Sparsity and Dimension

Veit Wiechert

joint work with Gwenaël Joret and Piotr Micek

INTRODUCTION

PARTIAL ORDERS (POSETS)

DIMENSION

The *dimension* of a poset **P** is the least *d* such that **P** is isomorphic to a subposet of (\mathbb{R}^d, \leq_d) .

The *dimension* of a poset **P** is the least *d* such that **P** is isomorphic to a subposet of (\mathbb{R}^d, \leq_d) .

3-dimensional posets

Standard Examples

- decid. dim(\mathbf{P}) \leq 2 can be done in poly-time
- decid. dim(P) ≤ t for fixed t ≥ 3 is NPC [Yannakakis '82]
 → even for height-2 posets [Felsner, Mustață, Pergel]
- dim(**P**) is a hypergraph coloring problem
 - \rightarrow standard examples correspond to cliques
- S₂-free posets can have arbitrarily large dimension
 → a.k.a. interval orders

COVER GRAPHS

Cover Graphs

If the **cover graph** of **P**

- is a tree, then $\dim(\mathbf{P}) \le 3$.[Trotter, Moore '77]• is outerplanar, then $\dim(\mathbf{P}) \le 4$.[Felsner, Trotter, W., 12]• has $pw \le 2$, then $\dim(\mathbf{P}) \le 17$.[BKY 14+]
- has $tw \leq 2$, then
- $\dim(\mathbf{P}) \le 1276.$ [JMTWW 14+]

Question: Are there constant upper bounds when the cover graph is planar? Or has $tw \ge 3$?

height of P:

 $h(\mathbf{P}) =$ maximum size of a chain in \mathbf{P} .

Posets of bounded height have bounded dimension if their **cover graphs**

- are planar
- have bounded treewidth
- exclude some apex as a minor
- exclude some graph as a minor

[Streib, Trotter] [JMMTWW] [JMMTWW] [Walczak][Micek, W.] Posets of bounded height have bounded dimension if their **cover graphs**

- are planar [Streib, Trotte
- have bounded treewidth
- exclude some apex as a minor
- exclude some graph as a minor

[Streib, Trotter] [JMMTWW] [JMMTWW] [Walczak][Micek, W.]

Remark: Graphs in these classes have **bounded degeneracy**. **But:**

 $\log \log(n) \le \dim(\mathbf{P}_{K_n})$ [Dushnik, Miller '41]

Posets of bounded height have bounded dimension if their **cover graphs**

- are planar [Streib, Troth
- have bounded treewidth
- exclude some apex as a minor
- exclude some graph as a minor

[Streib, Trotter] [JMMTWW] [JMMTWW] [Walczak][Micek, W.]

Remark: Graphs in these classes have **bounded degeneracy**. **But:**

 $\log \log(n) \le \dim(\mathbf{P}_{K_n})$ [Dushnik, Miller '41]

The picture so far

Yes! Classes with Bounded Expansion

branch sets have radius $\leq r$

r-shallow minor of *G*

A class *C* has *bounded expansion* if for all $r \ge 0$: *r*-shallow minors of $G \in C$ have average degree $\le f(r)$.

Bounded expansion - Examples

BOUNDED EXPANSION - EXAMPLES

Theorem [Joret, Micek, W., 2015+]

Posets of bounded height whose cover graphs belong to a class with **bounded expansion** have bounded dimension.

A class *C* is *nowhere dense* if for all $r \ge 0$: set of *r*-shallow minors of graphs in $C \ne$ set of all graphs

Examples:

- \rightarrow graphs with bounded expansion
- \rightarrow graphs with locally bounded treewidth
- \rightarrow graphs with $\Delta(G) \leq \text{girth}(G)$

Theorem[Joret, Micek, W., 2015+]

There are height-2 posets with cover graphs in a **nowhere dense** class *C* such that their dimension is unbounded.

Full Picture

Open Problems

- characterize classes with bounded expansion in terms of dimension
- improve bounds:
 - \rightarrow Polynomial bound when cover graphs are planar?
 - → Single-exponential when cover graphs have bounded treewidth?
 - → **Theorem**[Joret, Micek, W.] Posets with planar diagrams have dim $\in O(h)$.
- Král: ∀ε > 0, dim ∈ O_h(n^ε) when cover graphs in a nowhere dense class?
- Do **k** + **k**-free posets with sparse cover graphs have bounded dim?
 - → Theorem[HSTWW]

Yes, when cover graphs are planar.

Open Problems

- characterize classes with bounded expansion in terms of dimension
- improve bounds:
 - \rightarrow Polynomial bound when cover graphs are planar?
 - → Single-exponential when cover graphs have bounded treewidth?
 - → **Theorem**[Joret, Micek, W.] Posets with planar diagrams have dim $\in O(h)$.
- Král: ∀ε > 0, dim ∈ O_h(n^ε) when cover graphs in a nowhere dense class?
- Do **k** + **k**-free posets with sparse cover graphs have bounded dim?
 - → Theorem[HSTWW]

Yes, when cover graphs are planar.

Thank You