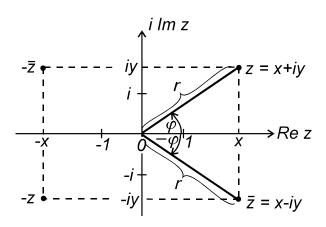
- x = Re z und y = Im z interpretiert man als die kartesischen Koordinaten des "Punktes" z∈Z. Damit entsprechen den rein reellen Zahlen z = x ∈ R die Punkte auf der waagerechten reellen Achse und den rein imaginären Zahlen z = i·y ∈ C die Punkte auf der vertikalen imaginären Achse.
- Auch der Betrag r = |z| und das Argument arg z bzw. sein Hauptwert $\varphi = Arg z$ besitzen in der komplexen Zahlenebene eine geometrische Interpretation:
 - $r=\mid z\mid$ beschreibt den *euklidischen Abstand* des Punktes z vom *Koordinatenursprung* $z_0=0$, während $\varphi=Arg$ z den *positiv* d.h. entgegen dem Uhrzeigersinn *orientierten Winkel* im Grad- oder Bogenmaß unter Beachtung des Vorzeichens von φ bezeichnet, den die vom Ursprung $z_0=0$ ausgehende und durch z verlaufende Halbgerade mit der positiven reellen Achse einschließt.

Damit liefern die *Polarkoordinaten r* und φ neben den *kartesischen Koordinaten x* und y eine zweite eindeutige Beschreibung der komplexen Zahlen $z \in \mathbf{C}$ bzw. der ihnen entsprechenden Punkte der Gaußschen Zahlenebene. Man beachte dabei, dass φ nur eindeutig bis auf Vielfache von 360° bzw. $2 \cdot \pi$ - genauer: "eindeutig modulo $2 \cdot \pi$ " - ist.

• Der zu z konjugiert komplexen Zahl $\overline{z} = x - iy$ entspricht geometrisch in der komplexen Zahlenebene das *Spiegelbild* des "Punktes" z an der reellen Achse y = 0. Analog "ist" $\overline{-z} = -x + iy$ das *Spiegelbild* von z an der reellen Achse x = 0, während rend red r

Skizze:



Für den Betrag und das Argument dieser Zahlen gilt insbesondere:

(i)
$$|z| = |\overline{z}| = |-\overline{z}| = |-z|$$
, (ii) $|arg \overline{z} = -arg z|$

(iii)
$$arg(-\overline{z}) = 180^{\circ} - arg z$$
 bzw. $arg(-\overline{z}) = \pi - arg z$ und

(iv)
$$\begin{bmatrix} arg & (-z) = arg & z + 180^{\circ} \end{bmatrix}$$
 bzw. $\begin{bmatrix} arg & (-z) = arg & z + \pi \end{bmatrix}$

Die Rechengesetze in C

In C gelten speziell folgende *Regeln* für das *Rechnen* mit komplexen Zahlen $z = x + i \cdot y \in C$ und $w = u + i \cdot v \in C$ wie sie ganz analog auch für die reellen Zahlen gelten. Daher nennt man C auch einen "Körper". Die einzelnen Rechengesetze lauten:

Rechenoperation:	Gesetze:
Addition / Subtraktion :	$z\pm w=(x\pm u)+i(y\pm v)$
Multiplikation:	$z \cdot w = (xu - yv) + i(xv + yu)$
Division (Kehrwert):	$\frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}} = \frac{x - iy}{x^2 + y^2} , \frac{z}{w} = \frac{z \cdot \overline{w}}{w \cdot \overline{w}} = \frac{xu + yv}{u^2 + v^2} + i \frac{yu - xv}{u^2 + v^2}$
Konjugieren von Summen / Produkten:	$\overline{Z+W} = \overline{Z} + \overline{W} , \overline{Z-W} = \overline{Z} - \overline{W} ,$ $\overline{Z\cdot W} = \overline{Z} \cdot \overline{W} , \overline{(\frac{Z}{W})} = \frac{\overline{Z}}{\overline{W}} , \overline{\overline{Z}} = Z$
Real- und Imaginärteil mit- tels z und z dargestellt:	Re $z = \frac{1}{2}(z + \overline{z})$, Im $z = \frac{1}{2i}(z - \overline{z})$ Insbesondere folgt: $z \in \mathbf{R} \iff z = \overline{z} \iff \text{Im } z = 0$
Gesetze für den Betrag:	(i) $ z = \sqrt{z \cdot \overline{z}} \in \mathbb{R}$, (ii) $ z = \overline{z} $, (iii) $ z \ge 0$ und $ z = 0 \Leftrightarrow z = 0$ (positive Definitheit), (iv) $ z \cdot w = z \cdot w $, $\left \frac{z}{w}\right = \frac{ z }{ w }$ (Homogenität),
	(v) $ z+w \le z + w $, $ z - w \le z-w $ (Dreiecksungleichungen).

