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Abstract

The Sphereprint is introduced as a means to characterize hemispherical conformability, even when buckling occurs, in a

variety of flexible materials such as papers, textiles, nonwovens, films, membranes, and biological tissues. Conformability

is defined here as the ability to fit a doubly curved surface without folding. Applications of conformability range from the

fit of a wound dressing, artificial skin, or wearable electronics around a protuberance such as a knee or elbow to

geosynthetics used as reinforcements. Conformability of flexible materials is quantified by two dimensionless quantities

derived from the Sphereprint. The Sphereprint ratio summarizes how much of the specimen conforms to a hemisphere

under symmetric radial loading. The coefficient of expansion approximates the average stretching of the specimen during

deformation, accounting for hysteresis. Both quantities are reproducible and robust, even though a given material folds

differently each time it conforms. For demonstration purposes, an implementation of the Sphereprint test methodology

was performed on a collection of cellulosic fibrous assemblies. For this example, the Sphereprint ratio ranked the fabrics

according to intuition from least to most conformable in the sequence: paper towel, plain weave, satin weave, and single

knit jersey. The coefficient of expansion distinguished the single knit jersey from the bark weave fabric, despite them

having similar Sphereprint ratios and, as expected, the bark weave stretched less than the single knit jersey did during

conformance. This work lays the foundation for engineers to quickly and quantitatively compare the conformance of

existing and new flexible materials, no matter their construction.
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Engineering flexible materials to conform to the shapes
around us is an important problem in materials science.
High performance applications, with an emphasis on
deformability of shape, range from tissue scaffolding
and organ reinforcement to geosynthetics for mem-
brane protection in landfills and for soil reinforcement.
The way in which textiles for wound dressings, wear-
able electronics, and garment technologies fit a finger-
tip, elbow, or knee is also dictated by the flexible
material’s ability to conform. Amongst all materials,
textiles are best known for their ability to attain differ-
ent shapes through in-plane straining and nearly revers-
ible buckling,1 familiarly known as stretching and
folding/unfolding, respectively. Therefore, historically,
research on the attainment of complex shapes by flex-
ible materials has been mostly constrained to textiles

and in particular to garment technology. In this par-
ticular field, there has been considerable work done
on drapability and its quantification by some form of
Drapemeter.2,3 Informally, drapeability is the ability of
a textile to fall in graceful folds under gravity as in the
hanging of curtains, the flow of a skirt over the body, or
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the hanging edge of a table cloth.4 General theories on
the geometry of buckling and on the elements of drap-
ing under gravity have been investigated.5,6 However,
with the introduction of flexible electronics and artifi-
cial skins that either mimic or explicitly incorporate a
textile structure to ensure acceptable conformabil-
ity,7–10 flexible textile composites in place of more trad-
itional engineering materials, and the importance of
wearable, single-use nonwoven products in the con-
sumer and healthcare markets, it is increasingly neces-
sary to quantify flexible material shape attainment in
other contexts and at different scales.

While the collection of all shapes may seem intract-
able, two dimensional surfaces can be classified into a
few distinct categories based on curvature. Every piece
of a surface can be considered as flat, singly or doubly
curved.11 Flat pieces are like tabletops. Singly curved
pieces are like cylinders, e.g. the label of a tin can.
Doubly curved pieces come in two types: those which
resemble parts of a sphere or ball, and those which
resemble a saddle. Balls are doubly curved in the
same direction, for example both up, as at the south
pole of the Earth, or both down, as at the north pole.
A saddle is doubly curved with one curve going up, to
keep the rider in the saddle, and the other curve going
down, to accommodate the legs. Many textiles easily
conform to large regions of double curvature. This con-
formability is in stark contrast to paper or other sheet
materials or metals which cover flat or singly curved
shapes easily, but crease or fracture during conform-
ation to a shape which is doubly curved. From the per-
spective of curvature, quantifying how a nonwoven
wound dressing conforms to a knee is similar to quan-
tifying how a geosynthetic membrane conforms to the
bottom of a landfill.

There has been much discussion and disagreement as
to what the proper definition of conformability should
be, and how it should be measured. The term conform-
ability has appeared as a qualitative notion in the woven
and knit communities alongside the more quantifiable
idea of drapeability and to describe the opposite of anti-
drape stiffness for the quantification of fabric handle.1,12

It has also been called the fit of a material,13 or the
clothing of a surface,14–16 when describing how a
woven textile conforms to a surface in three dimensions.
The conformability of a wound dressing has been pre-
viously defined as its ability to adapt to the shape and
movement of the body.17 However, the conformability
test standard for wound dressings is not a test for double
curvature.17 Instead it is a uniaxial stretch and recovery
test. Specimens are marked at two points, extended
twenty percent using a tensile testing machine, held for
sixty seconds and then relaxed for three hundred sec-
onds. Thus, the test records extensibility and permanent
elongation sets,17 possibly in multiple directions. A

definition of forced conformability in relation to non-
wovens has also been proposed.18 This definition
matches with the understanding that conformability is
the ability of a material to fit a doubly curved surface.
However, descriptions of the exact testing procedure
and the device itself have been limited.18

