I H;a D I H � I H;s :

For

x D ŒS; EQ; EH ; I Q; I H ; I H;s ; R�T

a dynamical system

Px D F.x/ ; F W R6 ! R6
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was formulated. As examples the equations for I Q and I H shall be given.

dI Q

dt
D �EQ � �I Q C N test

„ ƒ‚ …
propagation dynamics

C .	s;r.1 � 
/ C 	r
/N traced

„ ƒ‚ …
tracing of contacts

dI H

dt
D �EH � �I H � N test

„ ƒ‚ …
propagation dynamics

� .	s;r.1 � 
/ C 	r
/N traced

„ ƒ‚ …
tracing of contacts

C S

M
‰t

„ƒ‚…
external influences

A problem of such multi-compartment models consists in the finding of appropriate
parameters. The number of traced and tested people are known. But the parameters
�, 	s;r , 	r for example must be fitted based on real observed data.

On the other hand, it must be respected that the parameters are in general time-
dependent functions. Only short time periods can be simulated with constant pa-
rameters. But this works and yields valuable results of the influences of the contact
parameters on the development of the pandemic. This is well documented in [19].

6.4 A stochastic framework

Random influences cannot be fitted by the standard models [2–5]. But there are
some uncertainties which cannot be embraced by the model parameters. And this is
the reason to extend the deterministic models to stochastic ones.

Stochastic pioneers like Norbert Wiener and Kiyoshi Itó (see [23]) introduced the
mathematical basics of stochastic analysis and stochastic processes. Key concepts
like Brownian motion (Wiener process)7 or the Itó-integral innovated the theory of
stochastic differential equations. This theory was extended in present time by B.
Liu [30].

Because of the fact that a Wiener process Wt is not differentiable, an equation
like

dXt

dt
D F.Xt / C G.Xt /

dWt

dt

do not stack up because of the missing of differentiability of Wt , where Xt is
a random variable and Wt is a Wiener process. That is the reason for the integral
formulation

dXt D F.Xt /dt C G.Xt /dWt : (24)

7 Brownian motion, is the random motion of particles suspended in a medium (a liquid or a gas). This
pattern of motion typically consists of random fluctuations in a particle’s position inside a fluid. This
motion is named after the botanist Robert Brown, who first described the phenomenon in 1827 in biology.
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Eqs. (24) are called “stochastic differential equations” (sde, see for example [37]).
A formal solution of (24) for a given initial state X0 is of the form

Xt D X0 C
Z t

0
F.Xt /dt C

Z t

0
G.Xt /dWt : (25)

The first integral of (25) is a classic Riemann-integral, but the second integral

Z t

0
G.Xt/dWt (26)

is not covered by the classic integration because of the mad properties of the Wiener
process Wt . Itó introduced for integrals like (26) the concept of the “Itó integral”
and thus he showed a way to solve stochastic differential equations with the formula
(25). The stochastic process Xt from Eq. (25) is called an Itó process.

Now we can augment the deterministic model equation system to the stochastic
differential equation system

dSt D �ˇ
St

N
It dt C

kX

j D1

g1j .St ; It /dWjt (27)

dIt D
�

ˇ
St

N
It � �It

�
dt C

kX

j D1

g2j .St ; It /dWjt : (28)

The index t does not mean a time derivative. It and St denote stochastic processes
and Wt D .W1t ; :::; Wkt /

T is a vector of independent Wiener processes with the
main characteristic Wjt � Wjs � N.0;

p
t � s/, t > s and the independence of

Wkt and Wks for t ¤ s (k D 1,2). Since N D St C It C Rt D const., we have
Rt D N � St � It , and since the equations (27) and (28) do not depend on Rt , it is
not necessary to consider an equation for Rt .

To get an idea of the matrix G D .gij /iD1;2;j D1;:::;k we follow [3] to consider
with

�Xt D .�St ; �It /
T D .�X1t ; �X2t /

T

the change of the random variables St and It at time t . We divide the interval
Œ0; t Œ into small sub-intervals of length �t . The interval of length �t was divided
further into smaller sub-intervals of the length �tj D tj � tj �1; j D 1; :::; n with
t0 D t; tn D t C �t and

Pn
j D1�tj D �t . For the changes �Xt it is

�Xt D
nX

j D1

�Xtj :

For sufficiently small steps �tj one can assume that the randow variables
˚
�Xtj

�

on the interval �t are independent and identically distributed. For n sufficiently large
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the Central Limit Theorem implies that �X has an approximate normal distribution
with mean E.�Xt / and covariance matrix COV.�Xt / e.g.

