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We propose a discrete surface theory in R
3 that unites the most prevalent versions

of discrete special parametrizations. Our theory encapsulates a large class of discrete

surfaces given by a Lax representation and, in particular, the one-parameter associ-

ated families of constant curvature surfaces. Our theory is not restricted to integrable

geometries, but extends to a general surface theory.

1 Introduction

A quad net is a map from a strongly regular polytopal cell decomposition of a surface

with all faces being quadrilaterals intoR
3 with nonvanishing straight edges. A polytopal

cell decomposition is strongly regular if each edge connects distinct vertices and meets

at most two faces. Notice, in particular, that nonplanar faces are admissible. In discrete

differential geometry, quad nets are understood as discretizations of parametrized sur-

faces [9, 10, 13]. In this agenda many classes of special surfaces have been discretized

using algebro-geometric approaches for integrable geometry—originally using discrete

analogues of soliton theory techniques (e.g., discrete Lax pairs and finite-gap integration

[6]) to construct nets, but more recently using the notion of 3D consistency (reviewed
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in [10]). As in the smooth setting, these approaches have been successfully applied to

space forms (see, e.g., [15–17, 22]). As an example consider the case of K-surfaces, i.e.,

surfaces of constant negative Gauß curvature. The integrability equations of classical

surface theory are equivalent to the famous sine-Gordon equation [1, 20]. In an inte-

grable discretization, the sine-Gordon equation becomes a finite difference equation

for which integrability is encoded by a certain closing condition around a 3D cube.

Both in the smooth and discrete settings, integrability is bound to specific choices of

parameterizations, such as asymptotic line parametrizations for K-surfaces. In this way

different classes of surfaces, such asminimal surfaces or surfaces of constantmean cur-

vature (CMC), lead to different partial differential equations and give rise to different

parametrizations. In the discrete case, this is reflected by developments that treat differ-

ent special surfaces by disparate approaches. These integrable discretizations maintain

characteristic properties of their smooth counterparts (e.g., the transformation theory of

Darboux, Bäcklund, Bianchi, etc.). What has been lacking, however, is a unified discrete

theory that lifts the restriction of special surface parametrizations. Indeed, different

from the case of classical smooth surface theory, existing literature does not provide a

general discrete theory for quad nets.

We propose a theory that encompasses the most prevalent versions of existing

discrete special parametrizations (reviewed in [8]), such as discrete conjugate nets [39],

discrete (circular) curvature line nets [5, 18, 32], discrete isothermic nets [7, 11], and

discrete asymptotic line nets [38, 43]. Our approach provides a curvature theory that,

in particular, yields appropriate curvatures for previously defined discrete minimal [7],

discrete CMC [8, 23, 34], discrete constant negative Gauß curvature [6, 24, 35, 38, 43],

and discrete developable surfaces [29]. This theory not only retrieves the curvature def-

initions given in [14, 40] in the case of planar faces but extends to the general setting

of nonplanar quads. Moreover, for the first time, it provides a way to understand the

one-parameter associated families of discrete surfaces of constant curvature, both in

terms of discrete curvature and discrete conformality.

To each vertex of a quad net we associate a unit vector, which we view as a unit

normal or Gauß map. Then the fundamental property of our approach is the following

edge-constraint that couples discrete surface points and normals: the average normal

along an edge is perpendicular to that edge. This condition arises from a Steiner-type

(i.e., offset and mixed area) perspective on curvature and, while surprisingly elemen-

tary, has profound consequences for the theory. By introducing a Gauß map for general

nonplanar quad nets, our theory builds on basic construction principles of the classical

smooth setting.
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The paper is organized as follows: after the definition of edge-constraint nets

(Section 2) we introduce their curvatures, naturally extending the work of Schief [40] and

Bobenko, Pottmann, andWallner [14]. These curvatures are then shown to be consistent

withfirst, second, and third fundamental forms for edge-constraint nets.Wedescribe the

classical discrete integrable surfaces of constant curvature (circular minimal, circular

CMC, and asymptotic and circular K-nets) and show that they are indeed edge-constraint

nets of constant curvature (Section 3). Even more, we show that they possess associated

families that are also edge-constraint nets exhibiting constant curvature. In particular,

the proof for CMC nets shows a rather unexpected connection between their 3D compat-

ibility cube and the general Bianchi permutability cube for discrete curves [25, 42]. The

section closes with a discussion of discrete developable nets. We then provide a short

treatment on how discrete conformality is represented in our theory (Section 4), showing

that the members of the associated family of minimal nets are conformally equivalent.

We conclude (Section 5) by showing that a rather general class of nets generated by a

Sym–Bobenko formula is in fact a subset of edge-constraint nets.

2 Edge-Constraint Nets

2.1 Setup

A natural discrete analogue of a parametrized surface patch is a map from Z
2 → R

3

corresponding to a single chart. To consider discrete atlases, we relax the combinatorial

restrictions and think more generally of maps from quadrilateral graphs. We will use

the words quadrilateral and quad interchangeably.

Definition 2.1 (Quadrilateral net). A quad graph G is a strongly regular polytopal cell

decomposition of a surface with all faces being quadrilaterals. A map f : G → R
3 with

nonvanishing straight edges is called a (quad) net. �

Remark 2.2 (Shift notation). As shown in Figure 1, we use shift notation [10] to describe

the points of a quad net: when the underlying quad graph has the combinatorics of Z
2,

we denote a point by f = fk,l for some k, l ∈ Z and define the shift operators f1 := fk+1,l

and f2 := fk,l+1. The point diagonal to f is given by a shift in each direction, f12 := fk+1,l+1.

In what follows we do not restrict ourselves to the combinatorics of Z
2, but continue to

use shift notation, as there is no ambiguity when the discussion is restricted to a point

f ; oriented edge fi − f with i = 1, 2; or quad (f , f1, f12, f2). �
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Fig. 1. Shift notation used to describe the points of a quad net f .

Immersed parametrized surfaces in the smooth setting can be thought of either

as a smooth family of points or as the envelope of a family of tangent planes. One defines

a contact element at a point p ∈ R
2 of a parametrized surface f : D ⊂ R

2 → R
3 as the

pair (f (p),P(p)), consisting of a point f (p) and the oriented tangent plane P(p) passing

through it. P(p) is completely determined by its unit normal n(p) when anchored at

f (p); considering n(p) at the origin defines the Gauß map n : D ⊂ R
2 → S

2. Using this

perspective we consider parametrized surfaces as the pair of maps (f ,n), an immersion

together with its Gauß map.

Analogouslywe consider discrete parametrized surfaces not as a single quad net,

but as a pair of nets that are weakly coupled, mimicking the relationship between an

immersion and its Gauß map in the smooth setting. We call this pair an edge-constraint

net, which is our main object of study.

Definition 2.3 (Edge-constraint net). Let G be a quad graph. We call a pair of quadri-

lateral nets (f ,n) : G → R
3 × S

2 a contact element net. A contact element net is called

an edge-constraint net if it satisfies the following:

Edge-constraint: For each pair of points of f connected by an edge, the average of

the normals at those points is perpendicular to the edge, i.e. for i = 1, 2 we have

fi − f ⊥ 1
2 (ni + n).

We further assume that f contains no vanishing edges, i.e., that fi− f is always nonzero.

The maps f : G → R
3 and n : G → S

2 are called the (discrete) immersion and

Gauß map, respectively. �
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Remark 2.4. Werefer to edge-constraint nets using the combinatorics of the underlying

quad graph, i.e., an edge-constraint net quad is four immersion points together with

their Gauß map normals. �

The edge-constraint discretizes a coupling between the Gauß map and immer-

sion; in the smooth setting, it is generic in the following sense.

Lemma 2.5. Let f : R
2 → R

3 parametrize a smooth surface patch with Gauß map

n : R
2 → S

2. For every point p ∈ R
2 and unit vector v ∈ R

2, let the images of the line

p + tv where t ∈ R be given (with a slight abuse of notation) by f (t) := f (p + tv) and

n(t) := n(p+tv), respectively. Then the central and one-sided difference approximations

to the edge-constraint along f (t) are satisfied up to second order, i.e.,

(f (ε)− f (−ε)) · (n(ε)+ n(−ε)) = 0 + O(ε3) and
(1)

(f (ε)− f (0)) · (n(ε)+ n(0)) = 0 + O(ε3).
�

Proof. f ′(t) · n(t) = 0 by construction, so in particular f ′′(t) · n(t)+ f ′(t) · n′(t) = 0. The

statement then follows by Taylor expanding f (t) and n(t) around t = 0. �

The simplest class of edge-constraint nets is that given by quad nets in spheres.

Lemma 2.6. Let f : G → rS2 be a quad net in the sphere of radius r > 0. Then f together

with the Gauß map n = f /r is an edge-constraint net. �

Edge-constraint nets naturally exhibit offset nets by adding multiples of the

Gaußmap to the original immersion while keeping the Gaußmap fixed. This observation

is the foundation of their curvature theory.