Conformability has appeared in studies of flat tape
woven structures and artificial skin,9,19 but only min-
imal quantification is provided, with most of the empha-
sis on visual comparison. In the field of composites,
issues related to the formability and molding of fibrous
assemblies around spherical objects have been exten-
sively discussed.20–27 While many of these studies are
interested in the hemispherical conformability of textiles
for shape attainment, forming is an irreversible process
in which folds are defects and so this flexible nature in
the final material is forgotten. The Drapability test from
Rozant et al.,26 for wovens and knits to be used in com-
posite forming, uses a hemispherical punch to displace a
clamped, initially planar specimen, but continues only
until the formation of the first fold. This ignores the
important characteristic of textiles to deform in revers-
ible buckling during shape attainment.

Conformability is defined in the present work as the
ability of a flexible material to fit a doubly curved sur-
face without folding. From the mathematical classifica-
tion of surfaces, conformability to a sphere and
conformability to a saddle are distinct. This study pro-
poses a simple test method, the Sphereprint test, for
quantifying the hemispherical conformability of flexible
materials using a hemisphere. Analysis is based on a
visualization called the Sphereprint. The Sphereprint
is thought of as the footprint on the flexible material
as it conforms to the hemisphere. Two reproducible
quantities are introduced: the Sphereprint ratio, which
summarizes hemispherical conformability in a single
value ranging from zero (low conformability) to one
(perfect conformability), and the coefficient of expan-
sion, a measurement of the average extension in every
direction during deformation. As a demonstration of
the method a Sphereprint test is implemented and a
collection of cellulosic fibrous assemblies including
paper, nonwoven, knits and wovens are tested.

Measuring principles

The important elements of a Sphereprint test are shown
in Figure 1. They are: symmetric radial loading of the
specimen onto the hemisphere, ensuring that the center
of the specimen is aligned with the north pole; taking
measurements of the conformed region on the hemi-
sphere, even when buckling may have occurred; remov-
ing the specimen from the hemisphere and unfolding it;
taking measurements of the corresponding post-
conformed region.
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Information from a typical Sphereprint test on four
materials with varying conformability is given in
Figure 2. The solid line encloses the conformed hemi-
spherical region both on the hemisphere in the sche-
matics and in the Sphereprints themselves. The dotted
line encloses the corresponding post-conformed pla-
nar region. The enclosing circle in the Sphereprints
corresponds to the hemisphere used in testing.
The Sphereprint ratio is simply the ratio of the area
of the conformed hemispherical region to the area of
the enclosing circle. The coefficient of expansion cap-
tures the average amount of extension in each direction.

A visual study of the deformation of the dotted post-
conformed lines to the solid hemispherical lines pro-
vides some insight into the anisotropy of the sample
material. It is simpler to understand the deformation
in materials of high conformance. For example, in the
left-most Sphereprint the dotted line is a circle and the
solid line is simply a larger circle. This corresponds to
an isotropic material, which stretches the same in each
direction during conformance. The coefficient of expan-
sion completely characterizes this type of behavior. The
second Sphereprint from the left has a dotted line that
looks like a rounded rectangle, while its solid line is

Figure 2. Conformed regions on the hemisphere shown schematically and their associated Sphereprints, Sphereprint ratios and

coefficients of expansion. A visual study of the deformation of the dotted post-conformed line to the solid hemispherical line provides

insight into material anisotropy. The most conformable material deforms isotropically and the second most conformable material

deforms anisotropically like a woven fabric.

Figure 1. Schematic of a Sphereprint test.
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wavy around the edges. The distance between the
dotted line and the solid line is small along the horizon-
tal and vertical axes, but much larger in the diagonal
directions. This corresponds to the behavior of some
woven materials that do not stretch much along the
two x–y perpendicular directions, but do stretch along
the bias, during conformance. It is more difficult to gain
any insight into material anisotropy from the two right-
most, less conformable, Sphereprints.

Implementation of a Sphereprint test
procedure and analysis

The Sphereprint method is a general test procedure
whose principles have been outlined in the previous
section. The Sphereprint test procedure in the present
implementation involves 10 steps, which are summar-
ized below. The text shown in italics, inside parenth-
eses, are suggestions for implementation and state
what was done for the present implementation.
More explicit implementation details follow. For dem-
onstration purposes, an array of cellulosic fibrous
assemblies was characterized with the present
Sphereprint test implementation. Similar implementa-
tion, data collection, and analysis techniques could be
used for films, membranes, flexible composites, or bio-
logical tissues.