�Xt � E.�Xt / � N.0;COV.�Xt // :

The expectation of �X to order �t is the change that occurs .C1 or � 1/ times the
probability8

E.�X/ D
� �ˇSI=N

ˇSI=N � �I

�
�t DW F�t

and the covariance matrix of �X to order �t

COV.�X/ D E.�X.�X/T / D E

�
.�S/2 �S�I

�S�I .�I/2

�

D
2X

j D1

pj �Xj .�Xj /T D
�

ˇSI=N �ˇSI=N

�ˇSI=N ˇSI=N C �I

�
�t DW C�t

To write the SDE for the SIR stochastic process either the square root of the co-
variance matrix C�t is required, or alternatively, a matrix G so that GGT D C .
The following matrix G has this latter property (G is not unique)9. The matrix G

is straightforward to compute as each component represents the square roots of the
rates as given in Table 1.

G D
��pˇSI=N 0p

ˇSI=N �p
�I

�

Then we have �Xt D F.Xt /�t C G.Xt /dWt , with

F.Xt / D
� �ˇ IS

N

ˇ SI
N

� �I

�
;

�Wt D .�W1t ; �W2t/
T and �W1t , �W2t � N.0; �t/. The limit �t ! 0 gives

with

dXt D F.Xt /dt C G.Xt /dWt

Table 1 SIR assumptions

Event Change .�S; �I / Rate Probability

Infected .�1; C1/ r1 D ˇIS=N p1 D r1�t

Removed .0; �1/ r2 D �I p2 D r2�t

8 For a better readability we leave out the index t .
9 Due to the property of S; I , to be non-negative, the matrix C is at least positive semi-definite and
symmetric. Therefore, the square root exists and the Cholesky decomposition exists for the positive definite
case.
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Table 2 SEIR assumptions

Event Change .�S; �E; �I / Rate Probability

Infected .�1; C1,0/ r1 D ˇIS=N p1 D r1�t

Infectious .0; �1; C1/ r2 D ˛E p2 D r2�t

Removed .0; 0; �1/ r3 D �I p3 D r3�t

the relevant SDE system. Together with initial data S0 and I0 a stochastic SIR model
is defined.

Let us now discuss the SEIR model (16)–(19). Analogically with the SIR model
we consider the vector of stochastic processes Xt D .St ; Et ; It /

T and the vector of
independent Wiener processes Wt D .W1t ; W2t ; Wt3/

T . The stochastic SEIR model
is of the form

dXt D F.Xt /dt C G.Xt /dWt : (29)

The fourth equation for R can be considered separately. For the determination of
the diffusion matrix G we look at the changing rates in Table 2.

Analogically to proceeding with the SIR model we find with

COV.�X/ D E.�X.�X/T / D E

0

@
.�S/2 �S�E �S�I

�S�E .�E/2 �E�I

�S�I �I�E .�I/2

1

A

D
3X

j D1

pj �Xj .�Xj /T D
0

@
ˇSI=N �ˇSI=N 0

�ˇSI=N ˇSI=N C ˛E �˛E

0 �˛E ˛E C �I

1

A�t DW C�t

the covariance matrix of �X D .�S; �E; �I/T to order �t . The finding of a ma-
trix G with GGT D C is straightforward with the result

G D
0

@
�pˇSI=N 0 0p

ˇSI=N �p
˛E 0

0
p

˛E �p
�I

1

A :

Then we have �Xt D F.Xt /�t C G.Xt /dWt , with

F.Xt / D
0

@
�ˇ IS

N

ˇ SI
N

� ˛E

˛E � �I

1

A ;

�Wt D .�W1t ; �W2t ; �W3t /
T and �Wjt � N.0; �t/; j D 1; 2; 3. The limit

�t ! 0 gives with

dXt D F.Xt /dt C G.Xt /dWt

the relevant SDE system.
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Fig. 9 (a) Deterministic simulation of the one-year pandemic regime in Germany; (b) Stochastic SIR
simulation of the one-year pandemic regime in Germany. ˇ D 0.215, � D 0.07, N D 70 million,
I.0/ D 15, S.0/ D N � I.0/, R.0/ D 0

The sde-system (27)–(28) was solved with the Euler–Maruyama-method which
was explained for example in [36] or [11]. The results of the simulations are pictured
in Fig. 9.

The comparison of deterministic and stochastic simulations showed that the re-
sults of the deterministic simulations overestimate the height of the infected curve.
The stochastic simulations results in a decreased maximum of infected people. The
maximum value of infected people of the deterministic simulation was 20505724
compared to the stochastic one of 18721628. The time-step h D 0.5 day was used.
The stochastic result was the mean of 50 simulated paths.

