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Topology determines force distributions in one-dimensional random spring networks
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Networks of elastic fibers are ubiquitous in biological systems and often provide mechanical stability to cells and
tissues. Fiber-reinforced materials are also common in technology. An important characteristic of such materials is
their resistance to failure under load. Rupture occurs when fibers break under excessive force and when that failure
propagates. Therefore, it is crucial to understand force distributions. Force distributions within such networks are
typically highly inhomogeneous and are not well understood. Here we construct a simple one-dimensional model
system with periodic boundary conditions by randomly placing linear springs on a circle. We consider ensembles
of such networks that consist of N nodes and have an average degree of connectivity z but vary in topology.
Using a graph-theoretical approach that accounts for the full topology of each network in the ensemble, we show
that, surprisingly, the force distributions can be fully characterized in terms of the parameters (N,z). Despite the
universal properties of such (N,z) ensembles, our analysis further reveals that a classical mean-field approach
fails to capture force distributions correctly. We demonstrate that network topology is a crucial determinant of
force distributions in elastic spring networks.
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I. INTRODUCTION

Networks—and their topologies—have been studied in
a broad range of disciplines, leading to terms like social,
economic, biological, or chemical networks, and, of course,
mechanical networks [1]. Here we focus on the latter and
expand the theoretical and numerical analysis introduced in a
companion short paper [2]. Networks of filamentous proteins,
polysaccharides, or nucleic acids, essentially all semiflexible
filaments, play important roles for the mechanics and stability
of biological cells and tissues [3,4]. An important design
feature of biological materials is the response to large loads, in-
cluding failure, rupture, damage limitation, and their recovery
properties. To understand failure that starts with the rupture of
single filaments when the local force exceeds a threshold, it is
crucial to understand force distributions in filament networks.
It turns out that topology plays a critical role for the distribution
of forces in elastic (e.g., polymer) networks, but this topic has
received little attention to date.

Thus far, the quantitative analysis of force distributions
in random polymer networks has largely relied on computa-
tional modeling [5,6]. Analytical descriptions of filamentous
networks have primarily used mean-field approaches [6–11],
which rely on the assumption that global mechanical properties
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can be inferred without the consideration of the network’s
topological structure. In this study we show, both analytically
and numerically, that this assumption has severe limitations.

We show that full network topology is essential for accu-
rately capturing force distributions in filamentous networks.
Indeed, force propagation through networks under loading
occurs along “nontrivial loops,” i.e., paths that connect one
boundary of the system to another. Network failure is expected
to arise from rupture of bonds here because extremal forces
occur in these loops. The presence of topological effects is
independent of the choice of boundary conditions or system
dimension. We therefore illustrate these effects in a one-
dimensional model with periodic boundary conditions.

Our model system considers ensembles of linear random
spring networks on a circle (see Fig. 1). To model a generically
forced system, we employ a generation procedure that results
in initial configurations that are not in mechanical equilibrium.
This is meant to produce a situation equivalent to, say, a
cytoskeletal protein network in which molecular motors are
turned on that contract the network locally as force dipoles. We
then study the resulting force distributions in the relaxed sys-
tems using a combination of probabilistic and graph-theoretical
techniques.

We show that characteristic quantities, such as mean and
variance of force distributions, can be derived explicitly in
terms of only two parameters: (1) average connectivity and
(2) number of nodes. Our analysis shows that a classical mean-
field approach fails to capture these characteristic quantities
correctly; the error is particularly pronounced for the biologi-
cally most relevant regime of low degrees of connectivity.

We generate initial network configurations as follows
(Fig. 1): (i) PlaceN node positions (indexed from 1 toN ) drawn
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FIG. 1. (a) An example network on the circle, with N = 5 and
z = 2.4. (b) Graph representation of the network in (a). The spring
orientations are depicted by black arrows. The network contains two
fundamental cycles, for example, {l1,l2,l3,l4} and {l4,l5,l6}. After
choosing arbitrary orientations for both cycles (gray arrows), we
construct linear constraints that fix their winding numbers [Eq. (1)]—
here: l1 + l2 + l3 − l4 = −1 (winds around circle once) and l4 + l5 +
l6 = 0 (contractible). (c) The abstract cycle graph (z = 2) with N = 5
(left) and three realizations on the circle with distinct topologies (same
graphs but different winding numbers g). Top and bottom row show
initial and corresponding relaxed configurations, respectively. Note
that, for visualization purposes, overlapping springs are drawn with a
slight offset.

from a uniform distribution on the circle. (ii) Connect these
nodes in the order given by their indices into one connected
cycle via springs. We always connect consecutive nodes via the
shorter of the two possible distances. Note that the cycle may
wrap around the circle zero, one, or multiple times [Fig. 1(c)].
This step guarantees that each network will always have
only one connected component and prevents dangling ends.
(iii) Connect further node pairs randomly, such that each
node pair is connected by at most one spring, until the
network contains Nz/2 springs, where the average degree of
connectivity z is chosen such that Nz/2 is an integer.

Each spring is linear, has rest length zero, and unit spring
constant. Its length is measured along and in units of the
circumference of the circle. To encode this construction in an
unambiguous manner we work with signed spring lengths as
degrees of freedom. The orientation of a spring is chosen such
that it goes from a node of lower index to a node of higher index.
This is an arbitrary choice, but defined orientations are essential
in our formalism. The sign of the spring length is chosen to be
positive if its orientation on the circle points counter-clockwise
and negative otherwise.

The network can be encoded within a graph representation,
where the springs together with their orientations are the

directed edges of the graph, with signed lengths as edge
weights [Fig. 1(b)]. In the sequel we use “spring lengths”
and “edge weights” synonymously. To lie on the circle, the
graph and edge weights must be compatible in the sense
that the sum of the edge weights around each cycle of the
graph is equal to an integer, which we refer to as its winding
number g. Our network generation procedure guarantees this
compatibility. It results in a random directed Hamiltonian
graph, i.e., a graph that contains a cycle that visits each node
exactly once, with N nodes and average degree z. This graph
comes equipped with compatible initial spring lengths {l̄i}Nz/2

i=1
that are each uniformly distributed as U (−0.5,0.5), but, since
they are coupled by integer winding numbers, not mutually
independent [12] as random variables.