Step 1. Cut circular specimens (110mm diameter) and
mark the center and an axis of orientation (e.g. the
machine, warp, or wale direction).
Step 2. Flatten specimens to remove creases or wrinkles
(apply 2 kg, with surface area covering the entire speci-
men, for 4 hours).
Step 3. Place the specimen so that the center aligns with
the north pole and the axis of orientation is in the 0�

direction.
Step 4. Fix the center of the specimen to the north pole
and lower the ring (hose clamp) until the top of the ring
is in line with the equator.
Step 5. Dot the apex of each fold proceeding in the
counterclockwise direction from 0�. Place a circle
around the first dot marked.
Step 6. Measure the caliper distance from the north
pole to each dot, starting with the circled dot and pro-
gressing counterclockwise.
Step 7. For large lunes of conformance (dots which
differ by more than 45�), recursively dot the equator at
the angular midpoints.
Step 8. Remove the specimen from the hemisphere and
attempt to flatten it (tap the specimen 5 times on each
side).
Step 9. Measure the angle between the rays from the
center to neighboring dots, starting and ending with the
0� axis of orientation.

Step 10. Measure the distance in the plane from the
center to each dot, ensuring the material lays flat
along the line of measurement.

Setup

The testing device setup and nomenclature are summar-
ized in Figure 3. A 50.8mm diameter hemisphere (stain-
less steel) on a circular cylinder of the same diameter
was set on the testing surface so that the axis of the
cylinder was perpendicular to the testing surface. The
hemisphere of diameter of 50.8mm was chosen to
mimic the size of the hemispheroidal bone segment,
which protrudes during flexion of the elbow or knee.
The point at the top of the hemisphere will be referred
to as the north pole. The circle at the base of the hemi-
sphere on top of the cylinder will be referred to as the
equator. A 110 mm diameter circular specimen was cut
out and marked at its center and along a diameter to
provide an axis of orientation. This axis of orientation
was aligned with a meaningful direction, such as the
machine direction for papers and nonwovens,
the wale direction for knits and the warp direction for
wovens. The specimen was coerced to conform to the
hemisphere by lowering a ring of adjustably increasing
diameter from the north pole down to the equator. To
prevent movement, the center of the specimen was held
against the north pole of the hemisphere as the ring was
lowered. A circular hose clamp was used as the ring.
The hose clamp is built from a flat belt, which is
12.7mm wide and 1mm thick, wrapped into a cylinder
with a screw through which the belt passes to allow the
diameter to change. Photographs of the hose clamp are
shown in Figure 3. The hose clamp is sold as a 25mm–
51mm clamp, but is actually extendable to 55mm. The
extra allowable 4mm of diameter is essential since this
is the range used during testing. Note also that since the
diameters of interest are near the maximum dimension
of the hose clamp, the overlap of the belt is minimized,
allowing for a more evenly applied load. The screw of
the hose clamp was always aligned perpendicular to the
axis of orientation. During lowering, the ring diameter
was changed as required to allow materials of different
thicknesses to be tested and to pass over folds that may
form during testing. The clamp was lowered until the
top of the clamp was in line with the equator. In prac-
tice, a small block was used to prevent the clamp from
lowering any further.

Measurement

Materials that do not conform entirely to the hemi-
sphere fold as the ring is lowered. Once the ring has
been secured at the equator, the apex of each fold is
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dotted precisely where it lifts away from the surface of
the hemisphere; see Figure 4. It is imperative that the
specimen lies along the surface of the hemisphere from
the north pole to the fold dot. This assertion allows the
arc length between the north pole and the fold dot to be
calculated from the measured linear caliper distance, as
shown in Figure 4.

Observe that the fold dots section the hemisphere
into a series of lunes with lune angles given by the
angular differences between fold dots. If a specimen
conforms completely to the hemisphere there are no
fold dots to measure, so a system of marking along
the equator is adopted for large lunes of conformance.
Large lunes of conformance are defined by lune angles
greater than 45�. Equator dots are recursively placed
along the equator at the angular midpoints between
existing dots as shown in Figure 5. This ensures that
all lune angles are less than 45�.

For example, if two fold dots differ by 150�, three
equator dots are added. The first is marked at the mid-
point 75� from each of the fold dots and then one equa-
tor dot is marked between the new midpoint equator
dot and each of the two original fold dots. In practice,
the location of the midpoint equator dots can be found
using a tape measure. First the location of each of the
two fold dots extended to the equator is found; one can
hold the tape measure taught from the north pole to the
equator, ensuring the line of measurement passes

through the fold dot. The tape measure can then be
wrapped around the ring, at the equator, between the
two equatorial extensions of the fold dots. As the tape
measure is marked with distance, the midpoints are
found by recursively dividing the length in two. This
is continued until the distances between neighboring
points is less than 20mm, corresponding to an angle
of 45� on a hemisphere of diameter 50.8mm. If a spe-
cimen conforms completely, then eight equator dots are
made in perfect symmetry about the marked axis of
orientation.