Lemma 2.7 (Offset nets). For any t ∈ R and contact element net (f ,n) : G → R
3 × S

2,

the contact element net (f + t n,n), where linear combinations are taken on vertices, is

an edge-constraint net if and only if (f ,n) is an edge-constraint net. �

2.2 Curvatures from offsets

Let f : R
2 → R

3 be a smooth parametrized surface with Gauß map n : R
2 → S

2. For each

t ∈ R and p = (x,y) ∈ R
2, we define the offset surface by f t(x,y) := f (x,y) + t n(x,y).

We only consider smooth parametrizations f which give rise to smooth offsets f t for

small enough |t|. It is easily seen that n is also the Gauß map for the offset surface f t.
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For all p = (x,y) ∈ R
2, the area element at f t(x,y) can be expressed in terms of the area

element, mean, and Gauß curvatures at f (x,y). This relationship is known as the Steiner

formula and is best understood through the mixed area form.

Definition 2.8 (Mixed area form). Let g,h : R
2 → R

3 parametrize two smooth surfaces

that share a Gauß map N : R
2 → S

2. For every p = (x,y) ∈ R
2, we define the mixed area

form in the tangent plane P ⊥ N(x,y) by

A(g,h) := 1

2
(det(gx ,hy ,N)+ det(hx ,gy ,N)), (2)

where subscripts denote partial derivatives. When g = h, the mixed area form reduces

to the area element of g. �

Remark 2.9. To define the mixed area form we switched notation to capital N , as

opposed to little n, for the Gauß map. While in the smooth setting these two objects

coincide, the discrete Gauß map for an edge-constraint net (also denoted by n) lives on

vertices, whereas we define the mixed area form for an edge-constraint net on faces. We

define a new unit vector per face, which we call the projection direction (denoted by N ),

that defines the tangent plane P where this mixed area form lives. �

We now state the Steiner formula and consequently define the mean and Gauß

curvature functions on a smooth parametrized surface. The same definitions carry over

to edge-constraint nets.

Theorem 2.10 (Steiner formula). Let f : R
2 → R

3 be a smooth surface parametrization

with Gauß map n : R
2 → S

2 and offset surface f t : R
2 → R

3. Then for each p = (x,y) ∈ R
2

the following relationship holds

A(f t, f t) = A(f , f )+ 2tA(f ,n)+ t2A(n,n),

= (1 + 2tH + t2K)A(f , f ),
(3)

defining

H := A(f ,n)

A(f , f )
and K := A(n,n)

A(f , f )
, (4)

as the mean and Gauß curvature functions, respectively. �
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Fig. 2. The partial derivatives, nx and ny , of a (possibly nonplanar) quadrilateral from the Gauß

map n of an edge-constraint net as defined by the midpoint connectors. A projection direction,

N ⊥ nx ,ny is also shown, determining the face tangent plane P where the mixed area form is

defined.

Definition 2.11. Consider a single quadrilateral from an edge-constraint net (f ,n). We

define the partial derivatives as the midpoint connectors of the (possibly nonplanar)

quadrilaterals for each of f and n, for example, for the Gauß map, as shown in Figure 2,

we have

nx := 1

2
(n12 + n1)− 1

2
(n2 + n), ny := 1

2
(n12 + n2)− 1

2
(n1 + n), (5)

and likewise for f . Then the set of admissible projection directions is defined as

U := {N ∈ S
2| N ⊥ span {nx ,ny}}. (6)

Generically, the projection direction is unique (up to sign) and we choose

N := nx × ny

‖nx × ny‖ . (7)

In the (quad) tangent plane P ⊥ N we define the (discrete) mixed area form via

Equation (2), yielding a Steiner formula (Equation (3)). �

Remark 2.12 (Degenerate Gauß maps). The set of admissible projection directions also

generates a consistent curvature theory in the degenerate situation where the partial

derivatives of the Gauß map are not linearly independent. Degenerate Gauß maps nat-

urally arise in the theory of developable surfaces, so we defer this discussion to the

theory of developable edge-constraint nets in Section 3.4. �
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Definition 2.13 (Edge-constraint curvatures). Using the Steiner formula (Equation (3))

we define mean and Gauß curvatures for edge-constraint nets via Equation (4). �

Remark 2.14 (Degenerate immersions). Clearly, the curvatures are only well defined

when the immersion has nonvanishing area A(f , f ) 	= 0. Every statement we make about

curvatures assumes the immersion quad has nonvanishing area. �

Remark 2.15 (Sign of projection direction). The sign of the projection direction in the

generic setting does not correspond to a change in local orientation. Themixed area form

changes sign, but the mean and Gauß curvatures are invariant to this choice. However,

flipping the Gauß map (n → −n) changes the sign of the mean curvature, as expected. �

Remark 2.16 (Choice of partial derivatives). The choice to define the partial derivatives

as the midpoint connectors is to guide intuition. In fact, one has the freedom to choose

any linear combination of the midpoint connectors to be the partial derivatives, as

long as the same combination is chosen for both the immersion and the Gauß map. This

corresponds to the freedom to locally reparametrize in the smooth setting. Themean and

Gauß curvatures and forthcoming definitions of principal curvatures and curvature line

fields are all invariant to this choice. As expected, themixed area forms and fundamental

forms will change as these are not invariant to a local reparametrization in the smooth

setting either. �

In the smooth setting, one can also derive the mean and Gauß curvatures at

a point via the fundamental forms and shape operator living in the tangent plane to

that point. The shape operator is a real self-adjoint linear operator whose eigenvalues

and eigenvectors are the principal curvatures and curvature lines, respectively. From

Definition 2.11, we can discretize the fundamental forms and shape operator in the plane

perpendicular to the projection direction of each face of an edge-constraint net.

Definition 2.17 (Fundamental forms). Consider a single quad from an edge-constraint

net (f ,n). Let π be the projection into the quad tangent plane P. Set f̂x := π(fx) = fx −
(fx · N)N and similarly for f̂y . Since N ⊥ nx ,ny by Definition 2.11, n̂x = nx and n̂y = ny .

We define the fundamental forms and shape operator by:

I :=
(

f̂x · f̂x f̂x · f̂y
f̂y · f̂x f̂y · f̂y

)
, II :=

(
f̂x · nx f̂x · ny

f̂y · nx f̂y · ny

)
,

III :=
(

nx · nx nx · ny

ny · nx ny · ny

)
, S := I−1II.

(8)
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The eigenvalues (k1,k2) and eigenvectors of the shape operator S are the principal

curvatures and curvature line fields of the quadrilateral. �

The existence of principal curvatures and curvature line fields follows from the

symmetry of the second fundamental form:

Lemma 2.18. Consider a single quad from an edge-constraint net (f ,n), then the second

fundamental form is symmetric. �

Proof. In the above notation, we need to show f̂x · ny − nx · f̂y = 0. As N ⊥ nx ,ny this

quantity is the same when unprojected, i.e.,

f̂x · ny − nx · f̂y = fx · ny − nx · fy . (9)

Expanding out fx · ny − nx · fy one finds it is a constant multiple of the sum of the edge-

constraint conditions once around the quadrilateral, which vanishes as it vanishes on

each edge by assumption. �

The mean and Gauß curvatures per quad defined via the Steiner formula are

equal to the ones derived from the eigenvalues of the shape operator:

Lemma 2.19 (Curvature and fundamental form relationships). The following relations

hold true in the smooth and discrete cases:

1. K = k1 k2,

2. H = 1
2 (k1 + k2),

3. III − 2H II + K I = 0, and

4. A(f , f )2 = det I. �

Example 2.20 (Spherical edge-constraint nets). Let (f , f /r) be an edge-constraint net

in the sphere of radius r > 0 as determined by Lemma 2.6. Then every quadrilateral has

the expected Gauß (K = 1
r2
) and mean curvature (H = 1

r ). �

Example 2.21 (Curvature line fields). Figure 3 shows the curvature line fields of an

ellipsoid in the smooth and discrete settings. �
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Fig. 3. Left: Curvature lines of a smooth ellipsoid. Middle: Curvature line field of an ellipsoid

edge-constraint net. Right: Overlay of smooth and discrete curvature line fields.

Fig. 4. Two pairs of minimal edge-constraint nets from the same associated family generated

from Weierstrass data. Left: Circular net helicoid and an A-net catenoid. Right: Circular net

catenoid and A-net helicoid.

3 Constant Curvature Nets

Edge-constraint nets and their curvature theory provide a unifying geometric framework

throughwhich to understand previously defined notions of discrete surfaces of constant

curvature in special parametrizations. Due to their governing integrable structure, these

surfaces naturally arise in one-parameter associated families that in the smooth setting

fix the respective curvature, but change the type of parametrization. Previous notions

of discrete curvature exist for each particular type of special parametrization, but have

been difficult to reconcile with the corresponding (differently parametrized) associated

families (examples of which are shown in Figure 4).