We seek to characterize the length (i.e., force) distributions
of springs in networks after they have relaxed to mechanical
equilibrium. Relaxation preserves network topology, i.e., it
preserves its graph together with a set of winding numbers,
that arise from the generation process. Note that networks
sharing the same graph may have different sets of winding
numbers, and therefore distinct relaxed states [Fig. 1(c)]. A
particular realization of an initial network uniquely determines
network topology and results in a known linear solution
operator for the respective mechanical equilibrium. However,
a network ensemble, with a given connectivity and number
of nodes includes many topologies. This leads to a random
solution operator, which makes it more difficult to determine
the ensemble-averaged distribution of relaxed lengths. Moti-
vated by experiments, where explicit information on particular
realizations is hard to obtain, we study ensembles with a
fixed number of nodes N and average degree z, henceforth
called (N,z) ensembles. Surprisingly, such ensembles have
well defined force distributions despite varying topologies.
Explicitly accounting for these unknown underlying topologies
makes our approach different from a mean-field description.

II. ANALYTICAL THEORY

Formally, as already described in Ref. [2], our model can
be described as the following optimization problem:

minimize 1
2 lT l subject to Cl = g = Cl̄, (1)

where l ∈ RNz/2 is the vector of all spring lengths and g ∈ Zm

is the vector of winding numbers, which is determined by the
vector of initial spring lengths l̄ and the signed cycle matrix
C ∈ Zm×Nz/2, described below.

The first part in Eq. (1) minimizes the total elastic energy
of the system, whereas the second part preserves the topology
of the network by fixing the winding numbers of a set of m =
N (z/2 − 1) + 1 fundamental cycles. A fundamental cycle is
defined as a cycle that occurs when adding a single edge
to a spanning tree of the graph. There are N − 1 edges in
the spanning tree, so Nz/2 − (N − 1) edges can be added.
Therefore, there are N (z/2 − 1) + 1 fundamental cycles. Note
that the choice of fundamental cycles corresponds to the choice
of a basis and is therefore not unique. The solution to Eq. (1),
however, is independent of this choice (Appendix A).

After choosing a cycle basis, the C-matrix is constructed
by specifying an orientation for each fundamental cycle and
then setting Cji equal to: 1 if spring i is part of the j th
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fundamental cycle and their orientations agree, or −1 if their
orientations are opposite, and 0 otherwise. For the example in
Fig. 1(a), the cycle matrix and vector of winding numbers are
given by C1 = (1,1,1,−1,0,0), C2 = (0,0,0,1,1,1), and g =
(−1,0)T , respectively. Note that winding numbers correspond
to the signed number of times a cycle wraps around the
circle. Contractible cycles have winding number zero. If all
cycles were contractible, then Eq. (1) would have a trivial
solution with all springs collapsed to a single point. It is only
the presence of nontrivial cycle constraints that prevents this
outcome.

It is noteworthy to point out that the problem presented
above is equivalent to the classical problem of determining
the currents (here l) in an electrical network. Force balance (or
minimizing the energy lT l) is equivalent to Kirchhoff’s current
law (signed currents add up to zero at a node) and—assuming
unit resistances—the cycle constraints (Cl = g) correspond to
Kirchhoff’s voltage law (voltages in a closed loop sum up to
zero), where the winding numbersgj represent voltage sources.

Equation (1) defines a quadratic programming problem with
a unique analytic solution:

l∗ = CT (CCT )−1 Cl̄︸︷︷︸
=g

=: Pl̄, (2)

which can be explicitly computed for each realization via, e.g.,
the optimization library IPOPT [13].

To express the resulting force distributions of an (N,z)
ensemble we consider the expected histogram of the vector
l∗ of random variables. This results in a univariate probability
density for the final spring lengths. For a particular realization,
the corresponding cumulative histogram Hl∗ is given via

Hl∗ (�∗) := 2

Nz

Nz/2∑
i=1

1l∗i ��∗ , (3)

where 1A is the indicator function (one if A is true, zero
otherwise). The quantity Hl∗ (�∗) measures the number of
elements in l∗ with values less than or equal to �∗. We are
interested in a univariate cumulative distribution function (cdf)
Fl∗ , which we define as the expected value of the cumulative
histogram of an (N,z) ensemble:

Fl∗ (�∗) := E[Hl∗ (�∗)] = 2

Nz

Nz/2∑
i=1

E
[
1l∗i ��∗

]

= 2

Nz

Nz/2∑
i=1

P(l∗i � �∗) = 2

Nz

Nz/2∑
i=1

Fl∗i (�∗). (4)

The quantity Fl∗ (�∗) is the average over the marginal dis-
tribution functions of the individual l∗i . This result defines
the corresponding univariate probability density (expected
histogram), i.e.,

pl∗ (�∗) := d

d�∗ Fl∗ (�∗) = 2

Nz

Nz/2∑
i=1

pl∗i (�∗). (5)

By decomposing the final length vector l∗ into initial lengths
l̄ and length changes �l , i.e., l∗ = l̄ + �l , we compute

pl∗i (�∗) = pl̄i+�li
(�∗) =

∫ +∞

−∞
pl̄i (�̄) p�li |l̄i=�̄(�∗ − �̄) d�̄,

and therefore with Eq. (5),

pl∗ (�∗) = 2

Nz

Nz/2∑
i=1

∫ +∞

−∞
pl̄i (�̄) p�li |l̄i=�̄(�∗ − �̄) d�̄. (6)

Remember that the initial spring lengths l̄i are identically
distributed, i.e., pl̄i = pl̄ . Equation (6) thus simplifies to

pl∗ (�∗) =
∫ +∞

−∞
pl̄(�̄) p�l|l̄=�̄ (�∗ − �̄) d�̄, (7)

with p�l|l̄=�̄ (��) := 2

Nz

Nz/2∑
i=1

p�li |l̄i=�̄ (��). (8)

Note that p�l|l̄=�̄, with the apparent dimensionality mismatch,
is a shorthand notation that does not mean that l̄i = �̄ for
all indices i, but instead corresponds to the average over all
possible events that l̄i = �̄ for some index i. In this sense, the
nth raw moment of the conditional probability density Eq. (8)
is defined as follows:

E[(�l|l̄ = �̄)n] := 2

Nz

Nz/2∑
i=1

∫ +∞

−∞
xn p�li |l̄i=�̄(x) dx. (9)

In the following we characterize the conditional probability
density given in Eq. (8) that completely determines the final
distribution of spring lengths given the initial distribution
[Eq. (7)]. Reconsidering Eq. (2), we write

�l = l∗ − l̄ = (P − I)l̄ =: Sl̄. (10)

Equation (10) relates �l to l̄ and a random matrix S, both of
which vary with the topology of each realization. It is there-
fore challenging to obtain p�l|l̄=�̄ explicitly, especially since
the individual l̄i are not mutually independent. Instead, we
consider the first two moments of the probability distribution,
E(�l|l̄ = �̄) and Var(�l|l̄ = �̄), and investigate under which
conditions �l|l̄=�̄ is approximately normally distributed.