7 Non-pharmaceutical interventions to prevent the pandemic

In all countries concerned by the COVID-19 pandemic, lockdown measures of social
life have been discussed. In Germany, a first lockdown started on March 16, 2020.
The effects of social distancing to decrease the infection rate can be modeled by
a modification of the SIR model. Now, we consider ˇ in the equation system (1)–(3)
as a time-dependent function (instead of ˇ D ˇ0 D const. in the original SIRmodel).
The limitations of contacts to 20% of normality10 starting at time t0 can be described
for example by the function

ˇ.t/ D
	
0.2ˇ0 for t0 � t � t1
ˇ0 for t > t1; t < t0

10 I will understand 20% of normality by a lockdown, this means ˇ D 0.2ˇ0.
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Fig. 10 Results with lockdowns; S—green, I—red, R—blue; 30 days lockdown, starting on March 16,
2020. (a) German progression over one year, starting at the end of January 2020; (b) Spanish progression
over one year, starting at the end of January 2020

If we respect the chosen starting day of the German lockdown, March 16, 2020 (this
conforms to the 46th day of the year concerned starting at the end of January 2020),
and we work with

ˇ.t/ D
8
<

:

ˇ0 for t < 46
0.2ˇ0 for 46 � t � 76
ˇ0 for t > 76; t < 46;

then we get the result pictured in Fig. 10a.
The numerical tests showed that a very early start of the lockdown, resulting in

a reduction of the infection rate ˇ0, causes the typical Gaussian curve to be delayed
by I ; however, the amplitude (maximum value of I ) does not really change.

It is known from other pandemics, such as the Spanish flu [9, 33] or the swine flu,
that the development of the number of infected people looks like a Gaussian curve.
The interesting points in time are those where the acceleration of the numbers of
infected people increases or decreases, respectively.

These are the points in time where the curve of I changes from a convex to
a concave behavior or vice versa. The convexity or concavity can be controlled by
the second derivative of I.t/.

Let us consider Eq. (2) and suppose that ˇ is constant. By differentiation of (2)
and the use of (1), I get

d 2I

d t2
D ˇ

N

dS

dt
I C ˇ

N
S

dI

dt
� �

dI

dt

D � ˇ

N

2

SI 2 C
�

ˇS

N
� �

��
ˇS

N
� �

�
I

D
"�

ˇS

N
� �

�2

�
�

ˇ

N

�2

SI

#
I :
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Fig. 11 Results over one year; S—green, I—red, R—blue. (a) German progression over one year,
starting at the end of January 2020, dynamical lockdown; (b) Spanish progression over one year, starting
at the end of March 2020, dynamical lockdown

With that, the I -curve will change from convex to concave we have

�
ˇS

N
� �

�2

�
�

ˇ

N

�2

SI D 0 ” I D



ˇS
N

� �
�2

N 2

ˇ2S
: (30)

The switching time follows

t0 D supt

(
t > 0; I.t/ >

 �
ˇS.t/

N
� �

�2

N 2

!
=
�
ˇ2S.t/

�
)

: (31)

A lockdown starting at t0 (assigning ˇ D �ˇ0, � 2 Œ0,1Œ) up to a point in time
t1 D t0 C �t , with �t as the duration of the lockdown in days, will be denoted as
a dynamical lockdown (for t > t1, ˇ is reset to the original value ˇ0).

t0 indicates the point in time up to which the growth rate increases and after which
it decreases. Fig. 11a shows the result of such a computation of a dynamical 30-day
lockdown. I obtained t0 D 108 (ˇ D 0.2ˇ0). The result is significant. In Fig. 12a,
a typical behavior of d 2I

dt2
is plotted (in Fig. 12b, d 2I

dt2
in the dynamical lockdown

case).
The result of a dynamical 30-day lockdown for Spain is shown in Fig. 11b, where

I found t0 D 106 (ˇ D 0.2ˇ0).
The lockdown-simulations show that one can win time with such measures, but

a terminable social distancing moves the curve of infected people by the period of
lockdown days into the future. The experiences of Germany and other countries
concerned show that limited lockdown measures without any other relevant inter-
ventions do not solve the pandemic problems but flatten the curve of infected people
for the lockdown period only.

What are “relevant” interventions? At the end of 2020 mankind was given the first
efficacious COVID-19 vaccines, and the immunization campaign could be started.
The influence of the COVID-19 vaccination will be discussed in the next section.

K



G. Bärwolff

Fig. 12 Typical history of the second derivatives of I . (a) History of the second derivative of I ; (b) His-
tory of the second derivative of I with dynamical lockdown

8 Pharmaceutical interventions by vaccination

The vaccination campaign should be factored in the basic SIR model. Every vac-
cination reduces the compartment of susceptible people and increases the removed
group. This leads to the modified SIR-equation system

dS

dt
D �ˇ

S

N
I � V (32)

dI

dt
D ˇ

S

N
I � �I � �V (33)

dR

dt
D �I C V ; (34)

where V is the amount of vaccinated people per day, which is a prescribed time-
dependent function. If we use a vaccination function

V.t/ D
8
<

:

0 for t < 50
50 000 sin..t � 50/=100 � =2/ for 50 � t � 250
0 for t > 250

(it means a vaccination of 10 million people), we get the result of an exemplary
simulation pictured in the Figures 13 and 14.