In what follows we rectify these discrepancies by showing that the algebraically

constructed discrete isothermic minimal surfaces [7], discrete isothermic CMC surfaces
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[7], discrete asymptotic line constant negative Gauß curvature surfaces [6], and discrete

curvature line constant negative Gauß curvature surfaces [28], together with each of

their respective associated families are in fact edge-constraint netswith their respective

curvatures constant. To closewe introduce a theory of developable edge-constraint nets,

a non-integrable example.

3.1 Discrete minimal surfaces

Definition 3.1 (Minimal edge-constraint net). An edge-constraint net (f ,n) is called

minimal if every quad has vanishing mean curvature (H = 0), i.e., the mixed area A(f ,n)

vanishes. �

In the smooth setting, minimal surfaces are often parametrized by isothermic

(curvature line and conformal) coordinates arising naturally form their construction

from holomorphic Weierstrass data: stereographically project a holomorphic function

g : C → C on to the Riemann sphere to get a conformal map n : C → S
2. Now, think of

n as the Gauß map to a surface and construct the Christoffel dual isothermic surface

f : C → R
3 by integrating

fx(x,y) = nx(x,y)

‖nx(x,y)‖2
and fy(x,y) = − ny(x,y)

‖ny(x,y)‖2
. (10)

The resulting f is an isothermic parametrization of a minimal surface in R
3 with Gauß

map given by the conformal map n. This process of generating a minimal surface is

called the Weierstrass representation.

Bobenko and Pinkall defined discrete minimal surfaces as a special case of dis-

crete isothermic surfaces and showed they exhibit a discreteWeierstrass representation

[7]. These nets indeed have vanishingmean curvature in a curvature theory for nets with

planar faces (that in the case of contact element nets is contained in the present theory)

[14, 40].

In complete analogy to the smooth case, one can extend this representation into

an associated family. This corresponds to locally rotating the frame, therefore changing

the type of parametrization away from being curvature line (while staying conformal

in the smooth setting). While this is an algebraic way to define the discrete nets of the

associated family there has been no notion through which one can understand their

minimality. The goal of this section is to rectify this by showing that every member of

the associated family is an edge-constraint net and that its mean curvature vanishes on

every quad.
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Formulating the discreteWeierstrass representation requires discrete analogues

of curvature line parametrizations, Christoffel duals, and isothermic parametrizations.

We briefly introduce these notions, but emphasize that each of these discrete objects is

interesting in its own right (see the book by Bobenko and Suris [10]).

Definition 3.2 (Circular net). A contact element net (f ,n) is called a circular net or

discrete curvature line net if:

1. every quad of the immersion f is circular, its vertices lie on a circle; and

2. the Gauß map along each edge is found by reflection through the immersion

edge perpendicular bisector plane, i.e., for i = 1, 2 we have

n = ni − 2
ni · (fi − f )

‖fi − f ‖2
(fi − f ). (11)

�

Lemma 3.3. Let (f ,n) be a circular net, then it is an edge-constraint net. �

Proof. Equation (11) gives: fi − f ‖ ni − n ⊥ ni + n. �

The symmetry imposed by the second property implies that the Gauß map and

all offset nets (f+tn,n) are also circular nets, with corresponding quads lying in parallel

planes.

Definition 3.4 (Isothermic net). Let (f ,n) be a circular net. Then (f ,n) is a discrete

isothermic net if there exists a second circular net (f ∗,n) with the same Gauß map such

that A(f , f ∗) = 0. The net (f ∗,n) is unique (up to scaling and translation) and called the

discrete Christoffel dual net of (f ,n). �

We now state a few important properties of discrete isothermic nets that we

require in the following [11].

Lemma 3.5. Let (f ,n) be a discrete isothermic net with Christoffel dual (f ∗,n). Then

the following hold:

1. There exist real values β per edge that coincide for opposite edges on each

quad and the cross-ratio of every quad factorizes, i.e.,

(f1 − f )(f12 − f2)

(f12 − f1)(f2 − f )
= β1

β2
, (12)
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with β1 = βf1−f and β2 = βf2−f associated with shifts in the first and second

lattice directions, respectively.

2. Corresponding edges of f and f ∗ are parallel and satisfy:

f ∗
i − f ∗ = βi

fi − f

‖fi − f ‖2
for i = 1, 2, (13)

while non-corresponding diagonals are parallel and satisfy:

f ∗
12 − f ∗ = (β2 − β1)

f2 − f1
‖f2 − f1‖2

and f ∗
2 − f ∗

1 = (β2 − β1)
f12 − f

‖f12 − f ‖2
. (14)

�

For the rest of this section we restrict the discussion to the special case of dis-

crete isothermic nets whose immersion quads have cross-ratio minus one, in particular,

we assume that β1 = 1 and β2 = −1 for every quad. The reason for doing this is that

if we think of the cross-ratio as a discrete analog of f 2
x /f

2
y , then cross-ratio minus one

corresponds to f 2
x = −f 2

y , the square of the defining property of conformal maps fx = ify ;

the more general notion of factorizing cross-ratio allows for reparametrizations of the

parameter lines.

It is essential to emphasize that the restriction to cross-ratio minus one solely

serves the purpose of simplifying the algebra. Every result that follows also holds with

the more general definition, with the pre-factors β1 and β2 cropping up in the expected

places.

The notion of a discrete holomorphic function just restricts the notion of discrete

isothermicity to the plane.

Definition 3.6. A complex function g : Z
2 → C is called adiscrete holomorphic function

if every quad of its image has cross-ratio minus one. �

We now define the discrete Weierstrass representation by following the same

procedure as in the smooth case.

Definition 3.7 (Weierstrass representation of discrete isothermic minimal nets). Let

g : Z
2 → C be a discrete holomorphic function and consider the discrete isothermic net

(f ,n) where:

1. the Gauß map n is given by the stereographic projection of the holomorphic

data g, i.e.,
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n := 1

1 + |g|2
(
g+ ḡ,

1

i
(g− ḡ), |g|2 − 1

)
, so in particular

ni := 1

1 + |gi|2
(
gi + ḡi,

1

i
(gi − ḡi), |gi|2 − 1

)
for i = 1, 2;

(15)

2. and f is given (up to translations) as the discrete isothermic dual immersion

of n, i.e., for a shift in either direction

f1 − f := n1 − n

‖n1 − n‖2
= 


(
1

2(g1 − g)
(1 − g1g, i(1 + g1g),g1 + g)

)
and

f2 − f := − n2 − n

‖n2 − n‖2
= −


(
1

2(g2 − g)
(1 − g2g, i(1 + g2g),g2 + g)

)
.

(16)

We call the arising net a discrete isothermic minimal net. �

Lemma 3.8. Let (f ,n) be a discrete isothermic minimal net. Then it is a minimal edge-

constraint net. �

Proof. Discrete isothermic nets are circular nets, so they are edge-constraint nets and

by construction (f ,n) is the Christoffel dual of (n,n), so A(f ,n) = 0. �

In the smooth setting theWeierstrass representation provides a way to compute

theGauß curvature explicitly and for isothermic surfaces is given byK = −4|g′|4
(1+|g|2)4 , see [33].

This has a discrete analogue:

Lemma 3.9. Let (f ,n) be a discrete isothermic minimal net arising from a discrete

holomorphic function g : Z
2 → C. Then the Gauß curvature of a quad is given in terms

of g by:

K = −4(|g12 − g||g2 − g1|)2
(1 + |g|2)(1 + |g1|2)(1 + |g12|2)(1 + |g2|2) . (17)

�

Proof. Again we use the diagonals as the discrete partial derivatives. By Equation

(14) we have A(f , f ) = − 4
‖nx‖2‖ny‖2A(n,n). Recall that the chordal distance between the

stereographic projection of two points w and z in C is

2√
(1 + |z|2)(1 + |w|2) |z −w|. (18)

Applying this to ‖nx‖2 and ‖ny‖2 explicitly recovers the result. �
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The discrete Weierstrass representation naturally gives rise to an associ-

ated family. We think of the discrete Weierstrass representation in terms of the

corresponding discrete complex Weierstrass vectors

ωi = 1

2(gi − g)
(1 − gig, i(1 + gig),gi + g) (19)

for each lattice direction i = 1, 2 so that the immersion edges can be concisely written:

f1 − f = 
ω1 and f2 − f = −
ω2.

