Technische Universität Berlin Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

StR.i.HD. Albrecht Gündel-vom Hofe

2. Aufgabenblatt zur "Mathematik I für die Beruflichen Fachrichtungen"

(Abgabe der Hausaufgaben: 08.11. / 10.11.2016 in den Tutorien)

2. Aufgabe:

Für die folgenden in Dezimalschreibweise gegebenen Zahlen ermittle man mittels fortgesetzter Division mit Rest zunächst die (i) Binärdarstellung und leite durch entsprechende Blockbearbeitung anschließend ihre Darstellungen im (ii) Oktal- sowie im (iii) Hexadezimalsystem her. Abschließend vollziehe man, bezogen auf die Hexadezimaldarstellung von x, mittels Horner die Probe durch Rückumwandlung ins Dezimalsystem.

$$\ddot{\mathbf{U}}$$
 (a) $x = 333$, $\ddot{\mathbf{U}}$ (b) $x = 5.093$, \mathbf{H} (c) $x = 7.777$, $\ddot{\mathbf{U}}$ (d) $x = 10.001$, $\ddot{\mathbf{U}}$ (e) $x = 4.711$, \mathbf{H} (f) $x = 12.345$.

8.0

3. Aufgabe:

Faktorisieren Sie die folgenden Ausdrücke und fassen sie dabei so weit wie möglich zusam-

$$\ddot{\mathbf{U}}$$
 (a) $a+a^2$,

$$\ddot{\mathbf{U}}$$
 (c) $ab + ac - ad$,

H (d)
$$-21a^2b - 15ab^2$$

H (d)
$$-21a^2b-15ab^2$$
, **Ü** (e) $a^2b+ac-ab-c$,

$$\ddot{\mathbf{U}}$$
 (f) $15ab-5a+3b-1$,

H (g)
$$3ac - 3bc - 2ad + 2bd + 4ac - 4bc - 7ad + 7bd$$
.

4,0

4. Aufgabe:

Wenden Sie die binomischen Formeln "vorwärts" an, und vereinfachen Sie nach Möglichkeit:

$$\ddot{\mathbf{U}}$$
 (a) $(a^2 + b^2)^2 - (a^2 - b^2)^2$,

$$\ddot{\mathbf{U}}$$
 (b) $(-1+a)^2-(1-a)^2$,

H (c)
$$(4a^2 - 3)(4a^2 + 3) - (3a - 4)^2 + (5a + 1)^2$$
, $\ddot{\mathbf{U}}$ (d) $(3a + 2b - 5c)^2$,

$$\ddot{\mathbf{U}}$$
 (d) $(3a + 2b - 5c)^2$

$$\ddot{\mathbf{U}}$$
 (e) $(a+b-c-d)^2$,

H (f)
$$(-2x + 5y - 7)^2$$
.

5,0

5. Aufgabe:

Wenden Sie die binomischen Formeln "rückwärts" an, um folgende Summen zu faktorisieren:

$$\ddot{\mathbf{U}}$$
 (a) $49a^2 - 42a + 9$,

$$\ddot{\mathbf{U}}$$
 (b) $9x^4y^2 + 12x^2y + 4$,

H (c)
$$169a^2 - 130ab + 25b^2$$
,

H (c)
$$169a^2 - 130ab + 25b^2$$
, $\ddot{\mathbf{U}}$ (d) $u^2 - 2uv + v^2 - 2u + 2v + 1$,

$$\ddot{\mathbf{U}}$$
 (e) $a^2 + 2ab + b^2 - 6a - 6b + 9$

$$\ddot{\mathbf{U}}$$
 (e) $a^2 + 2ab + b^2 - 6a - 6b + 9$, \mathbf{H} (f) $x^2 - 2xy + y^2 + 4x - 4y + 4$,

H (g)
$$4a^2 + 20ab + 25b^2 - c^2$$
.

2. Aufgabenblatt Seite 2

"Mathematik I für die Beruflichen Fachrichtungen"

6. Aufgabe:

Schreiben Sie folgende Gleichungen mittels quadratischer Ergänzung in die Form $A^2 \pm B^2 = s$ mit geeigneten Termen A und B und einer geeigneten Zahl $s \in \mathbf{R}$ um:

$$\ddot{\mathbf{U}} \text{ (a)} \quad 4a^2 - 12a + 9b^2 - 24b = 0 ,$$

$$\ddot{\mathbf{U}} \text{ (c)} \quad 9x^2 + 49y^2 - 12x + 42y = 0 ,$$

$$\ddot{\mathbf{U}}$$
 (b) $16a^2 + 25b^2 - 128a + 50b = 0$,

$$\ddot{\mathbf{U}}$$
 (c) $9x^2 + 49y^2 - 12x + 42y = 0$

$$\ddot{\mathbf{U}}$$
 (d) $3a^2 - 2b^2 - 2\sqrt{6}a + 2\sqrt{6}b = 0$,

H (e)
$$4x^2 + 12x - 9a^2 + 12a = 0$$
,

H (f)
$$25a - 16b - 10\sqrt{a} + 24\sqrt{b} = 0$$
.

<u>Tipp</u>: Beachten Sie, dass für jede Zahl $a \in \mathbb{R}$, $a \ge 0$ gilt: $a = \sqrt{a^2}$.

8,0