In Kurzschreibweise findet man die Produkt- und die Quotientenregel auch in folgende Form:

$$f = u \cdot v \implies f' = u' \cdot v + u \cdot v' \quad \text{bzw.} \quad f = \frac{u}{v} \implies f' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

Die Produktregel lässt sich in folgender Form verallgemeinern:

Sind $f_1, f_2, ..., f_n$ differenzierbar, so ist die Funktion $f = f_1 \cdot f_2 \cdot ... \cdot f_n$ eine differenzierbare Funktion, und es gilt:

$$f'(x) = f'_1(x) \cdot f_2(x) \cdot \ldots \cdot f_n(x) + f_1(x) \cdot f'_2(x) \cdot \ldots \cdot f_n(x) + \ldots + f_1(x) \cdot f_2(x) \cdot \ldots \cdot f'_n(x) .$$

• Wendet man die Quotientenregel speziell auf $h(x) = \frac{1}{g(x)}$ an, so erhält man die soge-

nannte Reziprokenregel:
$$h'(x) = -\frac{g'(x)}{[g(x)]^2}$$
.

Diese Regel lässt sich auch mithilfe der *Kettenregel* beweisen, wie sich auch umgekehrt mittels der Reziprokenregel und der Produktregel die *Quotientenregel* beweisen lässt.

- Die Regel über die Ableitung der Umkehrfunktion kann man aus der Kettenregel herleiten, wenn man beachtet, dass gilt: $f \circ f^{-1} = id$ bzw. $(f \circ f^{-1})(x) = x$ für alle $x \in D_{f^{-1}}$.
- In der Kettenregel $h'(x_0) = f'(g(x_0)) \cdot g'(x_0)$ bezeichnet man $f'(g(x_0))$ auch als die äußere Ableitung und $g'(x_0)$ als die innere Ableitung.
- Verwendet man für die Kettenregel die Kurzschreibweise $h' = (f \circ g)' = (f' \circ g) \cdot g'$, so lässt sich die *Kettenregel* in folgender Weise verallgemeinern:

$$h(x) = (f_1 \circ f_2 \circ \dots \circ f_n)(x) \implies h'(x) = (f'_1 \circ f_2 \circ \dots \circ f_n)(x) \cdot (f'_2 \circ f_3 \circ \dots \circ f_n)(x) \cdot \dots \cdot f'_n(x) .$$

Durch Anwendung der Kettenregel findet man die Ableitung der allgemeinen Potenzen

$$f(x) = x^{\alpha} = e^{\alpha \cdot \ln x}$$
 sowie $f(x) = a^x = e^{x \cdot \ln a}$ unter Beachtung von $(e^x)' = e^x$.

In der folgenden Tabelle sind die wichtigsten elementaren Funktionen samt ihrer Ableitung übersichtlich zusammengefasst:

f	D _f	f'	$D_{f'}$	f	D_f	f'	$D_{f'}$
x ⁿ , n∈ N	R	n · x ^{n−1}	R	arcsin x	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$	(-1, 1)
$\frac{1}{x^n}$, $n \in \mathbb{N}$	R \{0}	$\frac{-n}{x^{n+1}}$	R \{0}	arccos x	[-1, 1]	$-\frac{1}{\sqrt{1-x^2}}$	(-1, 1)
\mathbf{x}^{α} , $\alpha \in \mathbf{R}$	R^+	$\alpha \cdot \mathbf{x}^{\alpha-1}$	R ⁺	arctan x	R	$\frac{1}{1+x^2}$	R
x	R	$\frac{x}{ x } = \frac{ x }{x}$	R \{0}	arccot x	R	$-\frac{1}{1+x^2}$	R

sin x	R	cos x	R	sinh x	R	cosh x	R
cos x	R	– sin x	R	cosh x	R	sinh x	R
tan x	А	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	А	tanh x	R	$\frac{1}{\cosh^2 x} =$ $1 - \tanh^2 x$	R
cot x	В	$-\frac{1}{\sin^2 x} =$ $-1 - \cot^2 x$	В	coth x	R \{0}	$-\frac{1}{\sinh^2 x} =$ $1 - \coth^2 x$	R \{0}
e ^x	R	e ^x	R	arsinh x	R	$\frac{1}{\sqrt{x^2+1}}$	R
a^{x} , $a > 0$, $a \ne 1$	R	a ^x · In a	R	arcosh x	[1,+∞)	$\frac{1}{\sqrt{x^2-1}}$	(1,+∞)
In x	R \{0}	$\frac{1}{x}$	R \{0}	artanh x	(-1,1)	$\frac{1}{1-x^2}$	(-1,1)
$log_a x ,$ $a > 0, a \neq 1$	R^+	$\frac{1}{x \cdot \ln a}$	R ⁺	arcoth x	R \ [-1,1]	$\frac{1}{1-x^2}$	R \ [-1,1]

Man beachte, dass gilt: $A = \mathbf{R} \setminus \{ \frac{2k+1}{2} \cdot \pi \mid k \in \mathbf{Z} \}$ sowie $B = \mathbf{R} \setminus \{ k \cdot \pi \mid k \in \mathbf{Z} \}$.