Definition 3.10 (Associated family of discrete isothermic minimal net). Let g : Z
2 → C

be a discrete holomorphic function, n : Z
2 → S

2 be the stereographic projection of g, ωi

be the discrete complex Weierstrass vectors of g, and λ = eiα for α ∈ [0, 2π ]. Then, the
family of contact element nets (f α,n) given by:

f α1 − f α := 
(λω1) and f α2 − f α := −
(λω2) (20)

is called the associated family of the discrete isothermic minimal net (f 0,n) and λ is

called the spectral parameter. �

Lemma 3.11. Let (f 0,n) be a discrete isothermic minimal net. Any member (f α,n) of its

associated family is an edge-constraint net as well. �

Proof. By formally extending the dot product to complex 3-vectors (i.e., (z1, z2, z3) ·
(w1,w2,w3) := ∑3

i=1 ziwi), and noting that the Gauß map n ∈ R
3 is real valued we have

for i = 1, 2 that 
(λωi) · n = 
(λωi · n) and 
(λωi) · ni = 
(λωi · ni). We easily compute


(λω1 · n) = −
( λ2 ) and 
(λω1 · n1) = 
( λ2 ). Similarly, 
(λω2 · n) = 
( λ2 ) and 
(λω2 · n2) =
−
( λ2 ). So (f αi − f α) · n = −(f αi − f α) · ni. �

The previous lemma provides us with a way to interpret the rotation generated

by the multiplication of λ directly in R
3:

Lemma 3.12. Let (f α,n) be the associated family of a discrete isothermic minimal net

(f 0,n). Then for each α ∈ [0, 2π ] and i = 1, 2 we have:

f αi − f α = (−1)(i−1)‖f 0
i − f 0‖2(cosα(ni − n)− sin α(ni × n)). (21)

In other words f αi − f α is given by f 0
i − f 0 rotated in the plane perpendicular to (ni + n)

by angle α, as shown in Figure 5. �
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Fig. 5. The geometry of an edge in the associated family Equation (21) along with its original

immersion edge (i.e., parallel to its Gauß map edge); the circle is the circumcircle of an adjacent

Gauß map quad.

Proof. We show the result for the first lattice direction i = 1, the other lattice direction

follows similarly.

For every α ∈ [0, 2π ] the immersion edge f α1 − f α is perpendicular to (n1 + n)/2,

so it is a linear combination of (n1 − n) and (n1 × n). Furthermore, in terms of the

complex discrete Weierstass vector, this immersion edge is the linear combination


(λω1) = cosα
ω1 − sin α�ω1. Since (f 0,n) and (n,n) are dual discrete isothermic

nets we immediately have 
ω1 = ‖f 0
1 − f 0‖2(n1 − n), so we only have to show �ω1 =

‖f 0
1 − f 0‖2(n1 × n).

A simple computation yields that the formal complex 3-vector dot product ω1 ·ω1

is real and equal to 1/4. In particular, this implies that the real dot product 
ω1 ·�ω1 = 0

and that ‖�ω1‖2 = ‖
ω1‖2 −1/4. Hence �ω1 is parallel to n1 ×n (since it is perpendicular

to both (n1 −n) and (n1 +n)). Now, since the Gauß map vectors are unit length we have

‖n1 × n‖2 = ‖n1+n
2 ‖2‖n1 − n‖2, which we use to conclude

‖�ω1‖2 = 1

‖n1 − n‖2
− 1

4
= ‖n1 + n‖2

4‖n1 − n‖2
= (‖f 0

1 − f 0‖2‖n1 × n‖)2. (22)

�

This more geometric construction of the associated family highlights the fol-

lowing important relationship (shown in Figure 6), which will lead to vanishing mean

curvature.

Lemma 3.13 (Quad geometry of the associated family). Every immersion quad of a

member of the associated family (f α,n) when projected into its corresponding Gauß
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Fig. 6. A nonplanar quad (top) from the associated family of a discrete isothermic minimal net

and its projection, which is a rotated and scaled version of the original circular quad (bottom,

solid line). The Gauß map is constant.

map plane is a scaled and rotated version of its corresponding circular immersion quad

of (f 0,n). �

Proof. We show that an immersion edge of (f α,n)when projected into one of its neigh-

boring Gauß map planes is a scaled and rotated version of its corresponding immersion

edge of (f 0,n); the setup is given in Figure 5. In particular, the scaling factor and rota-

tion angle are independent of the lattice direction, so the result extends to the quads,

proving the lemma.

What follows is identical for both lattice directions, so we work with the first

one. The Gauß map quad is circular so the projection direction N anchored at the origin

passes through its circumcenter (at height d) and is normal to its plane; let π be the

projection into this plane. Furthermore, N ⊥ (n1 − n) so from Equation (21) we see that

π(f α1 − f α) = ‖f 0
1 − f 0‖2(cosα(n1 − n)− sin α cosφ(n1 × n)), (23)

where φ is the angle between f α1 − f α and the Gauß map plane. Observe that the angle

between N and n1+n
2 is also φ, so we can calculate:
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‖π(f α1 − f α)‖2 = ‖f 0
1 − f 0‖4(cos2 α‖n1 − n‖2 + sin2

α cos2 φ‖n1 × n‖2)

= ‖f 0
1 − f 0‖2

(
cos2 α + sin2

α cos2 φ‖n1 + n

2
‖2

)
. (24)

= ‖f 0
1 − f 0‖2(cos2 α + sin2

α d2).

Therefore, the projected edge length is the original edge length scaled by a factor ς that

is independent of the lattice direction and rotated by angle θ , i.e.,

ς =
√
cos2 α + sin2

α d2 and cos θ = cosα√
cos2 α + sin2

α d2
. (25)

�

We now prove the main result of this section.

Theorem 3.14 (Minimality of the associated family). All contact element nets (f α,n)

for α ∈ [0, 2π ] in the associated family of a discrete isothermic minimal net (f 0,n) are

minimal edge-constraint nets. �

Proof. Choose an arbitrary α ∈ [0, 2π ]. Consider a single quad of (f α,n) with projec-

tion direction N , projection map π , and partial derivatives given by the diagonals. By

Lemma 3.13 there exist a rotation by angle θ in the plane perpendicular to N and a scal-

ing factor ς (both depending on α) that bring the original immersion quad of f 0 into the

projected associated family quad of f α. Noticing that cosα equals zero or one exactly

when cos θ is also zero or one, respectively, we write:

π(f αx ) = ς‖f 0
x ‖
(
cos θ

f 0
x

‖f 0
x ‖ + sin θ

f 0
y

‖f 0
y ‖

)
and

π(f αy ) = ς‖f 0
y ‖
(

− sin θ
f 0
x

‖f 0
x ‖ + cos θ

f 0
y

‖f 0
y ‖

)
.

(26)

The original net (f 0,n) is discrete isothermic so Equation (14) implies that: f 0x
‖f 0x ‖ =

− ny
‖ny‖ and

f 0y
‖f 0y ‖ = − nx

‖nx‖ , and that ‖f 0
x ‖‖ny‖ = ‖nx‖‖f 0

y ‖ = 2. Therefore, we compute twice

the mixed area and see that it vanishes:

2A(f α,n) = det(π(f αx ),ny ,N)+ det(nx ,π(f
α
y ),N)

= −2ς
(
det

(
sin θ

nx

‖nx‖ ,
ny

‖ny‖ ,N
)

+ det
(

nx

‖nx‖ ,− sin θ
ny

‖ny‖ ,N
))

(27)

= 0. �
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In contrast to the smooth case, the Gauß curvature does not stay constant in the

discrete associated family, but it changes in a controlled way:

Theorem 3.15 (Gauß curvature of the associated family). Let (f α,n) be contact element

net in the associated family of a discrete isothermic minimal net (f 0,n) and let Kα and

K0 be their respective Gauß curvatures. Then

Kα = K0

ς2
, (28)

where ς2 = cos2 α + sin2
α d2 is the square of the scaling factor as above and d is the

distance to the circumcenter of the corresponding Gauß map quad.

Additionally, ς will approach one in the continuum limit. �

Proof. By Lemma 3.13 we have A(f α, f α) = ς2A(f 0, f 0) and A(n,n) is constant through-

out the family. �

As in the smooth case we can define the conjugate discrete isothermic minimal

net of (f 0,n) as (f
π
2 ,n). The members of the associated family are linear combinations

of the discrete isothermic net and its conjugate net, since (f
π
2 ,n) arises as the imaginary

part of the complexWeierstrass vectors. The conjugate net is known to be in asymptotic

line parametrization. Discrete analogues of such parametrizations are known as A-nets

and were originally introduced by Sauer [38] andWunderlich [43] to investigate surfaces

of constant negative Gauß curvature (as we will do in Section 3.3).

Definition 3.16 (Discrete asymptotic net). An edge-constraint net is an A-net if its

immersion has planar vertex stars (i.e., if all immersion edges meeting at a vertex

lie in a common plane) and the Gauß map is given by choosing unit normals to these

planes. �

This definition corresponds to the fact that the osculating planes of asymptotic

lines are the tangential planes of the surface. A-nets always have nonpositive Gauß

curvature. We close by showing that conjugate discrete isothermic minimal nets are

indeed A-nets.

