Technische Universität Berlin Fakultät II - Mathematik und Naturwissenschaften

WS 2012/13 17.01.2013

Institut für Mathematik

StR.i.HD. Albrecht Gündel-vom Hofe

11. Aufgabenblatt zur "Mathematik I für die Beruflichen Fachrichtungen BT, MT und ET"

(Abgabe der Hausaufgaben: 24.01.2013 in der VL)

31. Aufgabe:

Folgende im Gradmaß und hexagesimaler Teilung (Grad, Minuten, Sekunden) gegebene Winkel gebe man zunächst in dezimaler Teilung an und wandle sie dann ins Bogenmaß um (sowohl als Vielfache von π als auch dezimal):

 $\ddot{\mathbf{U}}$ (a) $\varphi = 15^{\circ}$, $\ddot{\mathbf{U}}$ (b) $\varphi = -75^{\circ}$, \mathbf{H} (c) $\varphi = 225^{\circ}$, $\ddot{\mathbf{U}}$ (d) $\varphi = 277^{\circ} 30^{\circ}$,

 $\ddot{\mathbf{U}}$ (e) $\varphi = 123 \,^{\circ} \, 30$ ',

H (f) $\varphi = -70 \circ 54$, $\ddot{\mathbf{U}}$ (g) $\varphi = 4 \circ 14$, 24,

 $\ddot{\mathbf{U}}$ (h) $\varphi = 210 \circ 52 '31 "$. **H** (i) $\varphi = 31 \circ 17 '20 "$.

4.0

32. Aufgabe:

Folgende im Bogenmaß gegebene Winkel wandle man ins Gradmaß um (sowohl in dezimaler als auch hexagesimaler Teilung):

$$\ddot{\mathbf{U}}$$
 (a) $\varphi = \frac{\pi}{8}$, $\ddot{\mathbf{U}}$ (b) $\varphi = -\frac{\pi}{10}$, \mathbf{H} (c) $\varphi = \frac{\pi}{12}$, $\ddot{\mathbf{U}}$ (d) $\varphi = \frac{2\pi}{3}$, $\ddot{\mathbf{U}}$ (e) $\varphi = \frac{7\pi}{5}$,

H (f)
$$\varphi = \frac{5\pi}{2}$$
, **Ü** (g) $\varphi = -0.22$, **Ü** (h) $\varphi = 3.0$, **H** (j) $\varphi = -2.31$.

4.0

33. Aufgabe:

Bestimmen Sie die nicht angegebenen Winkel und Seiten der rechtwinkligen Dreiecke Δ ABC mit $\gamma = 90^{\circ}$, von denen die folgenden Größen bekannt sind:

 $\ddot{\mathbf{U}}$ (a) a = 50 cm, b = 78.1 cm; $\ddot{\mathbf{U}}$ (b) a = 40 cm, $\alpha = 43 \degree 36 \text{ '}$;

 $\ddot{\mathbf{U}}$ (c) b = 70 cm, $\alpha = 18 \circ 55$ '; $\ddot{\mathbf{U}}$ (d) c = 65 cm, $\beta = 59 \circ 29$ ',

H (e) a = 60 cm, c = 85 cm; **H** (f) a = 75 cm, $\beta = 78 ^{\circ} 15 ^{\circ}$.

6,0

Ü 34. Aufgabe:

Die Abfluggeschwindigkeit eines unter $\alpha = 35^{\circ}$ zur Horizontalen geworfenen Körpers – z.B. eines Schneeballs – betrage v = 20 m/s. Berechnen Sie die horizontale und die vertikale Geschwindigkeitskomponente v_1 und v_2 . Machen Sie sich dazu eine kleine Skizze.

Ü 35. Aufgabe:

Gegeben sind zwei senkrecht aufeinander stehende Kräfte $F_1 = 200 N$ und $F_2 = 150 N$.

11. Aufgabenblatt Seite 2

Wie groß ist die aus der Vektoraddition resultierende Gesamtkraft F_{ges} und welche Winkel α und β bildet sie jeweils mit den Komponenten F_1 und F_2 ? Skizzieren sie den Sachverhalt.

H 36. Aufgabe:

Ein vollbeladener Schlitten vom Gewicht G=700~N befindet sich auf einer schiefen Ebene mit dem Neigungswinkel $\beta=28~^{\circ}$. Wie groß sind die parallel zur Ebene ausgerichtete Hangabtriebskraft F_H und die dazu senkrecht stehende Normalkraft F_N ? Entwerfen Sie dazu eine kleine Skizze.

<u>Bemerkung</u>: Die Hangabtriebskraft ist die Kraft, welche aufgewendet werden muss, um den Schlitten auf Höhe zu halten und nicht abzurutschen.

6,0

37. Aufgabe:

Berechnen Sie unter Anwendung des Sinus- und des Kosinussatzes in dem (beliebigen) Dreieck Δ *ABC* die übrigen Seiten und Winkel, wenn jeweils die folgenden Größen gegeben sind. Stellen Sie dazu jeweils die entsprechenden Formeln auf:

Ü (a)
$$a = 179 \text{ m}$$
, $b = 208.3 \text{ m}$, $\beta = 106 \degree$; **Ü** (b) $a = 107.6 \text{ m}$, $\alpha = 70.4 \degree$, $\beta = 30.3 \degree$;

$$\ddot{\mathbf{U}}$$
 (c) $a = 205.4 \text{ m}$, $b = 252.8 \text{ m}$, $\gamma = 47.5^{\circ}$; $\ddot{\mathbf{U}}$ (d) $a = 135.8 \text{ m}$, $b = 191 \text{ m}$, $c = 73.9 \text{ m}$,

H (e)
$$a = 147 \, m$$
, $c = 222.8 \, m$, $\gamma = 66.1 \, ^{\circ}$; **H** (f) $a = 112.6 \, m$, $c = 142.3 \, m$, $\beta = 52.7 \, ^{\circ}$.

8,0