The equator dot system also provides the experi-
menter with full discretion as to whether very small
folds near the equator should be marked. A good rule
of thumb seems to be to ignore folds whose caliper
distances from the equator do not exceed 4mm,
roughly 4.5� from the equator. Note the caliper dis-
tances between the north pole and the equator dots
are never measured as the equator dots by definition
always lie along the equator. The spherical distance is
thus equal to one quarter the length of the equator
itself, 50:8=4mm, since the testing hemisphere in this
implementation has a diameter of 50.8mm. The speci-
men is then removed from the hemisphere and placed
on the testing surface. The angle between the axis of
orientation and the first circled fold or equator dot is
measured followed by the angles between each consecu-
tive pair of dots. Measuring 180� at a time, instead of

Figure 3. (a) The Sphereprint test setup in this implementation. The ring is lowered, coercing the specimen to conform to the

hemisphere, until the block prevents further movement. The block assures that the top edge of the ring is in line with the equator. The

center of the specimen is aligned with the north pole. (b) The hose clamp used as the ring.
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Figure 5. (a) Step 7: a lune of conformance of angle much greater than 90�. The fold dots are shown along with visual guides for

construction lines to locate the midpoint equator dot #1 and the two recursively placed additional equator dots #2 and #3. All lune

angles are now less than 45�. (b) Steps 8–10: the specimen after it has been removed from the hemisphere and flattened. Planar angle

differences and planar distances from the center to each fold or equator dot can now be measured. Observe that the visual guides do

not bisect the post-conformed planar angles perfectly after unfolding.

Figure 4. A satin weave specimen on the hemisphere during testing just after the ring has been aligned to the equator (Steps 1–4).

(a) Step 5: the fold dots have been marked at the apex where the fold begins to lift off from the hemisphere. The first dot to be marked

is circled to ensure the same sequence is followed during planar angle and length measurements. (b) Step 6: summary of how to

calculate the spherical arc length along the specimen, cNF, from the north pole, N, to a fold dot, F, using the measured linear caliper

distance, NF.
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the angles between dots, may prevent angle error from
accumulating; however it was observed that the post-
conformed specimens may not lie flat on the table to
allow for the entire 180� measurement to be made. The
last angle measured is between the final dot and the 0�

direction of the axis of orientation. For each fold or
equator dot the post-conformed planar length to the
center of the specimen is also measured, ensuring that
the material lies flat against the testing surface along the
line of measurement.

Analysis

The exact spherical lengths were calculated from the
measured caliper distances using the equation shown
in Figure 4. In practice, the sum of the measured
angle differences does not add up to 360�. The error
is distributed evenly amongst the angle measurements.
The angle sum is subtracted from 360� and then divided
by the number of measured angles and the result added
to each of the measured angles. For example, if there
were ten measured angles adding up to 358�, two
degrees short of the full 360�, then two tenths of a
degree is added to each angle. Hereafter the dot
angles referred to are accumulated measured angles
adjusted by having the error uniformly distributed via
this process. For example the angle corresponding to
fold dot five is the sum of the first five angle differences
yielding the indicated angle, a, from the axis of orien-
tation. Each of these dot angles is paired with its

corresponding spherical length and post-conformed
linear length. The data points are linearly interpolated
in rectangular coordinates, wrapping from 360� to 0�,
as shown in Figure 6 yielding the two functions sph(a)
and pc(a), respectively. The Sphereprint is these two
functions plotted in polar coordinates inside of the
enclosing circle.

The interpolated spherical lengths can be plotted as
a function of dot angle in polar coordinates, as shown
by the solid curve in Figure 6. The area of this region is
an approximation to the conformed area of the hemi-
sphere. The Sphereprint ratio is the number obtained
by dividing the area of the conformed region by the
area of the enclosing circle:

Sphereprint ratio ¼
Area of the conformed region

Area of the enclosing circle
,

ð1Þ

where

Area of the enclosing circle ¼ �r2: ð2Þ

Area of the conformed region ¼
�

180

Z 360

0

1

2
sphð�Þ2 d�:

ð3Þ

These equations include the necessary constants for
angles to be measured in degrees. The quantity r is

Figure 6. (a) The spherical and post-conformed linear distances as a function of dot angle, a, for each of the dotted locations along

with their linear interpolations. The solid sph(a) and the dashed pc(a) are plotted in rectangular coordinates. The coefficient of

expansion (CoE) measures the deformation required to move the dashed curve to the solid curve. (b) An example Sphereprint,

showing the enclosing circle together with the sph(a) and pc(a) curves now plotted in polar coordinates. The Sphereprint ratio is the

ratio of the area enclosed by the solid curve to that of the enclosing circle. In this example, the Sphereprint ratio is 0.685 with a CoE of

0.083. To first approximation this means that the specimen conformed to 68.5% of the hemisphere while extending an average of 8.3%

in every direction.
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the hemispherical distance from the north pole to the
equator and equals one fourth the length of the equator
itself (here r ¼ 50:8=4mm). The sph(a) and pc(a) have
units of length (mm).

The area of the enclosing circle represents perfect
hemispherical conformability. It is the value calculated
from following the test procedure on a specimen that
conforms perfectly to the hemisphere with no folds at
all. In this situation all dots are equator dots, so the
solid curve will coincide with the enclosing circle. Note
that the area of the enclosing circle is not the surface
area of the hemisphere, but rather the area of the hemi-
sphere under the azimuthal equidistant projection from
the north pole.