Lemma 3.17. The conjugate net (f
π
2 ,n) of a discrete isothermic minimal net (f 0,n) is

an A-net. �
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Proof. From Equation (21) the edges of the conjugate net satisfy:

f
π
2

1 − f
π
2 = −‖f 0

1 − f 0‖(n1 × n) and f
π
2

2 − f
π
2 = ‖f 0

2 − f 0‖(n2 × n). (29)

In particular, this means that all edges emanating from a generic vertex of f
π
2

are perpendicular to the corresponding Gauss map n, which is the definition of an

A-net. �

3.2 Discrete CMC surfaces

Definition 3.18 (CMC edge-constraint net). An edge-constraint net (f ,n) is said to have

constant mean curvature if every quad of the net has the same nonvanishing mean

curvature H ∈ R
∗. �

Like their simpler minimal cousins, smooth CMC surfaces are often described in

isothermic parametrizations. In such coordinates the Gauß-Codazzi equation is given in

terms of the conformal metric parameter u (defined by ds2 = eu(dx2 +dy2), and reduces

to the integrable elliptic sinh-Gordon equation,

�u = H sinhu. (30)

Techniques of soliton theory have been immensely successful in explicitly constructing

and classifying CMC surfaces (e.g., tori [3, 36]) in the classical setting of Euclidean three-

space and other space forms. The integrability condition of a suitably gauged frame

can be identified with the Lax representation of the integrable equation [4, 41] which

harnessesmethods from soliton theory for geometry and allows for structure preserving

discretizations [10]. Moreover, one can then explicitly describe the immersed surfaces

in terms of the so-called Sym–Bobenko formula, which by construction simultaneously

generates the associated family.

Using this method Bobenko and Pinkall [8] defined discrete CMC surfaces as a

subclass of discrete isothermic surfaces, just as they did for discrete minimal surfaces.

For smooth CMC surfaces, the DPWmethod [21] is aWeierstrass typemethod that allows

the construction of all CMC surfaces from holomorphic/meromorphic data. A discrete

version of this method giving rise to the same frame description as Bobenko and Pinkall

can be found in [23].

As with the minimal case, these discrete isothermic surfaces arising from the

frame description have previously been shown to have constant mean curvature [14],
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but once again, the naturally arising associated family leaves the realm of the special

isothermic parametrization (to more general conformal parametrizations in the smooth

setting). Thus, there has been no notion of discrete mean curvature through which this

family could be geometrically understood. Again, we rectify this by showing that the

original discrete isothermic net and its entire algebraically generated associated family

are in fact CMC edge-constraint nets.

Since the curvature theory of edge-constraint nets satisfies the Steiner formula

Equation (3), the linear Weingarten relationship and its corollary come for free by

calculating the curvatures of an offset surface.

Lemma 3.19 (Linear Weingarten relationship). Let (f ,n) be an edge-constraint net.

Then for any t ∈ R the edge-constraint net given by the offset (f t,n) = (f + tn,n) has

curvatures

Kf t = K
1 + 2Ht + Kt2 and Hf t = H + Kt

1 + 2Ht + Kt2 , (31)

where K,H are the Gauß and mean curvatures of the original surface (f ,n). If (f ,n) has

constant mean curvature, then there exist α,β ∈ R only depending on t,H such that

αKf t + βHf t = 1. (32)

In other words, for each offset net, α,β are constant on all quads of the net. �

Proof. Choose α = −t( 1
H + t) and β = 1

H + 2t. �

An important corollary is that CMC edge-constraint nets come in pairs, just like

their smooth counterparts (see Figure 7).

Corollary 3.20. Let (f ,n) be a CMC edge-constraint net with mean curvature H = − 1
h ,

for some h ∈ R
+. Then the offset net (f ∗,n) := (f + hn,n) is also a CMC edge-constraint

netwithmean curvatureH∗ = −H and themiddle edge-constraint net (f̂ ,n) := (f+ h
2n,n)

has constant positive Gauß curvature 4H2. �

Remark 3.21. If (f ,n) is a discrete isothermic net of CMC H = − 1
h , then the offset net

(f + hn,n) is in fact the discrete Christoffel dual isothermic net (Definition 3.4). �

For simplicity for the rest of our discussion, we rescale to H = −1.
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Fig. 7. Two dual Delaunay nets with the positive Gauß curvature net in between. The normal

lines connecting them are shown as well.

Lemma 3.22. Let (f ,n) be an edge-constraint net with unit offset (f ∗,n) := (f + n,n).

Consider a single quad, then

A(f , f ∗) = 0 ⇐⇒ H = A(f ,n)/A(f , f ) = −1. (33)
�

In other words, vanishing mixed area between a net and its unit offset for every

quad is equivalent to both nets having constant mean curvature. The condition

A(f , f ∗) = det(f12 − f , f ∗
2 − f ∗

1 ,N)+ det(f ∗
12 − f ∗, f2 − f1,N) = 0 (34)

can be understood geometrically as the vanishing sum of the (projected) areas of the

curves formed by f , f ∗
1 , f12, f

∗
2 and f ∗, f1, f ∗

12, f2 which we denote g and g∗, respectively:

g = f ,g1 = f ∗
1 ,g12 = f12, and g2 = f ∗

2 ; and

g∗ = f ∗,g∗
1 = f1,g

∗
12 = f ∗

12, and g∗
2 = f2.

(35)

Therefore, to prove that an edge-constraint net has constant mean curvature we

switch between the two combinatorial cubes Cf and Cg formed by f , f ∗ and g,g∗, respec-

tively. They share the same vertex set but the edges of one are the diagonals of the other.
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Fig. 8. Shift notation for the frame description. The frame of a net � lives on vertices, while the

corresponding Lax matrices U and V live on edges; for both the frame and Lax matrices, one can

understand shifts in either lattice direction.

By showing that the algebraically generated associated family of discrete CMC

nets of Bobenko and Pinkall [8] are CMC edge-constraint nets, we find that their Cg

cubes are built from skew parallelograms, yielding an unexpected connection to the 3D

compatibility cube for discrete curves from the theory of integrable systems [25, 42]. We

now briefly recapitulate the moving frame description of these nets.

We identify Euclidean three-space R
3 with the imaginary part of the quaternions

H = span {1, i, j,k}, i.e., R
3 ∼= span {i, j,k} ∼= span {−iσ1,−iσ2,−iσ3}, where

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (36)

are the 2×2 complex Paulimatrices generating the Lie algebra su(2). Using this represen-

tation one describes the surface via a moving frame � ∈ �H which rotates the standard

orthonormal frame of R
3 into the surface tangent plane and normal vector. Specifically,

conjugation by a quaternion corresponds to a rotation and the frame encodes the Gauß

map directly by rotating k, i.e., n = −i�−1σ3� = �−1k�. These frame descriptions are

the natural language of integrable systems related to surface theory both smooth and

discrete [4, 8, 10].

With the notation of Figure 8, we introduce the frame � of interest by initially

setting � equal to the identity and then defining the vertex shifts

�1 := U� and �2 := V�, (37)
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Fig. 9. Three members of the associated family of a discrete CMC edge-constraint net Smyth

surface, togetherwith their curvature line fields. For smooth Smyth surfaces, the associated family

is known to be a reparametrization. Note how the curvature line fields keep their directions in the

family.

where

U :=
(

a −λu− 1
λu

u
λ

+ λ

u ā

)
and V :=

(
b −iλv + i

λv

i λv − i
λ
v b̄

)
(38)

are the Lax matrices with spectral parameter λ = eiα for α ∈ [0, 2π ], a,b complex-valued

functions living on vertices (and ā, b̄ their complex conjugates), and u,v positive real-

valued functions living on vertices [8]. To guarantee that each quad closes, i.e.,�12 = �21,

the Lax matrices and their shifts V1 and U2 must satisfy the compatibility condition

V1U = U2V , with det(U) = det(U2) and det(V) = det(V1). (39)

For every value of the spectral parameter the net is then generated by taking the

imaginary part of the Sym–Bobenko formula [8] (an example is shown in Figure 9),

n := �−1k�

f :=
(

−�−1 ∂

∂α
�|λ=eiα + 1

2
�−1k�

)
,

f := �f.

(40)

Note that unlike in [8] we purposefully do not normalize the transport matrices U and

V to have determinant 1. Thus � is not in SU(2), necessitating taking the imaginary

part.
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Definition 3.23 (Associated family). Let (f ,n) := (f α,nα) be a net generated from the

frame � (with spectral parameter λ = eiα) given by Equations (38–40). We call (f ,n) a

member of the associated family of a discrete isothermic CMC net. �

Lemma 3.24. Every member of the associated family of a discrete isothermic CMC net

is an edge-constraint net. Furthermore, for i = 1, 2 the edge-constraint is expressed in

the equation

ni = −(fi − f)n(fi − f)−1. (41)

�

We defer the proof to Section 5 where a general discussion of edge-constraint

nets arising from Lax pairs is provided.

In general, the edge-constraint can be understood along a shift in either lattice

direction i = 1, 2 as first negating n and then rotating it along the edge fi − f to find ni,

which, when written quaternionically, gives rise to the following definition.