9 A mathematical diffusion model to respect spatial virus propagation

What is a good choice of quantity to describe the COVID-19 spread? The World
Health Organization (WHO) and national health institutions measure the COVID-19
spread with the seven-day incidence (WHO also uses the Fourteen-days incidence)
of people with COVID-19 per 100000 inhabitants. In Germany, it is possible to
control or trace the history of people with COVID-19 by local health institutions
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Fig. 13 (a) Result without vaccination; (b) Result with the vaccination function V.t/

Fig. 14 Effect of vaccination Infected people (a); Susceptible and removed people (b)

if the seven-day incidence has a value less than 50. However, between the end
of December 2020 and the beginning of January 2021, the averaged incidence was
about 140 and, in some hotspot federal states, such as Saxony, it was greater than 300.
At the end of March 2020 and at the beginning of April 2020, the incidences changed
dramatically. However, in general, one considers a different pandemic development
from one federal state to another and this situation needs to be respected with the
consideration of diffusion phenomena.

If the social and economical life should be sustained, there are several possibil-
ities of transmitting the COVID-19 virus. Among others, the following ones to be
mentioned are:

� commuters and employees on the way to their office or to their position of em-
ployment, especially medical and nursing staff;

� pupils and teachers in schools and on the way to school;
� people buying everyday necessities using shopping centers;
� postmen, suppliers and deliverers.
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All of these activities take place during so-called lockdowns in Germany, with
the result of an ongoing propagation of the pandemic. Furthermore, the unavailable
center of power in the decentralized federal states of Germany often leads to solo
efforts of some federal states.

From countries, such as China or Singapore, with quite different civilization and
cultural traditions than those in Germany, it is known that the virus propagation
could be stopped with very rigorous measures such as the strict prohibition of social
and economic life. Those ones mentioned-above are absolutely forbidden.

This is inconceivable in countries like Germany, Austria, the Netherlands or other
states with a western understanding of freedom and self-determination. However,
as a consequence of such a western lifestyle, they have to live with more or less
consecutive activity of the COVID-19 pandemic. This is the reason for the following
trial: to describe one aspect of the pandemic by a diffusion model. In connection
with the pandemic, diffusion has been discussed, e.g., in [1, 7, 12]. The diffusion
being a central process in many biological, social, chemical and physical systems
is considered in [6, 44]. A similar model but in another context has been discussed
in [13].

Within the diffusion concept discussed here, the seven-day incidence, denoted by
s, serves as the quantity that is influenced by its gradients between different levels
of incidence in the federal states of Germany.

The mathematical model of diffusion of a certain quantity c is given by [21]:

@c

@t
D r � .Drc/ C q in Œt0; T � � �; (35)

where � � R2 is the region that will be investigated, here the national territory of
Germany, D is a diffusion coefficient, depending on the locality x 2 �, Œt0; T � is
the time interval of interest, and q is a term that describes sources or sinks.

Now the seven-day incidence s should be considered as such a quantity with the
term q that describes the possibility of infections. In addition to Eq. (35), one needs
to define initial conditions for s, such as, e.g.,

s.x; t0/ D s0.x/; x 2 �; (36)

and boundary conditions,

˛s C ˇrs � En D � in Œt0; T � � @�; (37)

where ˛; ˇ and � are real coefficients, @� DW � denotes the boundary of the region
�, and rns D rs � En is the directional derivative of s in the direction of the outer
normal vector En on � . The choice of ˛ D 0, ˇ D 1 and � D 0 leads, for example,
to the homogeneous Neumann boundary condition:

rns D 0 ; (38)

which means no import of s at the boundary � . In other words, Eq. (38) describes
closed borders to surrounding countries outside �. The diffusion coefficient function,
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D W � ! R, is responsible for the intensity or velocity of the diffusion process.
From fluid or gas dynamics one knows [20]:

D D 2

3
Nv�; (39)

with the averaged particle velocity, Nv, and the mean free path, �. The application of
this ansatz to the movement of people in certain areas requires some assumptions
for Nv and �. The discussion of the mean distance of people in a certain federal
state considering the means distances of homogeneous distributed people leads to
the relation, � D p

A=N , with the area, A, and a number of inhabitants, N , for
the relevant federal state. Let us assume the velocity Nv spanning 50 to 100km/day,
which is a gauge of mobility [1, 7]. Another suggesting heuristic is given with the
assumption of D assumed to be proportional to the population. The first ansatz,
based on Eq. (39), was applied in the simulations with Nv D 100km/day. However,
these approaches looks to be a coarse approximation of such diffusion processes.
As soon as the population (areas and number of inhabitants) of the federal states
of Germany are different, D is expected to be a location-dependent non-constant
function. This means that the diffusion phenomenon is supposed to be of a different
intensity in the different federal states of Germany. The data given in Table 3 define
the function D. For example, one finds D D 0.48875km2/day for Bavaria, and
D D 0.64355km2/day for Saxony-Anhalt.