The Sphereprint ratio is near zero when many fold
dots are close to the north pole, representing poor con-
formance, and is equal to one precisely when there are
no fold dots at all, representing perfect conformance.
Recall, however, that the dot angles are not spherical
lune angles, but rather the planar post-conformed
angles after the specimen has been removed from the
hemisphere and flattened. The lune angle between large
folds may be small, but when unfolded back into the
plane the difference in dot angle may be large. While
only an approximation these planar angles can be
simply and reliably measured. They were also chosen
because they satisfy the property that when large
swaths of material are used to create a fold, the
unfolded planar angle increases, resulting in a decrease
in the Sphereprint ratio.

The Sphereprint ratio describes approximately how
much of the hemisphere is covered by the specimen
without folding. There is another quantity that can be
calculated from the test data, the coefficient of expan-
sion (CoE). The CoE is an estimate of the average
strain, or extension, in every direction during deform-
ation. Its definition is inspired by true strain, which is a
signed quantity, with positive values representing
expansion and negative values representing contrac-
tion. The CoE ideally might be the average of the
true strain measured in every direction. Instead, the
CoE is built upon an approximation of the true strain
using the test measurements of post-conformed length
and spherical length, interpolated for every direction.
This takes the hysteresis of the individual specimens
into consideration. The equation for CoE is given by

Coefficient of Expansion ¼
�

180

Z 360

0

log
sphð�Þ

pcð�Þ
d�:

ð4Þ

The summary diagram for the Sphereprint test is the
Sphereprint. It is a polar plot of sph(a) and pc(a) inside
of the enclosing circle, with the marked axis of orien-
tation. An example is shown in Figure 6. Both the

Sphereprint ratio and the coefficient of expansion are
intentionally defined in terms of ratios so that they are
independent of scale. With a bit of effort all test data,
up to scaling, can be recovered from any of these
diagrams. The cusps in the Sphereprint correspond to
fold dots.

Sphereprint test results

As a demonstration of the Sphereprint method, two
experiments were performed with the present imple-
mentation described in the previous section. The mater-
ial characterization experiment tests the ability of the
Sphereprint to characterize the conformance of a set of
example flexible materials: a range of fibrous assem-
blies. The reproducibility experiment tests that the pro-
cedure and analytical techniques are both reproducible
and robust.

Material characterization

Eight fibrous assemblies of varying constructions,
summarized in Table 1, were tested. For each
sample, five circular specimens of diameter 110mm
were cut. The center of each specimen was marked,
as was the axis of orientation, here corresponding to
the warp, machine or wale direction, for wovens, non-
wovens and knits, respectively. To remove wrinkles
and creases, specimens were pressed (2 kg) for at
least four hours prior to testing. The Sphereprint
test outlined in the previous section was performed
on each of the forty specimens, face-up so that the
back-face was in contact with the surface of the hemi-
sphere. All angles were measured using a protractor.
The post-conformed planar lengths were measured
using a caliper. The Sphereprints are shown in
Figure 7. The Sphereprint ratios and CoEs are plotted
in Figure 8. The coefficient of variation of the
Sphereprint ratio for each sample is also shown. The
coefficient of variation is not shown for the CoE as it
is a signed interval quantity, instead of a ratio. The
coefficient of variation can only be used on ratios.

Reproducibility

To evaluate the reproducibility and assess inherent
variations in both the test method and within a mater-
ial, further testing was performed. Twenty specimens
each of plain weave and satin weave were tested, once
again face-up so that the back-face was in contact
with the surface of the hemisphere, using the
Sphereprint test implementation given in the previous
section. The data are shown in Figure 9. The coeffi-
cient of variation of the Sphereprint ratio for each
sample is also shown.

800 Textile Research Journal 84(8)



Figure 7. Sphereprints of eight sample fibrous assemblies, five specimens per sample. The axis of orientation is shown as a faint

horizontal line. The columns are sorted in increasing order of mean Sphereprint ratio from the characterization experiment, visually

evident by the increasing size of the white area in the Sphereprints going from left to right. A dashed line substantially distinguishable

from its solid counterpart corresponds to a direction of strain, the average of which is given by the CoE. A cusp in a Sphereprint

corresponds to the location of a fold dot. By counting cusps one can get a sense of how many folds occurred during the test.

Table 1. Specification of fibrous assemblies utilized for experimental evaluation. Mean values and standard deviations are given for

sample weight (area density), sample thickness (under 100 g of weight) and thread count based on five specimens per sample

Name Weight g m�2 Thickness mm Fiber/yarn type Thread count warp/weft per cm

Paper towel 38� 2 0.31� 0.04 viscose N/A

N/A

Hydroentangled (Hydro) nonwoven 73� 1 0.40� 0.01 viscose N/A

N/A

Twill weave 170� 1 0.42� 0.03 cotton 42� 1/34� 1

single ply 2� 1 weave

Plain weave 143� 1 0.43� 0.03 cotton 24� 1/21� 1

single ply 1� 1 weave

Plain gauze 48� 1 0.22� 0.03 cotton 30� 1/19� 1

single ply 1� 1 weave

Satin weave 236� 1 0.67� 0.03 cotton 53� 2/18� 1

single ply 4� 1 weave

Bark weave 202� 2 0.91� 0.07 cotton 30� 1/15� 1

single ply bark weave

Single knit jersey 164� 2 0.98� 0.03 cotton 13� 1/11� 1

single ply course/wale per cm
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Discussion

Results

The Sphereprint test data from the material character-
ization experiment are summarized in Figure 8.