Definition 3.25 (Normal transport quaternions). Consider a quad from an edge-

constraint net (f ,n). The quaternions given by φ := τ + (f1 − f ), τ ∈ R and ψ =
η + (f2 − f ), η ∈ R such that

n1 = −φ−1nφ and n2 = −ψ−1nψ , (42)

are called normal transport quaternions. (Although inverses naturally arise on the right

(Equation (41)) from the Sym–Bobenko formula, we prefer to define normal transports

with inverses on the left; this simply corresponds to an opposite sign convention for the

real part of the normal transport.) �

This perspective yields insight into the geometry of the cubes Cf and Cg for an

arbitrary edge-constraint net.

Lemma3.26 (Edge-constraint as a skewparallelogram). Let (f ,n)be an edge-constraint

net with offset net (f ∗,n) = (f + n,n). For each quad, consider the combinatorial cubes

Cf and Cg formed by it and its offset (as given in Equation (35)). Then the four sides of

Cf and Cg are skew trapezoids and skew parallelograms, respectively. �

Moreover, we see that if (f ,n) is a member of the associated family of a dis-

crete isothermic CMC net then for every quad we have the following three facts that
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together imply that (f ,n) has constant mean curvature: (i) the top and bottom of Cg are

also parallelograms; (ii) all six sides are parallelograms of the same “folding parame-

ter”, so Cg forms an “equally folded parallelogram cube”; and (iii) every equally folded

parallelogram cube has vanishing (projected) mixed area between its top and bottom.

Let g,g1,g12,g2 be a skew parallelogram built from the edge lengths �1 and �2.

It is straightforward to see that the dihedral angles δ1 and δ2 (measured between 0 and
π

2 ) along the edges of this skew parallelogram (understood as edges of the enclosing

tetrahedron) are equal for opposite edges and satisfy sin δ1
�1

= sin δ2
�2

.

Definition 3.27. The folding parameter of a skew parallelogram with the above

notation is defined as

σ := sin δ1
�1

= sin δ2
�2

. (43)
�

Lemma 3.28. Every skew parallelogram can be written in terms of two edges g1 − g

and g2 − g with lengths �1 and �2, respectively, and a folding parameter σ :

g12 − g2 = (ρ1 + (g2 − g1))(g1 − g)(ρ1 + (g2 − g1))
−1,

where ρ = 1

σ

(√
1 − σ 2�21 −

√
1 − σ 2�22

)
.

(44)

�

Proof. The real part ρ is the same as 
ν in Equation (3.15) of [25], with k = tan δ1
2 cot δ22

and s = �1. Using Jacobi elliptic functions one can rewrite this expression to find the

above equation. �

This construction can be extended to three edges and a fixed folding parameter,

yielding the known combinatorial 3D compatibility cube of skew parallelograms [25, 42]:

Theorem 3.29 (Darboux transform for parallelograms). Let g be a skew parallelogram

with edge lengths �1, �2 and folding parameter σ . For every vector ñ ∈ R
3, there exists a

unique skew parallelogram g∗ at constant distance ‖ñ‖ from g such that:

1. g∗ also has edge lengths �1, �2 and folding parameter σ ; and

2. every face of the combinatorial cube Cg formed by g and g∗ is a skew

parallelogram of folding parameter σ .

We call this object an equally folded parallelogram cube. (Instead of fixing the folding

parameter σ one can also hold the real part ρ constant; this is also 3D compatible as

shown in [37].) �
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Proof. Recall that g itself can be generated from the two vectors w1 := g1 − g and

w2 := g2 − g and the folding parameter σ . Therefore, we can rephrase the theorem

statement as: given w1,w2, ñ and the folding parameter σ , show that completing the

skew parallelogram twice in every direction forms a closed combinatorial cube. This is

precisely the Bianchi Permutability Theorem for a single edge in the Darboux (Bäcklund)

transformation of a discrete arc-length parametrized curve, a proof of which is given

in [25]. �

We now come back to the viewpoint that one can switch between the combina-

torial cubes Cg and Cf as introduced in Equation (35).

Theorem 3.30. Consider an equally folded parallelogram cube Cg with bottom and top

g and g∗, respectively. Let h ∈ R be the constant distance between g and g∗. Then the

bottom and top quads of the corresponding cube Cf with normals given by the vertical

edges of Cf are edge-constraint net quads with mean curvatures − 1
h and 1

h , respectively.

�

Proof. Notice that Cg can be constructed from three vectors and a folding parameter

using the simplified equation for the real part of the rotation quaternions, Equation (44).

Using the quaternionic description and Ĝ := ((g∗
12 −g12)− (g∗ −g))× ((g2 −g∗

2)− (g1 −g∗
1))

one finds that

det(g∗
12 − g∗,g∗

2 − g∗
1, Ĝ)+ det(g12 − g,g2 − g1, Ĝ) = 0. (45)

Using that N ‖ Ĝ, this is equivalent to A(f , f ∗) = A(f , f + hn) = 0. Therefore, the edge-

constraint quads (f ,n) and (f + hn,n) indeed have mean curvatures − 1
h and 1

h . �

Remark 3.31. The top and bottom faces in the previous theorem can be exchanged for

any pair of opposite faces (i.e., front and back or left and right). It turns out that the

direction of Ĝ defined in the previous proof is independent of this choice (possibly up to

sign). In other words, the quad tangent planes arising from every pair of opposite faces

coincide. �

Theorem 3.32. Let (f ,n) be a member of the associated family of a discrete isothermic

CMC net (Definition 3.23) with spectral parameter λ = eiα. Then (f ,n) is a CMC edge-

constraint net. �



4244 T. Hoffmann et al.

Proof. By Lemma 3.24 (f ,n) is an edge-constraint net. Consider the unit offset net

(f ∗,n) = (f +n,n). For every quad, we show that the corresponding combinatorial cube

Cg is an equally folded parallelogram cube; the result then follows from Theorem 3.30.

We naturally extend the quaternionic description of f = �f and f ∗ = �(f + n)

to g := �g and g∗ := �g∗, for example, g∗
1 − g = f1 − f. The non-unit edges of the

parallelograms of the front and left sides of Cg are found to have squared lengths:

�21 := ‖g1 − g‖2 = 1 − 4

(
cos(2α)

det(U)
+ sin2

(2α)

det(U)2

)
and

�22 := ‖g2 − g‖2 = 1 + 4

(
cos(2α)

det(V)
− sin2

(2α)

det(V)2

)
.

(46)

Recall that by assumption det(U) = det(U2) and det(V) = det(V1), so the back and right

sides of Cg are also parallelograms with non-unit edge lengths �1 and �2, respectively.

Therefore, the top and bottom of Cg are also parallelograms both built from the edge

lengths �1 and �2.

The transports (in the sense of Lemma 3.28) that yield the front, left, and top

skew parallelograms of Cg are:

−n1 = (g∗
1 − g)n(g∗

1 − g)−1,

−n2 = (g∗
2 − g)n(g∗

2 − g)−1, and

g12 − g2 = (g2 − g1)(g1 − g)(g2 − g1)
−1.

(47)

The real parts arising from the Sym–Bobenko formula for corresponding edges, for

example, 
(f1 − f) = 1
2 tr(U

−1 ∂

∂α
U), can be computed directly using the derivative of

the determinant:

∂

∂α
det(U) = det(U) tr

(
U−1 ∂

∂α
U
)
. (48)

Applying this formula to the “double transport”, for example, V1U , shows that the sum

of the real parts of f1 − f and f12 − f1 is in fact the real part of the diagonal transport

furnished by f12 − f. We therefore find:


(g∗
1 − g) = 2 sin(2α)

det(U)
,


(g∗
2 − g) = −2 sin(2α)

det(V)
, and (49)


(g2 − g1) = 
(g2 − g)− 
(g1 − g) = −2(det(U)+ det(V)) sin(2α)

det(U)det(V)
.
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Plugging the real parts from Equations (49) with the edge lengths from Equations (46)

into the Equation (44) yields the folding parameter σ = sin(2α) in every instance.

Therefore, Cg is an equally folded parallelogram cube. �

3.3 Discrete constant negative Gauß curvature surfaces

Definition 3.33 (Constant negative curvature edge-constraint nets). An edge-constraint

net (f ,n) is said to have constant negative (Gauß) curvature if every quad of the net

has the same negative nonvanishing Gauß curvature K ∈ R
−. �

A surface parametrized by asymptotic lines has constant negative Gauß curva-

ture if and only if the asymptotic lines form a Chebyshev net, i.e., the parameter lines

are parallel transports of each other in the sense of Levi-Civita. Thus, the directional

derivative along each parameter line depends only on a single variable, so its integral

curve exhibits a constant speed parametrization (possibly a different constant for each

parameter line); Chebyshev nets are made up of “infinitesimal parallelograms” with side

lengths a,b ∈ R
+. Furthermore, the Gauß map of the asymptotic lines also forms a

Chebyshev net on the sphere. In these coordinates, the Gauß–Codazzi equation reduces

to the well-known sine-Gordon equation in the angle between the asymptotic lines

u(x,y):

−Kab sinu(x,y) = uxy(x,y). (50)

This equation is invariant to the transformation a → λa and b → λ−1b for all λ = et

with t ∈ R; varying λ generates the associated family of a constant negative curvature

asymptotic line parametrized surface, where the angles between the asymptotic lines

are invariant.