Bemerkungen:

- Im Wesentlichen läuft die Addition, Subtraktion und Multiplikation von komplexen Zahlen nach den Gesetzen der Termrechnung unter Berücksichtigung von $i^2 = -1$.
- Die Division mit Erweiterung des konjugiert komplexen Nenners fußt (wieder einmal) auf dem 3. Binom, wie auch die Formel $|z|^2 = z\overline{z}$ zur Berechnung des Betrags/Moduls einer komplexen Zahl. Dies rechtfertigt das eigene Symbol für die komplex konjugierten Zahl.
- Die Probe von Vieta im Fall zweier konjugiert komplexer Nullstellen z_1 und $z_2 = \overline{z}_1$ schreibt sich dann auch, wie folgt:

(i)
$$z_1 + z_2 = z_1 + \overline{z}_1 = 2 \cdot \text{Re}(z_1) = -\frac{b}{a}$$
, (ii) $z_1 \cdot z_2 = z_1 \cdot \overline{z}_1 = |\overline{z}_1|^2 = \frac{c}{a}$.

Über die Nullstellen einer komplexen quadratischen Gleichung

Ziel dieses Abschnitts ist die Herleitung einer allgemeinen Lösungsformel bzw. eines allgemeinen Lösungsverfahrens für die quadratische Gleichung mit *komplexen* Koeffizienten.

Allgemeine Form der komplexen quadratischen Gleichung:

 $az^{2} + bz + c = 0$ mit $a,b,c \in C$, $a \ne 0$ ($z \in C$)

Faktorisierte cForm der Gleichung (= Zerlegung in Linearfaktoren):

Sind $z_1 \in \mathbf{C}$ und $z_2 \in \mathbf{C}$ die komplexen Lösungen der quadratischen komplexen Gleichung, so gilt:

$$az^2 + bz + c = a \cdot (z - z_1) \cdot (z - z_2)$$
 ($z \in \mathbf{C}$)

Lösung der *speziellen* quadratischen Gleichung

Sei $c = \alpha + i\beta$ mit $Re z = \alpha$, $Im z = \beta$. Dann hat die Gleichung $z^2 - c = 0$ bzw. $z^2 = c$ die folgenden Lösungen $z_1 \in \mathbf{C}$, $z_2 \in \mathbf{C}$:

 $z^2 = c \quad \text{mit } c \in C$:

(i) Fall $\beta \ge 0$:

 $Re z_k$ und $Im z_k$ haben dasselbe Vorzeichen und

$$z_1 = \sqrt{\frac{\sqrt{\alpha^2 + \beta^2 + \alpha}}{2}} + i \cdot \sqrt{\frac{\sqrt{\alpha^2 + \beta^2} - \alpha}{2}}$$

$$z_2 = -z_1 = -\sqrt{\frac{\sqrt{\alpha^2 + \beta^2} + \alpha}{2}} - i \cdot \sqrt{\frac{\sqrt{\alpha^2 + \beta^2} - \alpha}{2}}$$

(ii) Fall β < 0:

 $Re z_k$ und $Im z_k$ haben verschiedenes Vorzeichen und

$$z_1 = \sqrt{\frac{\sqrt{\alpha^2 + \beta^2} + \alpha}{2}} - i \cdot \sqrt{\frac{\sqrt{\alpha^2 + \beta^2} - \alpha}{2}} \quad ,$$

$$z_2 = -z_1 = -\sqrt{\frac{\sqrt{\alpha^2 + \beta^2} + \alpha}{2}} + i \cdot \sqrt{\frac{\sqrt{\alpha^2 + \beta^2} - \alpha}{2}}$$

Lösung der *allgemeinen* quadratischen Gleichung

$$az^2 + bz + c = 0$$
:

Bezeichne $\Delta := b^2 - 4ac$ die *Diskriminante* der Gleichung, dann erhält man für $az^2 + bz + c = 0$ die folgenden Lösungen $z_1 \in \mathbf{C}$, $z_2 \in \mathbf{C}$:

$$z_1 = \frac{-b + w_1}{2a}$$
 und $z_2 = \frac{-b + w_2}{2a} = \frac{-b - w_1}{2a}$.