While the sample sizes for the characterization experi-
ment are not large enough to perform two-dimensional
statistical tests, the graphical presentation of the data
strongly suggests that the Sphereprint ratio and CoE
quantities are able to distinguish between the different

Figure 9. Sphereprint test data collected for a reproducibility test with twenty plain weave specimens and twenty satin weave

specimens. The coefficient of variation of the Sphereprint ratio is shown in parentheses next to each sample in the legend. Data

distributions from the test are indistinguishable from binormal distributions. The data are visually distinct and establish a statistical

difference between both the Sphereprint ratios and the coefficients of expansion for the plain weave and satin weave.

Figure 8. Sphereprint test data collected for the eight sample fibrous assemblies, five specimens per sample. The coefficient

of variation of the Sphereprint ratio is shown in parentheses next to each sample in the legend.
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fibrous assemblies. The Sphereprint ratio axis alone
suggests a natural ordering consistent with an intuitive
notion of conformability of the fabrics. Satin weave is
less conformable than single knit jersey but more con-
formable than plain weave which is itself more con-
formable than paper towel. The Sphereprints shown
in Figure 7 therefore provide visual feedback to the
engineer as to whether or not a material is hemispher-
ically conformable. The Sphereprints and Sphereprint
ratio also capture the visual qualitative differences
among the materials observed during testing, as
shown in Figure 10. The Sphereprint ratio quantifies
how well these fabrics conform, while the CoE quanti-
fies differences in how the fabrics achieve conformance
during the test. For example, while the bark weave and
single knit jersey look similar on the hemisphere during
testing, the amount of excess material below the clamp
is different. This is reflected quantitatively by the two
having similar Sphereprint ratios, but different CoEs.
The CoE data quantify that the single knit jersey
extends more in all directions during deformation
than the bark weave does, so the amount of excess
material below the clamp is understandably different
between them. This result also matches the intuition
that knits are in general more extensible than wovens,
particularly when averaged over all directions. The
characterization data also suggest the anticipated posi-
tive correlation between Sphereprint ratio and CoE.
However, it appeared that the bark weave and gauze
materials may be outliers in this correlation as they
exhibit higher Sphereprint ratios than expected from
their CoEs. Such nuances of the Sphereprint test results
deserve further study.

Results of the reproducibility experiment are sum-
marized in Figure 9. The Sphereprint ratio and CoE
values clearly distinguish the plain weave and satin
weave from one another, as there is no overlap in the
scatter of data points. Both the plain weave and satin
weave data are indistinguishable from binormal distri-
butions according to Anderson–Darling tests, which
are summarized in Table 2. A Hotelling T-squared
test suggests that the plain weave and satin weave
bivariate data have different means with a p-value of
0.000014.

A visual comparison between the results of the
reproducibility experiment with their counterparts
from the characterization experiment suggests some dif-
ferences. It appears that the plain weave and satin
weave fabrics had larger Sphereprint ratios in the
reproducibility experiment, despite conforming to the
specifications indicated in Table 1. The coefficient of
variation in the Sphereprint ratios were similar between
the two data sets suggesting the differences were not
due to experimental error, but rather to another experi-
mental variable. As both samples were cellulosic, it is
believed that this is attributable to a difference in the
moisture content of the second set of samples, resulting
from a change in the relative humidity of the test
laboratory between the first and second set of
measurements.

Comparison to forced conformability

Based on the available details of the previously pub-
lished test for forced conformability,18 the method
and results for a few fabrics are briefly described,

Figure 10. Qualitative examples of different materials on the Sphereprint testing device. Shown from left to right are hydro

nonwoven, satin weave, bark weave, and single knit jersey.

Table 2. The best fit binormal distributions for the plain weave and satin weave reproducibility data. Values are shown in the format

(Sphereprint ratio, CoE)

Binormal distributions Means Standard deviations Correlation Anderson–Darling test p-value