From the above characterization, Sauer [38, 39] defined the following discrete

analogue.

Definition 3.34 (K-nets). An edge-constraint net (f ,n) : D ⊂ Z
2 → R

3 × S
2 is a K-net if

it is an A-net and there exist two lengths a,b > 0 such that every immersion quad is a

skew parallelogram (Chebyshev quad) with edge lengths a and b. �

For K-nets, we restrict to regular combinatorics because having more than two

asymptotic lines meet at a point is incompatible with having negative Gauß curvature.

The Gauß map of a K-net is also built from Chebyshev quads.
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The associated family for K-nets was defined geometrically by Wunderlich [43]

using a transformation that, like in the smooth setting, preserves the interior angles

of f while scaling its edges. These geometric constructions agree with an algebraic

description (similar to that introduced for CMCnets in the previous section) in terms of a

discrete sine-Gordon equation and its Lax pair that is then integrated via a Sym–Bobenko

formula to construct the net [6, 19, 24]. However, due to the inherent nonplanarity of

the quads in these nets, understanding their curvatures has remained elusive. The goal

of this section is to show (using the geometric constructions) that K-nets indeed have

constant negative Gauß curvature as edge-constraint nets.

K-nets can be constructed (up to global rotation and scale) directly from Cauchy

data for their Gauß map [35]. Explicitly, a fourth Gauß map point n12 is determined by

completing the skew parallelogram through three other points n,n1,n2 ∈ S
2:

n12 := n · (n1 + n2)

1 + n1 · n2
(n1 + n2)− n. (51)

In other words, the Gauß map satisfies the discrete Moutard equation in S
2 [31]. The

immersion f is constructed from n via

f1 − f := n1 × n and f2 − f := n× n2. (52)

When ni ·n = cos�i then the edge lengths of f are given by sin�i for i = 1, 2. Moreover,

applying Napier’s analogies to the spherical parallelogram formed by n the two interior

angles α,β ∈ (0,π) of a K-net immersion quad are related by eiα = eiβk−1
eiβ−k , where k =

tan �1
2 tan �2

2 [6].

The associated family can now be described by a family of pairs of Gauß map

angles (�1(λ),�2(λ)) from which the K-nets are explicitly constructed.

Definition 3.35 (K-net associated family). Consider a K-net (f ,n) with the above nota-

tion and let λ = et for all t ∈ R. We construct a new K-net from �1(λ) and �2(λ) defined

by the transformation

tan
�1(λ)

2
:= λ tan

�1

2
, tan

�2(λ)

2
:= λ−1 tan

�2

2
. (53)

�

The interior angles of every quad are invariant to this transformation and the edge

lengths transform as sin�1(λ) and sin�2(λ).
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From this construction, one can compute the Gauß curvature of every quad

directly yielding our main theorem.

Theorem 3.36. Every K-net has constant negative Gauß curvature. �

Proof. Direct computation using Equations (51) and (52) yields (up to global scaling)

K = −2

(n1 + n2) · n = −2

cos�1(λ)+ cos�2(λ)
. (54)

K depends on �1(λ) and �2(λ) but for a fixed λ ∈ R
+ both of these angles are constant

(by definition) for every quad of the K-net. To have the same negative constant for all

members of the associated family, one must globally scale by a value dependent on λ.�

Some authors define K-nets in the weakest sense where the �1(λ) and �2(λ) are

allowed to vary along the parameter lines as single variable functions [10]. While still

edge-constraint nets, they obviously do not have constant negative Gauß curvature.

Remark 3.37. Wunderlich gave an interpretation for curvatures of K-nets in the sym-

metric case of�1 = �2 [43]: He interprets the circles that touch pairs of incident triangles

in opposite points in the quad symmetry planes as the curvature circles and shows that

the product of their radii is constant (see Figure 10). This quantity is in fact the Gauß

curvature as defined by Equation (4); the radii of the circles are the ratios of diago-

nals in the f and n quadrilaterals and since the diagonals are perpendicular in both

quadrilaterals the product of their lengths is proportional to the (projected) area. �

Wunderlich’s ideas stem from the fact that in the smooth setting the angular

bisectors of the asymptotic lines are the curvature lines. Observe that for K-nets the

diagonals of each quad do indeed satisfy the edge-constraint with the same normals, for

example, f12−f ⊥ n12+n and for a K-netwith all edge lengths equalwe even haven12−n ‖
f12 − f . This observation can be utilized to interpret the immersion edges of a circular

net with constant negative Gauß curvature as diagonals in immersion quadrilaterals of

K-nets (with equal lengths per K-net quadrilateral but in general different edge length

for each circular net edge). Circular nets of constant negative Gauß curvature have been

defined in [14, 28] and naturally carry over to edge-constraint nets.

Definition 3.38. An edge-constraint net (f ,n) : D ⊂ Z
2 → R

3 × S
2 that is a circular net

with Gauß curvature K = −1 is called a cK-net. �
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Fig. 10. Wunderlich’s curvature circles for a symmetric K-net quadrilateral.

It turns out that one can explicitly define cK-nets using the above observation

that each edge of a cK-net is the diagonal of aK-net quad. In [26], the first two authors give

a Lax pair representation for cK-nets based on the Lax pair for K-nets. The associated

family of K-nets then naturally gives rise to an associated family for cK-nets.

Theorem 3.39. Each cK-net and all members of its associated family are edge-

constraint nets of constant negative Gauß curvature. �

Proof. The way we define cK-nets here makes the statement for cK-nets tautological.

The construction of the associated family and the proof that each member has the same

constant negative Gauß curvature can be found in [26]. �

Figure 11 (left) shows a cK-net Kuen surface which arises as a Bäcklund trans-

form of the pseudosphere shown in Figure 12 (right) (such cK-net pseudospheres can

also be found in [14, 28]). Figure 11 (right) shows a member of its associated family. The

immersion quadrilaterals are no longer circular; unlike for K-nets where all members

of the associated family are themselves K-nets, the members of the associated family of

cK-nets are no longer circular in general. This reflects the smooth setting where asymp-

totic but not curvature coordinates are preserved throughout the associated family of

surfaces with constant negative Gauß curvature.

We can also create pseudospheres of revolution that have one asymptotic and

one curvature line. The middle net of Figure 12 is generated by first constructing an

asymptotic line with two degrees of freedom that are then used to impose rotational

symmetry and constant negative Gauß curvature, respectively.
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Fig. 11. A cK-net Kuen surface and a member of its associated family.

3.4 Discrete developable surfaces

Definition 3.40 (Developable edge-constraint net). An edge-constraint net (f ,n) is

called developable if every quad has vanishing Gauß curvature (K = 0), i.e., the Gauß

map has zero area. �

As in the smooth setup, if theGaußmap is constant then either the shape operator

vanishes or there exists exactly one nonzero principal curvature 2H and corresponding

curvature line, which is in fact even parallel to nx and ny .

Lemma 3.41. Consider a single quad from a developable edge-constraint net (f ,n)

with admissible projection direction N ∈ S
2 such that N ⊥ span{nx ,ny}. If they exist, the

nonzero principal curvature and curvature line are invariant to the choice of N . �

Proof. If n is nonconstant then span{nx ,ny} is one dimensional. Consider the reduced

coordinates where nx ,ny ∈ R
3 are both multiples of e1, the first standard basis vector of

R
3, and let fx , fy ∈ R

3. The set of admissible projection directions is then parametrized
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Fig. 12. Three pseudospheres of revolution which are constant negative curvature edge-

constraint nets. Left: Discrete asymptotic line parametrization (K-net). Middle: One discrete

asymptotic line and one discrete curvature line parametrization. Right: Discrete curvature line

parametrization (cK-net).

by an S
1 degree of freedom in e2, e3. In these coordinates, direct computation (using that

fx · ny = nx · fy ) completes the proof. �

Surfaces of planar strips have been considered as discrete developable as they

can be unfolded into the plane [29]; such immersions correspond to developable curva-

ture line edge-constraint nets, which are characterized by a discrete analogue of parallel

framed curves [2] (e.g., see Figure 13 (left)).

A polygonal curve α with vertices α0, . . . ,αk and two orthonormal vectors (u0,n0)

anchored at α0 gives rise to a unique discrete parallel frame along α; simply reflect

through the perpendicular bisector planes of each edge of α. Then ui+1 −ui and ni+1 −ni

are both parallel to αi+1 − αi for all i = 0, . . . ,k − 1. This discrete parallel frame

can also be understood as being generated from rotations about the curve binormal
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Fig. 13. Left: A circular developable edge-constraint net generated from a discrete parallel

framed polygonal helix. Observe that the net is built from planar strips quadrangulated by isosce-

les trapezoids and that the curvature line field (thin line within each quad) is constant within each

strip and parallel to the helix edge. The discrete rulings are the intersection lines of neighboring

strips, alongwhich the associated Gaußmap is constant. Both ruling directions and Gaußmap are

shown with arrows along the generating polygon. Right: The Schwarz Lantern as a developable

edge-constraint net with its curvature line field (thin line within each quad).

since the composition of two reflections is a rotation. To extend the polygonal curve

α to a developable edge-constraint net (f ,n), fix a sampling yj of the real line and

define f : (i, j) �→ αi + yj ui with Gauß map ni. The resulting net (f ,n) is then in fact

circular.