If there are no sources or sinks for s, i.e., q D 0, and the borders are closed,
which means for the boundary condition (38), the initial boundary value problem of
Eqs. (35), (36) and (38) has the steady-state solution:

sst D
R

�
s0.x/dxR

�
dx

D const. (40)

This is easy to verify, and this property is a characteristic of diffusion processes
tending to equilibrium. It is quite complicated to model the source-sink function q

in an appropriate way. q depends on the behavior of the population and the health
policy of different federal states. Therefore, only very rough guesses can be made.
It is known that people in Schleswig-Holstein are exemplary with respect to the
recommendations to avoid infection with the COVID-19 virus which means q < 0.
On the other hand, in certain regions of Germany, people did not follow the indicated
protocols, which means q > 0 existed for a long time (the government of Saxony
has since changed the policy leading to q < 0).

However, regardless of these uncertainties, one can obtain information about the
pandemic propagation, for example, the influence of hotspots of high incidences
(Saxony) to regions with low incidences (for example, South Brandenburg).

At the beginning of the year 2021 (January 14), the Robert Koch Institut (RKI),
being responsible for the daily COVID-19 data collection, published the seven-day
incidence data (of January 14, 2021 [14]), summarized in Table 3. The values of
Table 3 are used as initial data for the function s0 of Eq. (36).

The data in Table 3 [14] are used as a basis for the determination of the diffusion
coefficient function.
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Table 3 7-days incidence, people density [=km2], inhabitants Œ=100 000�, area of the federal states of
Germany [km2]

States 7-days incidence Density Inhabitants Area

Schleswig-Holstein 92 183 2904 15804

Hamburg 115 2438 1847 755

Mecklenburg-West Pomerania 117 69 1608 23295

Lower Saxony 100 167 7994 47710

Brandenburg 212 85 2522 29654

Berlin 180 4090 3669 891

Bremen 84 1629 681 419

Saxony-Anhalt 241 109 2195 20454

Thuringia 310 132 2133 16202

Saxony 292 221 4072 18450

Bavaria 160 185 13125 70542

Baden-Wuerttemberg 133 310 11100 35784

North Rhine-Westphalia 131 526 17947 34112

Hesse 141 297 6288 21116

Saarland 160 385 987 2571

Rhineland-Palatinate 122 206 4094 19858

Munic 156 4700 1540 310

9.1 The numerical solution of the initial boundary value problem (35), (36),
(38)

Based on the subdivision of � (area of Germany) into finite rectangular cells !j ; j 2
I�, where I� is the index set of the finite volume cells, and � D [j 2I�

!j ,
Eq. (35) was spatially discretized with a finite volume method. Along with the
discrete boundary condition Eq. (38), one gets a semi-discrete system continuous in
time

@sj

@t
D rh � .Drhsj / C qj ; j 2 I�; (41)

where h indicates the discrete version of the r-operator. The finite volume method is
of a spatial order two; see, e.g., [39]. The time discretization is done with an implicit
Euler scheme of order one. This allows us to work without strict restrictions for the
choice of the discrete time-step �t . At each time level, one has to solve the linear
equation system,

1

�t

snC1
j � rh � .DrhsnC1

j / D 1

�t

sn
j C qj ; j 2 I� ; (42)

for n D 0; :::N; N D .T � t0/=�t . s0j was set to the incidence s0.x/ for x 2 !j ,
j D 1; :::; I�.

Due to the complex geometry of the region � with the Jacobi method, an iterative
solution method for Eq. (42) of the form A s D b was used. The coefficient matrix
A is irreducibly diagonal dominant, and therefore, the convergence of the Jacobi
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iteration method arises. For the discretization parameters, �t values in the range
of 0.1 to 1 day were chosen. The 2-dimensional spatial discretization parameters
�x and �y range from 7 to 14km. With those discretization parameters, seven to
twelve Jacobi-iterations are necessary to comply with the criterion (Euclidian norm
of the relative error),
ˇ̌ˇ̌

snC1;iC1 � snC1;i
ˇ̌ˇ̌
2ˇ̌ˇ̌

snC1;i
ˇ̌ˇ̌
2

< �

for � D 10�4.

9.2 The qualitative behavior of the diffusion model

Fig. 15 shows the map of Germany. For the sake of simplicity, the German border
is approximated by a simple polygon. In Fig. 16, the region � is adumbrated, the
size of the finite volume cells, �x � �y � .8 � 8/km2.

To validate the numerical method for the diffusion setting, a test should be made
in order to reach a steady-state, i.e., the equilibrium given by Eq. (40). One can use
large time-steps (of 10 days) as soon as there is no need to follow any time behavior
here. With the seven-day-incidence of January 12, 2021 for the German federal
states, gets the result s � 160 D const. on �. This is the constant value, which is
evaluated using Eq. (40). It should be noted that this steady-state computation is only
done for the validation reasons of the conservative approximation of the continuous
mathematical model by the numerical finite-volume approximation. However, it is
important to stress that a long-term simulation of more than a year is necessary to
approach the steady-state. This is also a hint that the diffusion is a very slow, long-
scale process.

For the time-behavior simulations, let us start with the case q D 0. �t is then set to
a half-day. Fig. 17 displays the initial state. The initial state is a piecewise constant
function with values of the seven-day incidence of the 16 federal states where
Munich is considered as a town with over a million inhabitants taken separately as
it was excluded from Bavaria.