In the following we will work with conditional random
variables, so we now highlight two important aspects of our
generation procedure that will be used extensively. The first
is that each graph cycle, and therefore constraint, contains at
least three edges, implying that the edge lengths are pairwise
independent as random variables. The second aspect is that we
can fix the abstract graph structure in our generation procedure,
leading to (N,z) ensembles with varying winding numbers,
but with a constant S matrix (e.g., Fig. 1). These fixed-
graph-ensembles still contain identically, uniformly distributed
random variables l̄j ∼ U (−0.5,0.5).

A. Conditional mean

In this section we compute E(�l|l̄ = �̄) for (N,z) ensem-
bles. We first derive the conditional mean for a fixed-graph
ensemble, i.e., E[(�l|l̄ = �̄)|S], and then generalize the result
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to (N,z) ensembles. Equations (10) and (9) lead to

E[(�l|l̄ = �̄)|S] = 2

Nz

Nz/2∑
i=1

E[(�li |l̄i = �̄)|S]

= 2

Nz

Nz/2∑
i=1

⎛
⎜⎝Sii �̄ +

Nz/2∑
j=1, j �=i

Sij E[l̄j |l̄i = �̄]︸ ︷︷ ︸
=E[l̄j ]=0

⎞
⎟⎠

= 2 �̄

Nz
tr S, (11)

where we used the fact that fixed-graph ensembles have
uniformly distributed edge random variables that are pair-
wise independent. We further make use of our knowl-
edge about the graph’s cycle matrix C to determine tr S.
First note that by definition tr S = tr P − Nz/2 [Eq. (10)].
The projector property of P (i.e., P2 = P) leads to
tr P = dim(Im P) = Nz/2 − dim(ker P), because P has eigen-
values 0 and 1 only. Furthermore, ker P = ker C, by definition
[Eq. (2)], and hence tr S = − dim(ker C). Recall that C con-
tains N (z/2 − 1) + 1 linearly independent rows corresponding
to a set of fundamental cycles of the graph, i.e., C has full rank
and so dim(ker C) = Nz/2 − (N (z/2 − 1) + 1) = N − 1. It
follows that

tr S = 1 − N (12)

is an invariant of the (N,z) ensemble as it surprisingly only
depends on the number of nodes in the graph. Making use
of this invariance together with the general property of the
expected value, E(X) = EY [E(X|Y )], we combine Eqs. (11)
and (12) to obtain

E(�l|l̄ = �̄) = ES[E[(�l|l̄ = �̄)|S]]

= −2 �̄

z

(
1 − 1

N

)
. (13)

B. Conditional variance

The conditional variance Var(�l|l̄ = �̄) remains challeng-
ing to express analytically for arbitrary z andN . To compute the
conditional mean, we used the essential fact that expectation
is always additive regardless of the dependencies between
the random variables. This is not true for variances. The
variance is only additive if the terms are pairwise independent.
While the edge random variables are pairwise independent,
they are in general not conditionally pairwise independent
since the remaining two edge random variables of a triangle
(cycle with three edges) with one edge length fixed are coupled
by the fact that they sum to an integer winding number. For an
(N,z) ensemble, we do not know the abstract graphs, let alone
their triangle structures, making the general computation of the
conditional variance difficult.

For two extreme cases, namely the cycle graph (z = 2,
N > 3) and the complete graph (z = N − 1, each node con-
nected to every other node), there exists only a single possible
graph with a known triangle structure. Both are symmetric
(i.e., vertex- and edge-transitive [14]). In particular, edge-
transitivity (informally: edges are indistinguishable from each
other) allows us to reduce to a single entry in l∗, since

pl∗ = pl∗i . The single component l∗i is given by a weighted
sum of identically distributed, but dependent random variables
[Eq. (2)], which we analyze to derive Var(�l|l̄ = �̄) explicitly.

We first present the conditional variance derivation for these
extreme cases and then discuss the more general intermediate-
connectivity regime 2 < z < N − 1 that contains ensembles of
multiple graphs. The complexity in this regime is highlighted
by the intricacies involved in deriving the variance for a fixed
graph (e.g., the complete graph), which already requires a
special choice of basis to obtain a tractable expression for
(CCT )−1.

1. Cycle graph

For the cycle graph (z = 2), there is only one cycle that
contains all N edges. Therefore, the cycle matrix can be written
as C = (1,1, . . . ,1) ∈ RN . It follows that Eq. (2) simplifies to

l∗ = N−1CT Cl̄ = (g/N )I, (14)

where g = ∑N
j=1 l̄j is the winding number of the cycle and

I ∈ RN is the vector of ones. We derive the conditional vari-
ance Var(�l|l̄ = �̄) = N−1 ∑N

i=1 Var(�li |l̄i = �̄) for the cycle
graph. By edge-transitivity Var(�l|l̄ = �̄) = Var(�li |l̄i = �̄)
and by Eq. (14), �li = l∗i − l̄i = g/N − l̄i = ∑N

j=1 l̄j /N − l̄i .
For the cycle graph, if N > 3, the conditional edge random
variables are pairwise independent, so we compute

Var(�li |l̄i = �̄) = 1

N2

N∑
j=1, j �=i

Var(l̄j ) (15)

= N − 1

N2
Var(l̄), (16)

a constant that is independent of the initial spring length
�̄, showing that Var(�l|l̄ = �̄) = E l̄ [Var(�l|l̄)]. Conditional
pairwise independence only holds for N > 3 because, for
N = 3, if we condition on one length (l̄1 = �̄) the remaining
two lengths are dependent via l̄3 = g − �̄ − l̄2. Therefore, a
similar computation for the conditional variance of a general
ensemble does not hold, since each graph may contain triangles
with conditionally pairwise-dependent edges.

2. Complete graph

For the case of the complete graph (z = N − 1), the deriva-
tion of the conditional variance is significantly more involved.
To obtain manageable algebraic expressions, one needs to care-
fully choose the cycle basis (i.e., spanning tree). This choice
of basis leads to a tractable expression for (CCT )−1, which
can then be applied to reformulate the problem in terms of
conditionally independent winding number random variables.

We choose a spanning tree as shown in Fig. 2. For the
following derivation, we label the edges such that the first
N − 1 edges correspond to the edges of the spanning tree. The
other m = N (N − 1)/2 − (N − 1) edges are the ones that are
added to the spanning tree to construct the fundamental cycles
(here, all triangles). We order the cycles in C according to these
edges and decompose the cycle matrix into two parts:

C = ( A︸︷︷︸
N−1

| I︸︷︷︸
N(N−1)/2−(N−1)

), (17)

where I is the identity matrix.
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(a) (b)

FIG. 2. (a) The complete graph (z = N − 1) for N = 9 vertices,
here shown as undirected graph for clarity. (b) A spanning tree of a
directed version of the complete graph in (a). The chosen spanning
tree is based at the vertex at the center and, from there, reaches out to
all N − 1 other vertices. The edge orientations of the spanning tree
edges (black) are chosen such that they have opposite orientation with
respect to a connecting cycle (see, e.g., the cycle formed by the gray
edge).