Dabei sind $w_1, w_2 \in \mathbf{C}$ mit $w_1 = -w_2$ die beiden Lösungen der Gleichung $w^2 = \Delta = \alpha + i\beta$.

Probe für die beiden Lösungen z₁ und z₂ (Satz von Vieta):

Wie schon im *reellen* Fall erhält man:

(i)
$$z_1 + z_2 = -\frac{b}{a}$$
 und (ii) $z_1 \cdot z_2 = \frac{c}{a}$.

Bemerkungen:

 Wie man erkennt, ist die Lösung quadratischer Gleichungen mit komplexen Koeffizienten in C uneingeschränkt möglich. Unlösbarkeit gibt es nun nicht mehr !!!
 Nach dem schon genannten Fundamentalsatz der Algebra besitzt in C die Gleichung

$$a_m \cdot z^m + a_{m-1} \cdot z^{m-1} + ... + a_1 \cdot z + a_0 = 0$$
 mit $a_k \in \mathbf{C}$ $(k = 1,...,m)$, $a_m \neq 0$

sogar genau n (evt mehrfach gezählte) Lösungen $z_1,...,z_m \in \mathbf{C}$. Für das zugehörige (komplexe) Polynom p(z) gilt dann:

$$p(z) = a_m \cdot z^m + a_{m-1} \cdot z^{m-1} + \ldots + a_1 \cdot z + a_0 - a_m \cdot (z - z_1) \cdot \ldots \cdot (z - z_m)$$

• Für den Spezialfall $z^m - c = 0$ – also $a_m = 1$, $a_k = 0$ (k = 1,..., m-1), $a_0 = -c$ – erhält man für die m Lösungen $z_1,...,z_m \in \mathbf{C}$ wieder eine explizite Lösungsformel (s. später).

Die geometrische Interpretation komplexer Zahlen als Vektoren

Verbindet man den Koordinatenursprung $z_0 = 0$ der Gaußschen Zahlenebene mit jedem der Punkte dieser Ebene durch einen *gerichteten Pfeil*, so erhält man für die komplexen Zahlen $z \in \mathbf{C}$ eine weitere Interpretation: Die komplexen Zahlen entsprechen dann den *zweidimensionalen Vektoren* - genauer: *Ortsvektoren*.

- Die Komponenten des Vektors, welcher die komplexe Zahl $z \in C$ repräsentiert, sind gerade die kartesischen Koordinaten x = Re z und y = Im z von z.
- Entsprechend beschreiben die *Polarkoordinaten* r = |z| und $\varphi = Arg z$ von z die *Länge* und *Richtung* dieses die komplexe Zahl z repräsentierenden (Orts-)Vektors.

Auf diese Weise erhält man für die Addition komplexer Zahlen sowie für die Multiplikation einer komplexen Zahl mit einer rellen Zahl folgende geometrische Veranschaulichung:

- Der Summe $w = z_1 + z_2$ zweier komplexer Zahlen entspricht der Vektor, der durch Aneinanderhängen der beiden "Vektoren" z_1 und z_2 gemäß Parallelogrammregel (d.h. Vektoraddition) entsteht (siehe dazu Skizze (a) auf der folgenden Seite).
- Dem *Produkt* $w = a \cdot z$ einer komplexen Zahl $z \in C$ mit einer reellen Zahl $a \in R$ entspricht der Vektor mit Länge $|w| = |a| \cdot |z|$ und der Richtung $Arg w = Arg z = \varphi$ im Fall a > 0 bzw. der Richtung $Arg w = Arg (-z) = \varphi + 180^{\circ} (2\pi)$ im Fall a < 0. Für a = 0 oder z = 0 erhält man insbesondere den Nullvektor w = 0 (siehe dazu Skizze (b) auf der folgenden Seite).