Fig. 18 shows the development of the diffusion process with the change in con-
tour lines of s of the levels 135; 155; 175; 195, and 215 over a period of 100 days.
Especially in the border regions (Saxony—Brandenburg, Saxony—Bavaria, Sax-
ony—Thuringia), one can observe a transfer of incidence from the high level inci-
dence of Saxony to the neighboring federal states. Furthermore, the high incidence
level of Berlin was transferred to the nearby Brandenburg region. The northern
states with a low incidence level were only influenced weakly by the other states.
A typical smoothing and decreasing of the incidence gradients can also be observed.
The short-horizon forecast confirms the qualitative development of the incidence in
Germany. A finer resolution of the incidence propagation will be considered below
by finer modeling of the source-sink term q.

In Fig. 18, the development of the seven-day incidence of a high incidence region
(Dresden) compared to a low incidence region (South Brandenburg) is shown. With
the parameters ˛, ˇ and � of the boundary condition Eq. (3), it is possible to
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Fig. 15 Map of Germany

describe several situations at the borders of the boundary � of �. The case with
˛ D 0, ˇ D �D and � ¤ 0 describes a flux through the border. Such a scenario is
used in the following example to describe the journey home of people with COVID-
19 from Austria to Bavaria.

The boundary condition at the border crossing reads:

� Drs � En D � :

The initial state s0 the same as in the example above. � > 0 means an “inflow” of
people with COVID-19, � < 0 indicates a loss of people with COVID-19, while
� D 0 refers to a closed border. In Fig. 19, the move of the contour lines of s for
the case � D 250km/day is shown.

At the southern border of Bavaria, one can observe the increase of s caused by
the flux of s from Austria to Bavaria.

The results without a source-sink-term (q D 0) describe the qualitative trend,
which was observed in the pandemic development. To describe the whole pandemic
process of long-scale diffusion and the small-scale local virus transmission, it is
necessary to consider local epidemic spreading models, as it is done in the next
section.
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Fig. 16 Rough contour of �
and it’s discretization

Fig. 17 Contour lines of the seven-day incidence, s, at the time t D 15 days (a) and t D 125 days (b)
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Fig. 18 Time history of s of
Dresden (upper line) and South-
ern Brandenburg (bottom line)

Fig. 19 Contour lines of s at t D 15 days (a), t D 125 days (b), with the source-sink function q D 0,
and the coefficient � D 250km/day

9.3 Consideration of the local transmission via a SIR model in the diffusion
model

The previous section demonstrates the diffusion as a long-scale process. On the other
hand, a small-scale process occurs with the direct virus transmission via epidemio-
logical infection. This process can be described with a SIR model, for example.

The change of s per day can be divided into a part coming from diffusion and
another part coming from the local transmission of the virus. The second issue will
be modeled with the SIR model. The local virus transmission means, in other words,
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Fig. 20 Comparison of real
data [14] and simulation results

the consideration of a SIR model in the federal states of Germany separately. The
SIR model is defined by the following system of equations (see, e.g., [26, 29]):

dSj

dt
D ��j

Ij

Nj

Sj ; (43)

dIj

dt
D �j

Ij

Nj

Sj � �j Ij ; (44)

dRj

dt
D �j Ij ; (45)

where j defines the respective federal state, and Sj , Ij and Rj are the groups of
susceptible, infected and removed people.

Nj is the population of the respective federal state. � is the reciprocal value of
the typical time from infection to recovery (� D 1=14 � 0.07). �j is the average
number of contacts per person per time multiplied by the probability of disease
transmission for a contact between a susceptible and an infectious subject.

The relation between the actual reproduction number,R, and � and � isR D �=�.
To clarify a possible relation between actual non-pharmaceutical measures of the

government and the values of � (or R), let us consider the development of people
with COVID-19 in the period from November 18, 2020 to April 24, 2021.

Fig. 20 shows the RKI data [14] and the result of the simulation with the SIR
model. The curve shows the implication of the drastic changes of the measures taken
by the politicians with a sequence of local minimums followed by local maximums.
The first local minimum seen was reached on December 5, 2021, the first local
maximum found on December 24, 2021, the next minimum found on January 7,
2021, and the next local maximum on January 14, 2021. In Table 4, the possible
values of � to obtain the curve of the people with COVID-19 for the simulation with
the SIR model are shown. The possible �-values for the chronological periods are
obtained with a simple trial-and-error method.

The measures taken by the government from the end of April 2021 can be com-
pared with the measures for the period beginning at January 14 with a �-value of
0.028. For the propagation of the pandemic from April 25, this �-value is used. Due
to the fact that the government measures are based on the infection control law,
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Table 4 Simulated period-dependent average number of contacts per person per time, �, and actual
reproduction number, R, for Germany.