Our first result is that for spanning tree edges l∗
st := {l∗i }N−1

i=1
we have that

l∗
st = N−1(CT C)st · l̄ = N−1(AT A AT ) · l̄, (18)

where (CT C)st corresponds to the first N − 1 rows of CT C.
The importance of this result is that the symmetries of the
complete graph allow it to extend to all edges. Indeed, each
vertex of the complete graph defines a spanning tree as shown in
Fig. 2; therefore, every edge can be seen as such a spanning tree
edge. Independence of the solution of the choice of the cycle
basis, and therefore spanning tree, implies that the following
derivations hold for all edges in the graph.

Since, by Eqs. (2) and (17),

(l∗)st = (AT (AAT + I)−1A AT (AAT + I)−1) · l̄,

proving Eq. (18) is equivalent to showing that

AT (AAT + I)−1 = N−1AT

⇔ [
(N − 1)I − AT A

]
AT = 0. (19)

We can construct AT A ∈ R(N−1)×(N−1) explicitly: The ij th
entry counts the number of cycles that are shared by the edges
i and j—with a contribution of 1 if the edges have the same
orientation with respect to the cycle, and −1 otherwise. As can
be seen in Fig. 2, two spanning tree edges only share one cycle
with opposite orientations, hence (AT A)ij = −1 for i �= j .
Each edge is itself part of N − 2 cycles, so (AT A)ij = N − 2
for i = j :

AT A =
{
N − 2, when i = j

−1, when i �= j
= (N − 1)I − J, (20)

where J ∈ R(N−1)×(N−1) is the matrix with ones everywhere.
Substitution into Eq. (19) yields

JAT = 0. (21)

Equation (21) holds true since each column of AT contains
two nonzero entries, 1 and −1, due to all fundamental cycles
(triangles) involving two spanning tree edges with opposite
orientations (Fig. 2).

We have therefore shown that for the spanning tree edges
of the complete graph, the following relation holds:

l∗
st = N−1(CT C)st · l̄ = N−1(CT g)st, (22)

where (CT g)st is the vector of the first N − 1 entries of
CT g, and g = Cl̄ is the vector of winding numbers [Eq. (1)].
Equation (22) allows us to change perspective to winding
number random variables. For a particular edge in the spanning
tree, we compute l∗st = 1

N

∑N−2
j=1 gj , and therefore, �lst =

1
N

∑N−2
j=1 gj − l̄st, since the edge is contained in exactly N − 2

fundamental cycles, which we have assumed correspond to
the first N − 2 entries in the g vector, and edge and cycle
orientations are aligned. For the conditional random variable
�lst|l̄st=�̄, it follows that

�lst|l̄st=�̄ = 1

N

N−2∑
j=1

gj |l̄st=�̄ − �̄. (23)

Observe that the gj |l̄st=�̄ are independent random variables
since their only potential dependence, their common edge, is
conditioned out. Each winding number gj |l̄st=�̄ corresponds to
a fundamental cycle that is a triangle (Fig. 2), i.e., involves
only three edges of which one is fixed. Therefore, we cannot
use conditional pairwise independence of edge lengths as in the
case of the cycle graph to compute the variance. Instead, we
derive the winding number distribution of a triangle explicitly.

The initial edge lengths are distributed as l̄j ∼ U (−0.5,0.5),
so the winding numbers can only attain three values {−1,0,1}.
In particular, gj |l̄st=�̄ = �̄ + l̄j1 + l̄j2 , where we choose positive
signs since the lengths are distributed symmetrically around
zero. We compute the probability of gj |l̄st=�̄ attaining the value
zero:

P (gj |l̄st=�̄ = 0) = P (l̄j2 ∈ [−�̄ − 0.5, − �̄ + 0.5])

=
∫ −�̄+0.5

−�̄−0.5
χ[−0.5,0.5](x) dx = 1 − |�̄|, (24)

where χ[−0.5,0.5](·) is the characteristic function on the interval
[−0.5,0.5]. The remaining probability is assigned to either
gj |l̄st=�̄ = 1 or gj |l̄st=�̄ = −1, depending on whether the given
�̄ is positive or negative:

P (gj |l̄st=�̄�0 = 1) = P (gj |l̄st=�̄�0 = −1) = |�̄|. (25)

Using Eq. (23), conditional independence of the gj |l̄st=�̄,
and their probability distribution, Eqs. (24) and (25), we have

Var(�lst|l̄st = �̄) = N − 2

N2
Var(gj |l̄st = �̄) (26)

= N − 2

N2
(|�̄| − �̄2). (27)

In contrast to the cycle graph [Eq. (16)], the conditional
variance Var(�l|l̄ = �̄) = Var(�lst|l̄st = �̄) for the complete
graph [Eq. (27)] depends on the initial spring length �̄, as is
shown in Fig. 3.

3. Intermediate-connectivity regime

For the intermediate-connectivity regime, 2 < z < N − 1,
a tractable expression for (CCT )−1, as for the complete graph,
remains elusive; however, numerical data suggest that the
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(a) (b) (c)

FIG. 3. Normalized conditional variance Var(�l|l̄ = �̄)/E l̄ [Var(�l|l̄)] as a function of �̄ for graphs with N = 100 and varying z values,
corresponding to a cycle graph (a), intermediate regime graphs (b), and a complete graph (c). For each value of z, data points correspond to
ensemble averages (repeated simulations) with 4.95 × 106 springs in total. We use local linear regression with 3 × 104 nearest neighbors to
estimate the variance for different values of �̄. The solid lines correspond to the analytically derived expressions for the cycle and complete
graph. In the intermediate regime of connectivity, the variance shows a continuous transition between the two extreme cases.

variance exhibits a continuous transition between the two
extremes (Fig. 3). We also observe that the conditional variance
is approximately constant given that z � N . This is the most
relevant case for biological networks where typically z �
4. For z � N , we may thus approximate Var(�l|l̄ = �̄) ≈
E l̄ [Var(�l|l̄)], which we now derive.

