Technische Universität Berlin Fakultät II – Mathematik und Naturwissenschaften Institut für Mathematik

StR.i.HD. Albrecht Gündel-vom Hofe

10. Aufgabenblatt zur "Mathematik III für die Beruflichen Fachrichtungen"

(Abgabe der Hausaufgaben: 15.01.2018 in der VL)

Ü 71. Aufgabe:

Sei H die Menge aller Menschen (homo sapiens) sowie F die Menge aller Frauen und $M = H \setminus F$ die Menge aller Männer. Betrachte dann die folgenden Abbildungen:

- (i) $f: H \to H$, f(x) ist (biologische) Mutter von $x \in H$,
- (ii) $g: H \to H$, g(x) ist (biologischer) Vater von $x \in H$,
- (iii) $h: H \to F \times M$, h(x) ist (biologisches) Elternpaar von $x \in H$.

Insbesondere gilt dann für jeden Menschen $x \in H$: h(x) = (a,b) = (f(x),g(x)).

- a) Beschreiben Sie in Worten die zusammengesetzten Abbildungen (Kompositionen)
 - (i) $f^2 = f \circ f$, (ii) $f \circ g$, (iii) $g \circ f$ und (iv) $g^2 = g \circ g$. Gilt insbesondere $f \circ g = g \circ f$?
- b) Beschreiben Sie jeweils in Worten, was es bedeutet, dass die Abbildungen f, g und h injektiv, surjektiv oder bijektiv sind. Entscheiden Sie dann jeweils, ob eine dieser genannten Eigenschaften im Allgemeinen auf f bzw. g bzw. h zutrifft.
- c) Geben Sie zu beliebigem $y \in H$ und $(a,b) \in F \times M$ jeweils die *Urbildmengen* $f^{-1}(\{y\})$, $g^{-1}(\{y\})$ sowie $h^{-1}(\{(a,b)\})$ beschreibend an. Welcher Zusammenhang besteht zwischen diesen Urbildmengen?

Ü 73. Aufgabe:

Auf $N^2 = N \times N$ sei die Abbildung $f: N^2 \to N$ gegeben durch $f(x,y) = (x+2) \cdot (y-1)$ für $(x,y) \in N^2$, wobei N die Menge der natürlichen Zahlen (ohne die Null) ist.

- a) Untersuchen Sie, ob f injektiv oder surjektiv (oder sogar beides) ist.
- b) Bestimmen Sie die *Bildmenge* $f(A) \subseteq \mathbf{N}$ für $A = \{(x,2); x \in \mathbf{N}\} \subseteq \mathbf{N}^2$ und die *Urbildmenge* $f^{-1}(B) \subset A \times A$ für $B = \mathbf{P} = \{p \in \mathbf{N} : p \text{ ist Primzahl }\} \subset \mathbf{N}$.
- c) Geben Sie die speziellen Urbilder $f^{-1}(\{58\})$, $f^{-1}(\{59\})$ und $f^{-1}(\{60\})$ in aufzählender Mengenschreibweise an.

(<u>Tipp</u>: Primzahlen sind die Zahlen $p \in \mathbf{N}$ mit p > 1, für die gilt: Ist $p = a \cdot b$ mit $a, b \in \mathbf{N}$, so folgt: a = 1 oder b = 1. Dies nennt man auch die *Unzerlegbarkeitseigenschaft*.)

75. Aufgabe:

Bilden Sie für die folgenden gegebenen Funktionen f und g jeweils die Funktionen f+g, g-f, $f\cdot g$, $\frac{f}{g}$, $\frac{g}{f}$ sowie $f\circ g$ und $g\circ f$ und geben Sie dabei zusätzlich die jeweils maxima-

len Definitionsbereiche D_f , D_g , D_{f+g} , D_{g-f} , $D_{f:g}$, $D_{f:g}$, $D_{g:f}$, $D_{f\circ g}$ und $D_{g\circ f}$ an.

Ü (a)
$$f(x) = \sin x$$
, $g(x) = x^2$; **Ü** (b) $f(x) = \sqrt{5-x}$, $g(x) = \ln x$;

H (c)
$$f(x) = \frac{1+x}{1-x}$$
, $g(x) = \frac{1}{1+x}$.

14,0