Period � R
November 18, 2020–November 23, 2020 0.068 0.97143

November 24, 2020–January 6, 2021 0.92 1.3143

January 7, 2021–January 13, 2021 0.12 1.7143

January 14, 2021–February 13, 2021 0.028 0.4

February 14, 2021–April 2, 2021 0.092 1.3143

April 3, 2021–April 8, 2021 0.028 0.4

April 9, 2021–April 15, 2021 0.1464 2.0914

April 16, 2021–April 24, 2021 0.076 1.0857

which are valid from April 25, 2021, the same �-value is used for all federal states
of Germany.

In what follows, the diffusion model (35), (36), (38) coupled with the SIR model
(43)–(45) is used.

To take into account the long-scale and small-scale processes, one considers, after
the diffusion steps with the size �t , the model (43)–(45) for a time-interval �t . This
means to solve a family of initial value problems in the interval Œtp; tp C�t � in every
diffusion step of Eq. (42) from tp to tp C�t (see Algorithm 1).The initial values for
Ij .tp/ are used as the mean values of s (Table 3) of the respective federal states. The
first values of Rj .tp/ (in the first diffusion step) are set to zero and the Sj .tp/ values
come from the relation Nj D Sj C Ij C Rj . The result of the initial value problem
Ij .tp C �t / is converted to sj .tp C �t/ and used to determine q for Eq. (42) by
the changing rate of sj , which means

q.x; tp C �t / D sj .tp C �t/ � sj .tp/

�t

; x 2 !j ;

during the time �t , caused by the process modeled with the equation system
(43)–(45). In the deterministic case (� D 0), the Euler method is used to solve
the initial value problem per diffusion time-step (with a time-step of ıt D �t =10).
For constant coefficients �, � there are possibilities of finding analytic solutions of
the SIR system, which can be found in [28, 42]. However, for time-dependent coeffi-
cients, numerical methods have been used to find a solution. Here, it is important to
note that the step-sizes �t and ıt used are chosen heuristically. Let us note that the
analysis of the physics of time-scales of both the local transmission and the diffusion
process is an interesting point and should be considered in further investigations of
such combined modeling together with the parameters of the diffusion process; see,
e.g., [18].
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Fig. 21 Course of people with COVID-19 in Bavaria, from April 26, 2021 to May 5, 2021 without
diffusion (a) and with diffusion (b)

Due to the poor informativeness of surface graphs and contour lines, the propa-
gation of the people with COVID-19 in Bavaria is used to compare the simulated
results with the real data of the RKI. The result of the diffusion model coupled
with the SIR model over the period from April 26 to May 5 is shown in Fig. 21
(�t D 1 day, ıt D �t =10). In addition, to the nine days where the real data are
known, a forecast up to May 16, 2021 is made.

For the reinterpretation (by counting back using the population and the area of
the federal states) of the result for the seven-day incidence, in Fig. 22 the incidence
with the congruous distribution of the people with COVID-19 per square kilometer
is considered. It is obvious that the people with COVID-19 are concentrated in the
congested urban and metropolitan areas such as Munich, Hamburg, Berlin, and Ruhr.

Sect. 9 is a recapitulation of paper [10]. It should be mentioned that these thoughts
about the term “diffusion” are still under consideration and will be an important issue
of further research.
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Fig. 22 Forecast of the seven-day incidence, s, (a), and distribution of people with COVID-19 (b) after
20 days, for the SIR model coupled with the diffusion concept

10 Discussion and Conclusions

In this paper, we reviewed some basic properties of the SIR model to describe the
progression of the COVID-19 pandemic. Further it demonstrated the SIR model and
some modifications by numerical simulations of the German pandemic situation. It
was found that the timing of the lockdown is crucial in the progression of a pandemic.
It could be shown that a very early start of limited social distancing measures for
a period of �t days leads only to a displacement of the climax of the pandemic,
but not really to an efficient flattening of the curve of the number of infected people.

The intervention measures are more efficient, and one can observe a descent in the
number of infected people if the social distancing is started beyond the dynamical
lockdown time t0. However, in this case, a second bump of the curve of infected
people will also occur. A stepwise return to normality turned out to be the most
efficient way to overcome the climax of a pandemic.

For the calibration of the SIR model, i.e., the evaluation of the parameter
ˇ, the non-linear regression comes up with significantly better results than the
log–linear regression. This is evident with the comparison of the graphs of the
evaluated exponential functions.

It must be noted again that the parameters ˇ and � were guessed very roughly.
Depending on the capabilities and performance of the health systems and further
research results and experiences of the respective countries, those parameters may
look different.

The conclusions to control the pandemic of today are not really different to those
of Kermack/McKendrick, which are cited in Fig. 23. The contacts of people must be
reduced, the personal and social environment must be efficiently sanitized and the
vulnerable people must be eminently protected. The vaccination/immunization of
the population is the most important issue to reach the herd immunity which leads
to a decreasing number of infected people and terminates the pandemic in the end
by switching to an endemic situation.
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Fig. 23 Original conclusions,
facsimile of [26]

It has to point to the second bump in the progression of the number of infected
people as an important issue of limited lockdowns. This must be taken into account
in all decisions made by physicians and politicians in connection with the handling
of the pandemic.