The law of total variance [12] states

E l̄ [Var(�l | l̄)] = Var(�l) − Var l̄ [E(�l | l̄)]. (28)

We first compute Var(�l), again, by initially fixing S and
considering Var(�l|S). With Eqs. (10) and (9), we compute

Var[�l|S] = 2

Nz

Nz/2∑
i=1

Var(�li |S) = 2 Var(l̄)

Nz

Nz/2∑
i,j=1

S2
ij ,

where the second equality follows from fixed-graph ensembles
having uniformly distributed edge random variables that are
pairwise independent. Again, we use that P2 = P, hence
S2 = −S, and therefore

∑Nz/2
j=1 S2

ij = −Sii . Insertion into the
equation above yields

Var(�l|S)

Var(l̄)
= −2 tr S

Nz
= 2

z

(
1 − 1

N

)
, (29)

where the second equality is due to Eq. (12). Application of
the law of total variance gives

Var(�l) = ES[Var(�l|S)] + VarS[E(�l|S)︸ ︷︷ ︸
=0

]

= 2

z

(
1 − 1

N

)
Var(l̄), (30)

where the second term in the sum vanishes using Eq. (10) since
E(l̄i) = 0 [analogous to the computation in Eq. (11)]. From
Eq. (13) we can use Var l̄ [E(�l | l̄)] = [2/z(1 − 1/N )]2 Var(l̄)
and therefore find by substituting into Eq. (28)

E l̄ [Var(�l|l̄)]
Var(l̄)

= 2

z

(
1 − 1

N

)[
1 − 2

z

(
1 − 1

N

)]
. (31)

C. Normality

If �l|l̄=�̄ were normally distributed, having estimates for
mean and variance [Eqs. (13) and (31)] would be sufficient to

fully characterize p�l|l̄=�̄. Indeed, for the two extremes, cycle
and complete graph, we can prove that �l|l̄=�̄ is normally
distributed in the limit N → ∞, with a rate of convergence
proportional to (N − 2)−1/2.

This result might look like a direct application of the
classical central limit theorem. However, since the edge lengths
are not independent as random variables, more sophisticated
techniques are required to represent the solution in terms
of a suitable set of mutually independent random variables.
In contrast to situations in time series analysis [15], where
independence holds beyond a certain time window, in our case
the cycle constraints prohibit localization of dependencies. To
deal with this problem, we reduce the number of variables by
relaxing each integer cycle constraint to an interval constraint.
Harnessing the resulting independence then requires a nonstan-
dard transformation of random variables, which complicates
a direct application of the Berry-Esseen theorem [16,17] (a
deviation-bound version of the central-limit theorem) to obtain
a quantitative bound on the distance to a normal distribution.

The rest of this section is split into three parts. We begin by
proving the results for the cycle and complete graph, and then
investigate the intermediate-connectivity regime. Throughout,
note how the intricacies of the proofs of the extreme cases are
further complicated in the intermediate-connectivity regime,
where ensembles have varying graph structure and lack sym-
metry.

1. Cycle graph

For the cycle graph (z = 2), we prove that �li |l̄i=�̄ is
normally distributed in the limit N → ∞. The key idea is a re-
laxation of the integer constraint to an interval constraint. Using
�li = g/N − l̄i = ∑N

j=1 l̄j /N − l̄i [Eq. (14)] we introduce
the standardized [E(YN ) = 0, Var(YN ) = 1] random variable

YN := �li |l̄i=�̄ − E(�li |l̄i = �̄)√
Var(�li |l̄i = �̄)

(32)

= g|l̄i=�̄/N − �̄ − (�̄/N − �̄)√
N−1
N2 Var(l̄)

(33)

= g|l̄i=�̄ − �̄√
(N − 1)Var(l̄)

, (34)
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and compare its cdf FYN
(x) to that of the standard normal

�0,1(x). We find that

FYN
(x) = P(YN � x) (35)

= P(g|l̄i=�̄ � x

√
(N − 1)Var(l̄) + �̄) (36)

=
�x

√
(N−1)Var(l̄)+�̄∑

k=−∞
P(g|l̄i=�̄ = k), (37)

where we have used the fact that g ∈ Z and �· denotes
the floor operator. Using g|li=�̄ = �̄ +∑N

j=1, j �=i l̄j , we can
formalize the integer relaxation by expressing the probability
of the conditional winding number as follows:

P(g|l̄i=�̄ = k) =
∫ k−�̄+0.5

k−�̄−0.5
νN−2(t) dt, (38)

whereνN−2(t) corresponds to the probability density of the sum
of N − 2 uniformly distributed independent random variables
on the interval [−0.5,0.5]. We call this random variable
UN−2. There are only N − 2 independent random variables
because one of the N lengths is fixed to �̄ and another one
is determined to make sure that an integer winding number
is attained for g. Substituting Eq. (38) into Eq. (37) and ex-
pressing �x

√
(N − 1)Var(l̄) + �̄ = x

√
(N − 1)Var(l̄) +

�̄ − δ(x), with the random variable δ(x) ∈ [0,1), leads to

FYN
(x) =

x
√

(N−1)Var(l̄)+�̄−δ(x)∑
k=−∞

∫ k−�̄+0.5

k−�̄−0.5
νN−2(t) dt

=
∫ x

√
(N−1)Var(l̄)+0.5−δ(x)

−∞
νN−2(t) dt

= FUN−2 [x
√

(N − 1)Var(l̄) + 0.5 − δ(x)].

We are interested in the distance to the cdf �0,1(x) of the
standard normal distribution. To calculate this distance, we
perform a change of variables which results in a standardized
sum of uniforms UN−2/(σl̄

√
N − 2), where σl̄ =

√
Var (l̄).

However, this causes the cdf of our random variable and the
standard normal cdf to have different arguments. We therefore
split the computation into two steps: one that measures the
distance to a shifted standard normal cdf, and the other that
measures the deviations introduced by this shift. With the short-
hand notation ξ (x) := x

√
(N − 1)Var(l̄) + 0.5 − δ(x), the de-

scribed procedure corresponds to the following computation:

|FYN
(x) − �0,1(x)|

= ∣∣FUN−2 (ξ (x)) − �0,1(x)
∣∣

=
∣∣∣∣F UN−2

σ
l̄

√
N−2

(
ξ (x)

σl̄

√
N − 2

)
− �0,1(x)

∣∣∣∣
�
∣∣∣∣F UN−2

σ
l̄

√
N−2

(
ξ (x)

σl̄

√
N − 2

)
− �0,1

(
ξ (x)

σl̄

√
N − 2

)∣∣∣∣︸ ︷︷ ︸
=:I (x)

+
∣∣∣∣�0,1

(
ξ (x)

σl̄

√
N − 2

)
− �0,1(x)

∣∣∣∣︸ ︷︷ ︸
=:II (x)

.

