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Introduction
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Dimension

The dimension of a poset P is the least d such that P is
isomorphic to a subposet of (Rd,≤d).
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Standard Examples
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Dimension - Facts

• decid. dim(P) ≤ 2 can be done in poly-time
• decid. dim(P) ≤ t for fixed t ≥ 3 is NPC [Yannakakis ’82]
→ even for height-2 posets [Felsner, Mustaţă, Pergel]

• dim(P) is a hypergraph coloring problem
→ standard examples correspond to cliques

• S2-free posets can have arbitrarily large dimension
→ a.k.a. interval orders



Cover Graphs



Cover Graphs
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Very sparse Cover Graphs

If the cover graph of P

• is a tree, then dim(P) ≤ 3. [Trotter, Moore ’77]
• is outerplanar, then dim(P) ≤ 4. [Felsner, Trotter, W., 12]
• has pw ≤ 2, then dim(P) ≤ 17. [BKY 14+]
• has tw ≤ 2, then dim(P) ≤ 1276. [JMTWW 14+]

Question: Are there constant upper bounds when the cover
graph is planar? Or has tw ≥ 3?
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Sparse Cover Graphs

Posets of bounded height have bounded dimension if their
cover graphs

• are planar [Streib, Trotter]
• have bounded treewidth [JMMTWW]
• exclude some apex as a minor [JMMTWW]
• exclude some graph as a minor [Walczak][Micek, W.]

Remark: Graphs in these classes have bounded degeneracy.
But:

K5
PK5

log log(n) ≤ dim(PKn) [Dushnik, Miller ’41]
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Yes! Classes with Bounded Expansion

contract

branch sets have radius ≤ r r-shallow minor of G

G

A class C has bounded expansion if for all r ≥ 0:
r-shallow minors of G ∈ C have average degree ≤ f (r).
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Bounded expansion - Main Theorem

Theorem [Joret, Micek, W., 2015+]
Posets of bounded height whose cover graphs belong to a class
with bounded expansion have bounded dimension.



Beyond bounded expansion?

A class C is nowhere dense if for all r ≥ 0:
set of r-shallow minors of graphs in C , set of all graphs

Examples:
→ graphs with bounded expansion
→ graphs with locally bounded treewidth
→ graphs with ∆(G) ≤ girth(G)

Theorem[Joret, Micek, W., 2015+]
There are height-2 posets with cover graphs in a nowhere
dense class C such that their dimension is unbounded.
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Open Problems

• characterize classes with bounded expansion in terms of
dimension

• improve bounds:
→ Polynomial bound when cover graphs are planar?
→ Single-exponential when cover graphs have bounded

treewidth?
→ Theorem[Joret, Micek, W.]

Posets with planar diagrams have dim ∈ O(h).

• Král: ∀ε > 0, dim ∈ Oh(nε) when cover graphs in a
nowhere dense class?

• Do k + k-free posets with sparse cover graphs have
bounded dim?
→ Theorem[HSTWW]

Yes, when cover graphs are planar.

Thank You
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