Finally, it must be said that the SIR models and their modifications are valuable
instruments to describe the pandemic and forecast the infection history over short
periods. But it is necessary to adjust the model and its parameters depending on
the respective local situation. Due to the supposition of homogeneity of people
distribution, density, behavior and so on the SIR-model provides mean propositions
and forecast the infection history over short periods. But it is necessary to adjust the
model and its parameters depending on the respective local situation. For a finer local
resolution of the pandemic propagation one can consider separate considerations
for smaller regions rather than whole countries like Germany or Spain. This was
considered be a recapitulation of [10] with separate models for example for Bavaria,
Saxonia, Thuringia combined with the model of diffusion processes.

In conclusion, it must be said that the results of the simulations using the SIR
model describe, in a way, the worst case. A lot of interventions made by politi-
cians and physicians can disturb the progression of the pandemic in a positive way.
However, not all measures and interventions can be described by SIR-type models.
This allows the conjecture that the real pandemic will be weaker than the simulation
results of the model.

Due to the development of the data concerning infected people, which is less
dramatic than the forecast of the mathematical modeling community, a bashing of
science, mainly physicists, mathematicians and virologists emerges. This is regret-
table, but “There is no glory in prevention” – a well-known saying of physicians –
and we must live with the criticism in politics and the printed and electronic me-
dia. But then without respectable warnings about the risks of the COVID-19 virus
aggressiveness by the named scientists a disaster would have been ineluctable.
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Appendix

German data for the estimation of ˇ

In the following table the German data of infected people from February 13 to
March 19, 2020 is listed.

Day Month Infected people

1.30000000e+01 2.00000000e+00 1.50000000e+01

1.40000000e+01 2.00000000e+00 1.50000000e+01

1.50000000e+01 2.00000000e+00 1.50000000e+01

1.60000000e+01 2.00000000e+00 1.50000000e+01

1.70000000e+01 2.00000000e+00 1.50000000e+01

1.80000000e+01 2.00000000e+00 1.50000000e+01

1.90000000e+01 2.00000000e+00 1.50000000e+01

2.00000000e+01 2.00000000e+00 1.50000000e+01

2.10000000e+01 2.00000000e+00 1.50000000e+01

2.20000000e+01 2.00000000e+00 1.50000000e+01

2.30000000e+01 2.00000000e+00 1.50000000e+01

2.40000000e+01 2.00000000e+00 1.50000000e+01

2.50000000e+01 2.00000000e+00 1.50000000e+01

2.60000000e+01 2.00000000e+00 1.70000000e+01

2.70000000e+01 2.00000000e+00 2.10000000e+01

2.80000000e+01 2.00000000e+00 4.70000000e+01

2.90000000e+01 2.00000000e+00 5.70000000e+01

1.00000000e+00 3.00000000e+00 1.11000000e+02

2.00000000e+00 3.00000000e+00 1.29000000e+02

3.00000000e+00 3.00000000e+00 1.57000000e+02

4.00000000e+00 3.00000000e+00 1.96000000e+02

5.00000000e+00 3.00000000e+00 2.62000000e+02

6.00000000e+00 3.00000000e+00 4.00000000e+02

7.00000000e+00 3.00000000e+00 6.84000000e+02

8.00000000e+00 3.00000000e+00 8.47000000e+02

9.00000000e+00 3.00000000e+00 9.02000000e+02

1.00000000e+01 3.00000000e+00 1.13900000e+03

1.10000000e+01 3.00000000e+00 1.29600000e+03

1.20000000e+01 3.00000000e+00 1.56700000e+03

1.30000000e+01 3.00000000e+00 2.36900000e+03

1.40000000e+01 3.00000000e+00 3.06200000e+03

1.50000000e+01 3.00000000e+00 3.79500000e+03

1.60000000e+01 3.00000000e+00 4.83800000e+03

1.70000000e+01 3.00000000e+00 6.01200000e+03

1.80000000e+01 3.00000000e+00 7.15600000e+03

1.90000000e+01 3.00000000e+00 8.19800000e+03
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It is recommended to evaluate the data of this table to empathize the estimation of
the parameter ˇ by the root mean square approximation method which was carried
out above.

Approximated analytic solution of the SIRmodel

Above with

R.t/ D �2

S0

��
S0

�
� 1

�
C ˛tanh

�
˛�t

2
� �

��

was given an approximation of the development of removed people by the exact
solution of the Riccati-equation (10), and with

I.t/ D ˛2�2

2S0
sech2

�
˛�t

2
� �

�

the consequence for the compartment I . Maybe it is interesting to evaluate these
formulas for appropriate data of the actual pandemic by eligible graphics software
(python, MATLAB etc., ˛ and � are defined above) as an exercise of the useful
application of computer-algebra systems. A second exercise is the proof of R.t/ to
be a solution of the Riccati equation (10).
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