I (x) can be bounded using the Berry-Esseen theorem.
Bounding II (x) requires a detailed case analysis (see
Appendix B for details). We arrive at

sup
x∈R

|FYN
(x) − �0,1(x)| � I (x) + II (x) (39)

� 123/2 C

32
√

N − 2
+ 1√

2π (N − 2)Var(l̄)
(40)

= 1√
N − 2

(
123/2 C

32
+ 1√

2πVar(l̄)

)
. (41)

Therefore, the cdf of �li |l̄i=�̄ converges to a normal distribution
with the rate (N − 2)−1/2, independent of �̄. Since we showed
that F�li |l̄i=�̄ is independent of the edge i, Eq. (4) implies
F�l|l̄=�̄ (x) = F�li |l̄i=�̄ (x), and therefore F�l|l̄=�̄ converges to
a normal distribution as well.

2. Complete graph

For the complete graph, our proof of normality relies on the
reduction to spanning tree edges as outlined in the conditional
variance section. In particular, this allows us to write the cdf in
terms of winding number random variables that are all triangles
that share a common edge. Conditioning on this edge then
yields independence, not of the length variables, but of these
winding number random variables, which allows us to apply
the Berry-Esseen theorem.

To measure how far �lst|l̄st=�̄ is from being normally
distributed for finite N , we look at the standardized random
variable

YN−2 := �lst|l̄st=�̄ − E(�lst|l̄st = �̄)√
Var(�lst|l̄st = �̄)

(42)

and compare its cdf to the one of the standard normal. Using
Eq. (23) and the probability distribution of gj |l̄st=�̄, Eqs. (24)
and (25), we obtain

E(�lst|l̄st = �̄) = N − 2

N
E(gj |l̄st = �̄) − �̄ (43)

= (N − 2)�̄

N
− �̄, (44)

Var(�lst|l̄st = �̄) = N − 2

N2
Var(gj |l̄st = �̄) (45)

= N − 2

N2
(|�̄| − �̄2), (46)

and therefore

YN−2 =
1
N

∑N−2
j=1 gj

∣∣
l̄st=�̄

− (N−2)�̄
N√

N−2
N2 Var(gj |l̄st = �̄)

(47)

=
∑N−2

j=1 (gj |l̄st=�̄ − �̄)√∑N−2
j=1 Var(gj |l̄st=�̄ − �̄)

. (48)

All {gj |l̄st=�̄}N−2
j=1 are independent since the corresponding

cycles only share one edge, which is the one that we con-
dition on. We can thus apply the Berry-Esseen theorem
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(a) (b)

(c) (d)

FIG. 4. Conditional probability density p�l|l̄=�̄ (��) for spring
networks with N = 100 and varying z, conditioned on different
�̄ values. For each value of z = 2.0 (a), z = 2.2 (b), z = 3.0 (c),
z = 8.0 (d), data points correspond to ensemble averages (repeated
simulations) with 4.95 × 106 springs in total. Solid lines correspond to
best-fit normal distributions. The cycle graph (z = 2) is close to being
normally distributed—as proven for N → ∞. Whereas for z = 2.2,
there are still deviations from a normal distribution, for z = 3 and
larger, the densities rapidly approach a normal distribution.

(Appendix B) to show that for N � 3,

sup
x∈R

|FYN−2 (x) − �0,1(x)| � Cρ

σ 3
√

N − 2
, (49)

with C < 0.4748, ρ = E(|gj |l̄st=�̄ − �̄|3), and σ 2 =
Var(gj |l̄st=�̄ − �̄) = |�̄| − �̄2. Computing ρ = (|�̄| − �̄2)[�̄2 +
(1 − |�̄|)2] via Eqs. (24) and (25) we arrive at

sup
x∈R

|FYN−2 (x) − �0,1(x)| � C√
N − 2

�̄2 + (1 − |�̄|)2√
|�̄| − �̄2

, (50)

for |�̄| > 0. This proves convergence of the cdf of �li |l̄i=�̄ to
a normal distribution with the rate (N − 2)−1/2. For �̄ = 0,
�li |l̄i=�̄ ∼ δ0 (Dirac delta distribution around zero), it can only
attain the value zero because P (gj |l̄st=�̄ = 0) = 1.

Note the �̄-dependence in Eq. (50), which is in stark contrast
to the �̄-independent bound for the cycle graph [Eq. (41)].
For the complete graph, the approximation with a normal
distribution becomes worse as �̄ approaches zero.

3. Intermediate-connectivity regime

Recall that in the intermediate-connectivity regime, 2 <

z < N − 1, the (N,z) ensembles contain graphs with varying
cycle structures making a similar analysis significantly more
challenging. In simulations, however, we observe that �l|l̄=�̄

is approximately normally distributed if z is sufficiently large
(Fig. 4).

D. Density approximation

Our empirical observations and theoretical discussion above
justify the following approximation for 3 � z � N :

�l|l̄=�̄ ∼ N {E(�l|l̄ = �̄),El̄ [Var(�l|l̄)]}, (51)

with the expressions for E(�l|l̄ = �̄) and El̄ [Var(�l|l̄)] given
in Eqs. (13) and (31). Using Eqs. (7) and (51), we obtain an

(a) (b)

(c) (d)

FIG. 5. Probability density pl∗ (�∗) for the final spring lengths for
networks with N = 1000 and varying z, corresponding to z = 3 (a),
z = 4 (b), z = 6 (c), and z = 16 (d). Solid lines show the analytic
expression for pl∗ (�∗) Eq. (C1), both, using the exact expressions for
E(�l|l̄ = �̄) and El̄ [Var(�l|l̄)] (solid black line), as well as using
their mean-field approximations (solid red line). The data points
correspond to averages over 50 simulations; the error bars correspond
to the standard deviation. The initial uniform spring length distribution
pl̄ (�̄) is shown as a gray dashed line.

explicit representation for the final length distribution pl∗ (�∗)
in mechanical equilibrium (Appendix C). In Fig. 5 we compare
this analytical expression to ensembles of simulated networks
and observe excellent agreement.

III. COMPARISON TO A MEAN-FIELD APPROACH

To evaluate the significance of our graph-theoretical anal-
ysis we compare it to a mean-field (mf) approach which
neglects all topological features other than the local degree
of connectivity. In contrast to the graph-theoretical model,
where z refers to the average degree of a node, the mean-field
approach assumes that each node is connected to exactly z

other nodes. Moreover, the node displacement unode during
relaxation is calculated as if all other nodes in the network
were fixed. Therefore, unode = fnode/z, where fnode = ∑z

i=1 l̄i
is the initial force acting on the node via the springs attached to
it. The displacement �l of a spring is given by the difference
of the displacements of the two nodes that are connected by
this edge:

�l = un2 − un1 = z−1(fn2 − fn1

)
= 1

z

(
−2l̄ +

z−1∑
i=1

l̄n2,i −
z−1∑
i=1

l̄n1,i

)
, (52)

where we have taken into account that the two nodes share
one spring, namely l̄ (Fig. 6). All springs are assumed to
be independent identically distributed random variables with
mean zero and variance Var(l̄).