Plain weave (0.561, 0.032) (0.051, 0.016) �0.452 0.957

Satin weave (0.700, 0.063) (0.043, 0.017) �0.066 0.996
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for purposes of comparison to the Sphereprint test. The
forced conformability test uses radial loading around
the edge of a 203.2mm diameter circular specimen, on a
76.2mm diameter sphere. For each applied load, the
distance to the first fold is measured. The first fold is
defined as that closest to the north pole. The experi-
ment continues until an increase in load does not pro-
duce a change in the distance to the first fold. A circle is
drawn on the sphere at the colatitude of the first fold.
The area of the spherical cap enclosed by the circle is
defined as the the forced conformability.18 The
Sphereprint test implementation described here uses
110mm diameter circular specimens on a 50.8mm
diameter hemisphere. It also uses radial loading, but
the load is applied by lowering a hose clamp to the
equator, instead of along the edge of the specimen.
The data collected for a Sphereprint contains the dis-
tance to the first fold as defined for forced conformabil-
ity: it is the minimum value of the spherical lengths of
the fold dots marked in a test. Therefore, forced con-
formability values for the Sphereprint characterization
experiment can be computed. In order to compare these
values with the previously published data by Shealy,18

the firstfold ratio is introduced. This is simply the
forced conformability value, i.e. the surface area of
the spherical cap defined by the colatitude of the first
fold, divided by the surface area of the hemisphere used
during testing. The firstfold ratio is dimensionless and
scale independent and it is given by

Firstfold ratio ¼
Area of spherical cap at colatitude ��

Area of testing hemisphere

¼ 1� cosð��Þ: ð5Þ

Table 3 lists the materials from the paper by Shealy,18

and the Sphereprint characterization experiment with
the values sorted by firstfold ratio.

The Sphereprint ratio and firstfold ratio are both
quantifications of hemispherical conformability. Both
quantities suggest they are able to distinguish materials
from each other. Table 3 compares how the Sphereprint
ratio and firstfold ratio order the hemispherical con-
formability of the materials. The ordering is largely
similar, however, plain gauze and single knit jersey
are highlighted as they both are placed differently in
the firstfold ratio than the Sphereprint ratio. The
Sphereprint ratio and firstfold ratio penalize noncon-
formance differently. The firstfold ratio strongly penal-
izes nonconformance when any fold is close to the
north pole, even if there are very few folds overall. In
contrast, when there are only a few large folds, the
Sphereprint ratio remains large. Consider plain gauze,
whose Sphereprints shown in Figure 7 reveal that it
often conforms with a few very large folds. This mode
of conformance gives plain gauze a low firstfold ratio

but a relatively high Sphereprint ratio. Similarly, single
knit jersey is penalized by the existence of any fold at all
and is therefore ordered below bark weave in the first-
fold ratio ordering. Common understanding would
suggest that knit jersey is very conformable and gauze
has been used for many years in applications such as
bandaging and in areas of wound care, where conform-
ance to doubly curved regions of the body is required.
The Sphereprint ratio quantifies hemispherical con-
formability in a manner more consistent with this
common usage, because it takes the length of folds,
number of folds and their distribution around the hemi-
sphere into consideration. The single measurement used
in computing the firstfold ratio cannot recognize mul-
tiple modes of conformance.

Forced conformability provides an insight into
hemispherical conformability. The dimensionless quan-
tity introduced here, the firstfold ratio, is available from

Table 3. Comparison between the data collected for the

Sphereprint characterization experiment and the data for forced

conformability,18 sorted by firstfold ratio. The data show that

despite differences in testing methods the forced conformability

test and Sphereprint test produce similar firstfold ratios. The

Sphereprint ratio is also shown and orders the materials similarly

with the two highlighted exceptions, plain gauze and single knit

jersey. Plain gauze conforms with a few large folds which causes

the firstfold ratio to be small, while its Sphereprint ratio remains

large. Single knit jersey is penalized by folds in its firstfold ratio

despite having very large lunes of conformance, and thus a large

Sphereprint ratio

Fabric type

Mean

firstfold

ratio

Mean

Sphereprint

ratio

High range woven* 0.495

Bark weave 0.480 0.804

High-mid range woven* 0.433

Single knit jersey 0.424 0.849

Mid range woven* 0.318

High range spunbond* 0.269

Satin weave 0.235 0.629

Plain weave 0.129 0.410

Fiber crimp B spunbond or

low range woven*

0.110

Twill weave 0.105 0.407

Plain gauze 0.061 0.518

Hydro nonwoven 0.060 0.360

Fiber crimp A spunbond or

starched woven*

0.057

Paper towel 0.054 0.273

Straight fiber spunbond* 0.015

*Fabrics from Shealy.18
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the data collected in the Sphereprint test and may be
useful in its own right for some applications. In par-
ticular, it is related to the quantities important for
composite forming applications as described by
Rozant et al.26

Sphereprint test implementation

The Sphereprint test in its current implementation is
relatively quick to perform. Once the specimens have
been cut out and flattened, performing the test and col-
lecting the experimental data takes two to four minutes
per specimen. The time discrepancy arises from the
number of fold dots that need to be marked and mea-
sured both on the hemisphere and in the post-
conformed state. For example, collecting data for the
bark weave or knit jersey specimens required about two
minutes per specimen, while the paper towel and hydro-
entangled nonwoven specimens required about four
minutes each. Thus, performing the test on twenty spe-
cimens of a flexible material with an average number of
fold dots will take about one hour. Note that if the
testing device is to be shared, only the hemispherical
data must be recorded at the time of testing. The
post-conformed data may be collected at a later date.
This should reduce testing time by more than half, since
both the post-conformed angles and post-conformed
lengths are required for analysis.