Conversely, for a surface M built from a collection of planar strips with inter-

section lines u one can find a discrete parallel framed curve (α,u,n) giving rise to a

developable circular edge-constraint net whose immersion realizesM : choose an initial

point α0 on an initial line u0 and a unit normal n0 ⊥ u0. The reflection property then

gives rise to unique α and n. It turns out that the curvature line is invariant to the initial

choice of n0 (it is always parallel to α), while the mean curvature is not (which can be

interpreted as extra information on how the developable surface locally bends).

Examples of developable edge-constraint nets that are not in curvature line

parametrization arise from the associated family of the CMC discrete isothermic cylin-

der; this family contains the well-known Schwarz Lantern [30] (see Figure 13 (right)) as

an immersion with vertex normals that coincide with those of the smooth cylinder.
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4 Towards a Conformal Perspective

In the smooth setting two conformal immersions f , f̃ : M → R
3 ∼= �H, for a manifold M

are said to be spin-equivalent if there exists a spin transformation λ : M → H
∗, such that

df̃ = λ̄df λ; the surface normal n transforms as ñ = λ−1nλ. Geometrically, spin transfor-

mations correspond to stretch rotations of the tangent plane at every point. Therefore,

they are conformalmappings and for simply connected domains any two surfaces which

are conformally equivalent are related via a spin transformation. Kamberov, Pedit, and

Pinkall [27] showed that one can classify all Bonnet pairs on a simply connected domain

using spin transformations. Bonnet pairs are immersed surfaces that have the same

metric and mean curvature but are not rigid body motions of each other.

We define a discrete spin transformation by “stretch-rotating” the normal

transport quaternions (Definition 3.25) of an edge-constraint net.

Definition 4.1 (Discrete spin transformation). Let (f ,n) be an edge-constraint net with

quad graph G. The spin transformation is a map λ : G → H
∗ which transforms (f ,n) to

(f̃ , ñ). The normal at each vertex and the normal transport quaternions transform by:

ñ = λ−1nλ, φ̃ = λ̄φλ1, and ψ̃ = λ̄ψλ2. (55)

If the immersion of the spin transformed quadrilateral closes (i.e., (φ̃ + ψ̃1)− (φ̃2 + ψ̃) is

real), then one can construct a new edge-constraint net via

f̃1 − f̃ = �φ̃ and f̃2 − f̃ = �ψ̃ . (56)

�

Proof. The Gauß map ñ is still unit length since conjugation by a quaternion corre-

sponds to a global rotation, so lengths are preserved. The edge constraint is satisfied

since for an arbitrary edge (here denoted as first lattice shifts) we have

φ̃−1ñφ̃ = λ−1
1 φ

−1λ̄−1λ−1nλλ̄φλ1 = λ−1
1 φ

−1nφλ1 = λ−1
1 (−n1)λ1 = −ñ1. (57)

�

The spin transformation is invertible in the following sense, yielding a notion

of discrete conformity.

Lemma 4.2. If (f̃ , ñ) is a spin transformation of (f ,n) with λ, then (f ,n) is a spin

transformation of (f̃ , ñ) with λ−1. �



A Discrete Parametrized Surface Theory in R
3 4253

Fig. 14. A Bonnet pair: two edge-constraint nets with the same mean curvature per quad that are

discretely conformally equivalent but not rigid body motions of each other.

Definition 4.3 (Discrete conformal). Two edge-constraint net quads are discretely

conformally equivalent if they are spin transformations of each other. �

This spin transformation can give rise to edge-constraint net Bonnet pairs, an

example is shown in Figure 14. The Darboux transformations of discrete isothermic

nets [22] are also spin transformations, the proof is along the same lines as that of the

following theorem.

Theorem 4.4. The nets in the associated family of a discrete isothermic minimal net

are conformal to each other. �

Proof. Perform the spin transformation with λ = cos( α2 ) − sin( α2 )n on the discrete

isothermic minimal nets given by the Weierstrass representation (Definition 3.7) and

see that one recovers the associated family edge (Definition 3.10—note the different use

of the symbol λ therein). �

5 Lax Pair Edge-Constraint Nets

In the smooth setting, several surfaces and their associated one-parameter families can

be described in terms of a so-called Lax representation, for example, constant positive

and negative Gauß curvature surfaces, CMC surfaces, Bianchi surfaces, and surfaces

with harmonic inverse mean curvature [4]. In this representation R
3 is identified with
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the imaginary quaternions �H and, as was done in Section 3.2, we write elements in H in

terms of 2 × 2 complex matrices. Surfaces are constructed by integrating maps U ,V ,�

from R
2 into the quaternions H satisfying the smooth compatibility conditions

Uy − Vx + [U ,V ] = 0,

�x = U�, �y = V�.
(58)

When U ,V are in fact maps to �H ∼= su(2) then � maps to SU(2) and is the familiar

orthonormal moving frame description of the surface.

In the discrete case, U ,V ,� map from Z
2 to the invertible quaternions H

∗ (with

the notation of Figure 8) and satisfy the discrete compatibility conditions

V1U = U2V ,

�1 = U�, �2 = V�,
(59)

starting from a fixed � (often the identity). A discrete theory of moving frames which

allows these compatibility conditions to be integrated in general is not known.

Associated families of surfaces arise when U ,V ,� depend on a so-called spec-

tral parameter λ = λ(α), defining a curve in C (parametrized by a real parameter α), and

satisfy the compatibility conditions for all λ(α). In this case, the compatibility equa-

tions are called a Lax representation for the family of surfaces. The spectral parameter

dependence then allows for the surfaces to be found through differentiation (as opposed

to integration) using the so-called Sym–Bobenko formula [4, 41].

Discrete Lax representations give rise to associated families of discrete nets f α,

together with their Gauß maps nα, through the discrete Sym–Bobenko formula:

nα := �−1k�,

fα := s�−1 ∂

∂α
�|λ(α) + tn = s�−1�α + tn,

f α := �f,

(60)

where t ∈ R is an offset constant.

We used this description explicitly to show that discrete isothermic CMC nets

[8, 23, 34] and their associated families are CMC edge-constraint nets. By Corollary 3.20

discrete isothermic constant positive Gauß curvature nets and their associated families

are constant positiveGauß curvature edge-constraint netswith the sameLax representa-

tion, but integrate with a different value for t in the Sym–Bobenko formula (t = 0 instead

of 1
2 as in Equation (40)). Although not explicitly used here, constant negative Gauß cur-

vature edge-constraint nets in either asymptotic coordinates (K-nets) [6, 7] or curvature
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line coordinates (cK-nets) [26], together with their respective associated families, have

a Lax pair representation.

The next theorem characterizes those discrete Lax representations that give rise

to edge-constraint nets, thus, making it easy to check if a particular family of surfaces

arising from a Lax pair can be further understood using the geometry of edge-constraint

nets.

Theorem 5.1. Let (f α,nα) be a family of pair of quad nets arising from a Lax represen-

tation U(λ),V(λ),� depending on a spectral parameter λ(α) satisfying Equation (59) by

integrating (60). Then (f α,nα) is an edge-constraint net for each α if and only if the Lax

matrices U(λ) and V(λ) depend on λ only in their off-diagonal entries. �

Proof. We saw in Definition 3.25 that the edge-constraint can be phrased quater-

nionically in terms of the normal transport quaternions. For a net arising from the

Sym–Bobenko formula Equation (60), the (inverse) of the normal transports are the

H
∗-valued edges, for example, f1 − f. A direct computation shows that satisfying the

edge-constraint is equivalent to the relationships

n1 = −(f1 − f)n(f1 − f)−1 and n2 = −(f2 − f)n(f2 − f)−1. (61)

The proof of the condition on Lax matrices is equivalent for both lattice direc-

tions, sowe provide details for the first one, resulting in a condition on theU(λ)matrices:

up to a global rotation by � we find

(f1 − f)n = (sU−1Uα + t(U−1kU − k))k

= U−1(sUα + t(kU − Uk)k

= U−1 (sUαk + t(kUk + U))

= U−1
(
sUαk + t((−kU)(−k)+ (−kU)(−kU)−1U)

)
!= U−1(−kU)(f1 − f)

= −n1(f1 − f)

(62)

precisely when:

Uαk = −kUα, (63)

which is equivalent to U having only off-diagonal entries dependent on λ(α) when

written as a 2 × 2 complex matrix. �
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