For the conditional mean, we have with Eq. (52),

E(�l|l̄ = �̄)|mf = −2�̄

z
. (53)
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l̄n2,1
l̄

fn2

l̄n2,2 l̄n2,3 l̄n1,2

n2 n1

l̄n1,1

fn1

l̄n1,3

FIG. 6. Mean-field approach (here, z = 4): The edge l̄ connects
two nodes (n1,n2). The initial node forces (gray arrows) are given
by fn1 = ∑z−1

i=1 l̄n1,i + l̄ and fn2 = ∑z−1
i=1 l̄n2,i − l̄. The spring l̄ con-

tributes to the forces with different signs because its length is measured
from n1 to n2 (depicted by the black triangle). While displacing an
individual node by unk = z−1fnk introduces force balance at that node,
this approach neglects that the nodes are coupled, i.e., force balance
has to be established at all nodes simultaneously, as in Eq. (1).

The mean-field result agrees with the exact solution Eq. (13)
in the limit N → ∞, i.e., there is no significant difference
for large node numbers. In contrast, we will show at the end of
this section that for the variance, the mean-field solution differs
substantially from the exact result, even in the limit N → ∞.

When considering normality of �l|l̄=�̄, the mean-field
approach allows us to directly apply the Berry-Esseen theorem
(Appendix B) because all edges are treated as independent.
Defining the normalized random variable

Y2(z−1) := �l|l̄=�̄ − E(�l|l̄ = �̄)√
Var(�l|l̄ = �̄)

(54)

=
∑2(z−1)

i=1 l̄i√
2(z − 1) Var(l̄)

, (55)

the theorem implies:

sup
x∈R

|FY2(z−1) (x) − �0,1(x)| � 123/2 C

32
√

2(z − 1)
. (56)

The mean-field approach yields convergence to a normal
distribution with a rate proportional to (z − 1)−1/2. While
this result agrees with the rate of convergence we proved
for the complete graph, it is in stark contrast to what we
proved for the cycle graph case (z = 2), for which we showed
convergence to a normal distribution even though z is constant.
In the intermediate-connectivity regime, both the mean-field
as well as our graph-theoretical approach suggest that �l|l̄=�̄

can be approximated by a normal distribution. To complete
the evaluation of our approach, it is therefore critical to also
compare the second moments, i.e., the variances of the mean-
field and graph-theoretical approach.

For the unconditional variance, we obtain using Eq. (52),

Var(�l)|mf = z−2 [4Var(l̄) + 2(z − 1)Var(l̄)] (57)

= 2

z

(
1 + 1

z

)
Var(l̄). (58)

Clearly, this expression does not agree with the exact graph-
theoretical value Eq. (30), even in the limit N → ∞. A mean-
field approach assumes the conditional variance is constant
and therefore equal to its expected value E l̄ [Var(�l|l̄)]|mf =
Var(�l|l̄ = �̄)|mf = 2/z(1 − 1/z) Var(l̄). For the cycle graph,
we proved the conditional variance is indeed constant

FIG. 7. Comparison of graph-theoretical (black) and mean-field
(gray) variances as a function of average degree z. Shown are the
unconditional variance Var(�l) as well as the expected conditional
variance E l̄ [Var(�l|l̄)] as derived in the text. The graph-theoretically
derived expected variance exhibits a maximum at z = 4 (filled circle),
while the corresponding mean-field expected variance monotonically
decreases from its value at z = 2.

[Eq. (16)]. However, we showed that the other extreme,
the complete graph, exhibits non-constant conditional vari-
ance [Eq. (27)]. For (N,z) ensembles in the intermediate-
connectivity regime, we observe a continuous transition be-
tween the two extremes (Fig. 7). Therefore, for the biological
regime (z � 4), we approximated the conditional variance with
its constant expected value E l̄ [Var(�l|l̄)] [Eq. (31)]. However,
it is exactly the regime z � 4 where the graph-theoretically
derived expected conditional variance E l̄ [Var(�l|l̄)] and the
mean-field quantity E l̄ [Var(�l|l̄)]|mf exhibit the largest dis-
crepancy (Fig. 7).

IV. DISCUSSION AND CONCLUSIONS

In conclusion, we have presented a probabilistic theory of
force distributions in one-dimensional random spring networks
on a circle. Here we have regarded networks with initially
unbalanced forces that relax into mechanical equilibrium.
When drawing the analogy to a biological network, our
approach, which focuses on the relaxation of the system after
nonequilibrium starting conditions, is equivalent to assuming a
separation of time scales where internal or external nonequilib-
rium processes slowly create forces in the network that rapidly
equilibrate.

We developed a graph-theoretical approach that allows us to
exactly compute mean and expected variance of the distribution
of length changes conditioned on an initial configuration. For
the two extreme cases, the cycle graph and the complete
graph, we could prove convergence of this distribution to a
normal distribution. A systematic analytical treatment of the—
less symmetric—intermediate-connectivity regime is more
demanding and not provided here. However, our results suggest
an approximation that shows excellent agreement with sim-
ulations for the biologically relevant regime of connectivity,
3 � z � N .

It is straightforward to generalize the approach we present
here to higher spatial dimensions d if the probability densities
pl̄k

for the components of the initial spring vectors are inde-
pendent. In that case, due to the linearity of spring forces with
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extension, the optimization problem decouples into the spatial
components. The probability density for the final spring vectors
then is simply given as the product of the one-dimensional
results:

pl∗ (�∗) =
d∏

k=1

pl∗
k
(�∗

k). (59)

Hence, our results carry over to two- and three-dimensional
networks, which are more commonly studied in practice and
are of biological and physiological relevance.

Interestingly, a classical mean-field approach fails to cor-
rectly reproduce the mean and the variance of the relevant
distributions. The error is particularly pronounced for the—
biologically most relevant—regime of low degrees of con-
nectivity, and does not vanish in the limit of infinite node
number. Our work demonstrates that network topology—here
manifested as cycle constraints—is crucial for the correct de-
termination of force distributions in an elastic spring network.
This opens the door for future research on the role that network
topology plays in more complex elastic networks and their
properties.

When it comes to the prediction of experimental observ-
ables, such as the shear modulus, mean-field models assume
affine deformations where all filaments follow the global shear
deformation (sometimes only on average). However, even
for pure central force networks non-affine deformations have
been observed [10,18]. This hints at the importance of global
topological effects that may account for non-affine behavior.
Future studies could work to extend our analytical theory,
which currently does not apply to sheared systems in which
spatial dimensions are coupled via the applied load.