This Sphereprint test implementation does not
include a method for measuring the force of the
radial load, which may be considered a limitation.
Measuring force throughout the experiment is desirable
to understand the behavior of a material during
deformation and to better analyze how conformance
occurs. Many quantities measured in the test depend
on the relationship between stress and strain, between
force and extension. While it is shown that the
Sphereprint test produces quantifiably similar results
to the forced conformability test,18 the forced conform-
ability test provided a mechanism to measure the load
around the edge of the specimen.

There are three difficulties in producing an improved
test implementation that measures the radial force.
Firstly, the mechanism must be able to apply a sym-
metric radial load, while also applying an appropriate
amount of force at the north pole to prevent slippage of
the specimen. Secondly, the ring which is lowered from
the north pole to the equator must ideally be able to
change in diameter while applying a consistent, known
tension to the specimen during movement. The imple-
mentation must use a ring of increasing diameter to
allow radial forces to be resolved during lowering,
thereby preventing fold artifacts. It was observed that
small perturbations applied to the ring, as its diameter
was increased while lowering, would result in a decrease

in the number of folds. For example, in a few instances
outside of the experiments presented here, the single
knit jersey, bark weave and even the plain gauze were
able to conform with no folds at all. Thirdly, the con-
formed hemisphere must be exposed so that the experi-
menter can measure the spherical distances. This
precludes using a diaphragm or lining.

The Sphereprint test implementation described here
fixes the cylinder with a hemispherical cap and then
lowers a diameter-changing hose clamp over the spe-
cimen. Currently, the problem is that the ring is dif-
ficult to adjust while applying a known amount of
force. In addition, as the ring in this implementation
is a hose clamp, it does not apply a perfectly sym-
metrical radial load because the screw holding the
circular region together breaks the symmetry. An
elastomeric O-ring might be an alternative to the
hose clamp. If the O-ring were of known elastic
modulus, then a known amount of force would be
required to change its diameter. There remains the
difficulty of applying a load to the O-ring. Since
motion is relative, the roles of moving and stationary
pieces of the apparatus could be reversed. One could
imagine an implementation in which a table had a
hole which was able to change diameter, similarly
to the aperture of a camera. With such an apparatus,
a specimen could be placed on the table covering the
aperture. A hemispherical prod would then lower by
means of a simple tensile tester and the aperture
would change diameter while applying tension to
the specimen. Forces exerted on the specimen could
be calculated from the speed of the prod and the
mechanical structure of the aperture.

The technique to mark points and measure dis-
tances and angles both on the sphere and in the
plane could be improved to reduce potential experi-
mental error. Unfortunately, it is difficult to use image
analysis in this context, because during deformation
the specimen may raise a fold which hides other
folds from view. Also note that an image taken from
a reasonable distance above the north pole cannot
show the data points close to the equator. In practice
this effectively amounts to ignoring small folds close
to the equator, as is done in the current implementa-
tion. Where folds do not hide one another, an image
would work well, since spherical distances could be
recovered from the known projection of the visible
portion of the hemisphere onto the viewing plane.
An imaging technique would also allow the spherical
lune angles to be calculated precisely, in addition to
the post-conformed planar angles. In particular, with
exact lune angles, specifying which regions are lunes of
conformance would be easier. These approaches
would reduce variation in the Sphereprints and the
resulting Sphereprint ratios and CoEs.
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Conclusion

The goal was to introduce a technique for quantifying
and characterizing conformance of flexible materials to
sphere-like double curvature. The general Sphereprint
test method was introduced, together with a particular
implementation, to understand the hemispherical con-
formability of flexible materials. The Sphereprint ratio
is a measure of the region of the hemisphere to which
the material has conformed. While a particular material
may have many ways to cover the hemisphere, the
Sphereprint ratio provides a reproducible and robust
summary of total conformance. The remarkable repro-
ducibility of the Sphereprint ratio, despite the great
diversity in fold patterns within a single sample mater-
ial, is an interesting question for further investigation.

It has been demonstrated that the Sphereprint ratio
ranks known fibrous assemblies of varying fabric con-
struction according to conventional notions of con-
formability. From least to most conformable the
order was: paper towel, plain weave, satin weave, and
single knit jersey. A second quantity called the coeffi-
cient of expansion has been introduced to understand
how the flexible material behaves during conformance
in relation to its post-conformed state. The coefficient
of expansion can be thought of as a generalization of
the Poisson’s ratio of a material to the case of radial
loading and is also reproducible and robust. It is a
signed quantity, contraction cancels expansion, and
the net value approximates the average extension in
every direction.

The Sphereprint ratio together with the coefficient of
expansion provide a quantitative method to distinguish
the conformance behavior of flexible assemblies. The
Sphereprint itself is a visual summary of the test that
contains all of the experimental data in one picture.
Just as a footprint characterizes how soft clay conforms
to a foot, the Sphereprint characterizes how a flexible
material conforms to a sphere.
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