Technische Universität Berlin Fakultät II – Mathematik und Naturwissenschaften Institut für Mathematik

StR.i.HD. Albrecht Gündel-vom Hofe

3. Aufgabenblatt zur

"Mathematik III für die Beruflichen Fachrichtungen"

(Abgabe der Hausaufgaben: 06.11.2017 in der VL)

65. Aufgabe:

Man forme die folgenden in Polardarstellung gegebenen komplexen Zahlen $z \in C$ in die cartesische Schreibweise z = x + iy um:

$$\ddot{\mathbf{U}} \text{ (a) } z = \sqrt{3} \cdot e^{i \cdot \frac{\pi}{4}}$$

$$\ddot{\mathbf{U}}$$
 (a) $z = \sqrt{3} \cdot e^{j \cdot \frac{\pi}{4}}$. $\ddot{\mathbf{U}}$ (b) $z = \frac{1}{\sqrt{2}} \cdot e^{j \cdot \pi}$, \mathbf{H} (c) $z = 4 \cdot e^{-j \cdot \frac{3\pi}{2}}$,

H (c)
$$z = 4 \cdot e^{-i \cdot \frac{3\pi}{2}}$$

$$\ddot{\mathbf{U}} \text{ (d) } z = \sqrt{6} \cdot e^{i \cdot \frac{\pi}{3}}$$

$$\ddot{\mathbf{U}} \text{ (d) } z = \sqrt{6} \cdot e^{i \cdot \frac{\pi}{3}} , \qquad \qquad \ddot{\mathbf{U}} \text{ (e) } z = \frac{4}{5} \cdot e^{-i \cdot \frac{\pi}{6}} , \qquad \qquad \mathbf{H} \text{ (f) } z = \sqrt{2} \cdot e^{i \cdot \frac{9\pi}{4}} .$$

H (f)
$$z = \sqrt{2} \cdot e^{i \cdot \frac{9\pi}{4}}$$

4.0

66. Aufgabe:

Für folgende komplexe Zahlen $z \in C$ bestimme man, nachdem man sie gegebenenfalls in die kartesische Form z = x + iy gebracht hat, die zugehörige Polardarstellung:

$$\ddot{\mathbf{U}} \text{ (a) } z = -1 + i ,$$

$$\ddot{\mathbf{U}}$$
 (a) $z = -1 + i$, $\ddot{\mathbf{U}}$ (b) $z = \frac{1}{2}\sqrt{3} - \frac{i}{2}$, \mathbf{H} (c) $z = 2\cdot(1 - \sqrt{3}i)$,

H (c)
$$z = 2 \cdot (1 - \sqrt{3}i)$$

$$\ddot{\mathbf{U}} \text{ (d) } z = 1 + i\sqrt{3}$$

$$\ddot{\mathbf{U}}$$
 (e) $z = (2 - i)^2$

$$\ddot{\mathbf{U}}$$
 (d) $z = 1 + i\sqrt{3}$, $\ddot{\mathbf{U}}$ (e) $z = (2 - i)^2$, \mathbf{H} (f) $z = 3 + \sqrt{2}i$,

Ü (g)
$$z = \sqrt{5} - i$$
 , **H** (h) $z = \frac{\sqrt{2}}{1+i}$.

6,0

67. Aufgabe:

Durch Interpretation der komplexen Zahlen z_1 und z_2 als Punkte der Gaußschen Zahlenebene ermittle man rechnerisch - d.h. arithmetisch - sowie rein zeichnerisch - d.h. geometrisch – unter Anwendung von Vektoraddition, skalarer Multiplikation, Drehung und Spiegelung am Einheitskreis die zusammengesetzte Zahl w. Machen Sie anschließend die Probe, indem Sie das geometrische mit dem arithmetischen Ergebnis für w vergleichen.

Ü (a)
$$w = 2z_1 - \frac{1}{2}z_2$$
 mit $z_1 = -1 + 2i$, $z_2 = 4 - i$; **Ü** (b) $w = cz$ mit $c = 1 - 2i$, $z = -3 + 2i$;

$$\ddot{\mathbf{U}}$$
 (c) $w = \frac{1}{z}$ mit $z = -1 - i$;

Ü (d)
$$w = 4z_1 + 3z_2$$
 mit $z_1 = 2 - i$, $z_2 = -2 + 3i$; **Ü** (e) $w = cz$ mit $c = 3 - i$, $z = 2 + i$;

$$\ddot{\mathbf{U}}$$
 (f) $w = \frac{1}{z}$ mit $z = \frac{3-i}{4}$;

H (g)
$$w = -z_1 + 3z_2$$
 mit $z_1 = -4 + i$, $z_2 = 2 - i$; **H** (h) $w = cz$ mit $c = 2 + i$, $z = 4 - i$.

H (j)
$$w = \frac{1}{z}$$
 mit $z = 2 + 3i$.