The qualitative behavior of our results also carries over to
systems with spring nonlinearities, where forces separate and
are concentrated along a few nontrivial loops (force chains [6]).
Future work could investigate dynamic rupture of these force
chains.
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APPENDIX A: INDEPENDENCE OF THE CHOICE
OF CYCLE BASIS

A change of cycle basis corresponds to the transformation

C̃ = QCU−1, (A1)

where Q ∈ GL(m) is an arbitrary change of basis matrix for
the cycle space, and U ∈ O(Nz/2) is a permutation matrix
that corresponds to relabeling the edges of the graph. The
independence of the solution of the cycle matrix means that,

given the change of basis in Eq. (A1) and the solution [Eq. (2)],

l̃∗ = C̃T (C̃C̃T )−1C̃˜̄l,

to the transformed problem,

l̃∗ = U l∗. (A2)

The above relation can be shown by direct computation:

C̃T (C̃C̃T )−1C̃ = (QCU−1)T [QCU−1(QCU−1)T ]−1(QCU−1)

= U−T CT QT (QCU−1U−T CT QT )−1(QCU−1)

= U−T CT QT Q−T (CCT )−1Q−1QCU−1

= UCT (CCT )−1CU−1,

and therefore

l̃∗ = UCT (CCT )−1CU−1˜̄l = UCT (CCT )−1Cl̄ = Ul∗.

APPENDIX B: UPPER BOUNDS FOR I(x) AND II(x)

For a uniform upper bound on the first term I (x), we can
apply the Berry-Esseen theorem, which is stated as follows
[19].

Theorem (Berry-Esseen). Let X1,X2, · · · be independent
identically distributed (iid) random variables with E(X1) = 0,
E(X2

1) = σ 2 > 0, E(|X1|3) = ρ < ∞. Also, let

Sn = X1 + X2 + · · · + Xn√
nσ

be the normalized nth partial sum. Denote Fn the cdf of Sn,
and �0,1 the cdf of the standard normal distribution. Then there
exists a positive constant C < 0.4785 [20] such that

sup
x∈R

|Fn(x) − �0,1(x)| � Cρ

σ 3
√

n
. (B1)

By recalling that UN−2 is the sum of N − 2 indepen-
dent uniformly distributed random variables on the interval
[−1/2,1/2], i.e., with variance Var(l̄) = σ 2

l̄
= 1/12, third

absolute moment ρl̄ = 1/32, and mean E(l̄) = 0, we have
that UN−2/(σl̄

√
N − 2) is a normalized nth partial sum. The

Berry-Esseen theorem therefore implies

sup
x∈R

I (x) = sup
x∈R

∣∣F UN−2
σ
l̄

√
(N−2)

(x) − �0,1(x)
∣∣ � 123/2 C

32
√

N − 2
.

(B2)

An upper bound for the second term II (x) can be found as
well. We write

II (x) =
∣∣∣∣∣�0,1

[
x
√

(N − 1)Var(l̄) + 0.5 − δ(x)√
(N − 2)Var(l̄)

]
− �0,1(x)

∣∣∣∣∣
(B3)

= |�0,1(αx + β) − �0,1(x)| = |�0,1(y) − �0,1(x)|,
(B4)

with α =
√

N−1
N−2 , β = 0.5−δ(x)√

(N−2)Var(l̄)
, and y = αx + β. There are

six cases that need to be distinguished: (x < 0 < y), (y < 0 <

x), (x < y < 0), (y < x < 0), (0 < x < y), (0 < y < x).
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For (y < 0 < x), the following holds:

|�0,1(αx + β) − �0,1(x)|

� [(1 − α)x − β] sup
x∈R

�′
0,1(x) � − β√

2π
(B5)

<
1

2
√

2π (N − 2)Var(l̄)
, (B6)

where we have used that 1 − α < 0 and δ(x) ∈ [0,1). Analo-
gously, the same bound holds for the case (x < 0 < y). For the
other cases, we can make use of the convexity (concavity) of
�0,1(x) for x < 0 (x > 0).

For (x < y < 0), we have

|�0,1(αx + β) − �0,1(x)|
� [(α − 1)x + β] �′

0,1(αx + β) (B7)

= [(α − 1)x + β](2π )−1/2e−(αx+β)2/2 (B8)

� β√
2π

<
1

2
√

2π (N − 2)Var(l̄)
, (B9)

and analogously the same for (0 < y < x).
Finally, for (0 < x < y),

|�0,1(αx + β) − �0,1(x)|
� [(α − 1)x + β] �′

0,1(x) (B10)

= [(α − 1)x + β](
√

2π)−1/2e−x2/2 (B11)

� β√
2π

+ α − 1√
2π

xe−x2/2 � β√
2π

+ α − 1√
2πe

(B12)

= β√
2π

+ 1√
2πe

√
N − 1 − √

N − 2√
N − 2

(B13)

� 1

2
√

2π (N − 2)Var(l̄)
+ 1√

2πe

1

2(N − 2)
(B14)

� 2

2
√

2π (N − 2)Var(l̄)
= 1√

2π (N − 2)Var(l̄)
, (B15)

where we used the concavity of
√

x in Eq. (B14) and N �
Var(l̄)/e + 2 in Eq. (B15). Analogously, the same bound holds
for the last remaining case (y < x < 0). Taking the maximum
bound of all cases Eqs. (B6), (B9), and (B15) we obtain

sup
x∈R

II (x) � 1√
2π (N − 2)Var(l̄)

. (B16)

APPENDIX C: ANALYTICAL EXPRESSION FOR
THE FINAL LENGTH DISTRIBUTION

By combining Eq. (7) with the normal approximation for
�l|l̄=�̄ [Eq. (51)], we obtain

pl∗ (�∗) =
∫ +∞

−∞
pl̄(�̄)p�l|l̄=�̄ (�∗ − �̄) d�̄

� 1√
2πE l̄[Var(�l|l̄)]

×
∫ 0.5

−0.5
exp

⎛
⎝−

{
�∗ − [

1 − 2
z

(
1 − 1

N

)]
�̄√

2E l̄[Var(�l|l̄)]

}2
⎞
⎠ d�̄

= 1

2
[
1 − 2

z

(
1 − 1

N

)]
(

erf

{
�∗ + [

1 − 2
z

(
1 − 1

N

)]/
2√

2E l̄[Var(�l|l̄)]

}

− erf

{
�∗ − [

1 − 2
z

(
1 − 1

N

)]/
2√

2E l̄[Var(�l|l̄)]

})
. (C1)

This expression is compared to simulated data in Fig. 5.
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