Freie Universität Berlin Fachbereich Mathematik

StR.i.H. Albrecht Gündel-vom Hofe

7. Übungsblatt zur "Elementargeometrie"

(Zentralabgabe der Hausaufgaben: 11.06.2013, 14:00 Uhr)

28. Aufgabe:

Gegeben seien die beiden Punkte P = (0,1) und Q = (0,r) mit r > 0, $r \ne 1$ in der Poincaré-Halbebene $\mathbf{E}_N = \{(x,y) \in \mathbf{R}^2 \mid y > 0\}$.

- a) (**Übungsaufgabe**) Bestimmen Sie zeichnerisch (mit Zirkel und Lineal) sowie rechnerisch die Gleichung der beiden Senkrechten h_N in P und k_N in Q zu $g_N = PQ$ sowie der nichteuklidischen Winkelhalbierenden w_N durch P bezüglich des durch h_{N1} und g_{N1} berandeten Rechtwinkelfeldes $\mathcal{W} = \not < g_{N1} h_{N1}$ mit $\omega \not < g_{N1} h_{N1} = 90$
- b) (**Hausaufgabe**) Weisen Sie sowohl durch Rechnung als auch durch eine entsprechende Skizze nach, dass sich die beiden nichteuklidischen Geraden k_N und w_N nur in dem Fall in einem Punkt $R \in E_N$ schneiden, wenn $\sqrt{2} 1 < r < \sqrt{2} + 1$ ist.
- c) (**Hausaufgabe**) Zeigen Sie durch Rechnung, dass für das Winkelmaß $\alpha = \omega(\mathcal{W})$ des nichteuklidischen Winkelfeldes $\mathcal{W} = \not< PRQ_N$ mit Scheitelpunkt R gilt:

$$\cos \alpha = \frac{1}{\sqrt{2}} \cdot \frac{1}{2} \left(r + \frac{1}{r} \right) > \frac{1}{\sqrt{2}} \quad \text{und damit} \quad \alpha < \arccos \left(\frac{1}{\sqrt{2}} \right) = 45.$$

Folgern Sie daraus, dass in dem nichteuklidischen Dreieck ΔPQR die Winkelsumme kleiner als 180 ist. Welchem Winkelmaß strebt $\alpha = \omega(\mathcal{W})$ im Falle $\lim r \to \sqrt{2} + 1$ sowie im Falle $\lim r \to \sqrt{2} - 1$ zu?

(Hinweis zu (c): Zur Winkelbestimmung greife man auf das Skalarprodukt im \mathbf{R}^2 der Ortsvektoren zu R bezüglich der beiden "euklidischen" Mittelpunkte von k_N und w_N zurück und benutze an geeigneter Stelle, dass für zwei Zahlen a,b>0 stets der arithmetische Mittelwert echt größer als der geometrische Mittel-

wert ist – d.h. es gilt:
$$\frac{1}{2} \cdot (a+b) > \sqrt{a \cdot b}$$
 –, sofern $a \neq b$ gilt.)

12.0

29. Aufgabe (Übungsaufgabe):

Sei $P,Q \in E$ beliebig mit $P \neq Q$ und $m \in G$ die gemäß Definition 3.6 im Skript eingeführte Mittelsenkrechte von PQ.

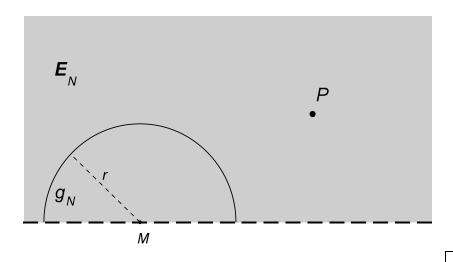
- a) Zeigen Sie: m ist Symmetrieachse der Strecke PQ. Folgern Sie daraus: $\bigwedge_{R \in m} d(R,P) = d(R,Q) , \text{ d.h. die Punkte auf } m \text{ liegen von } P \text{ und } Q \text{ gleich weit entfernt.}$
- b) $\bigwedge_{R \in \mathbf{E}} d(R, P) = d(R, Q) \rightarrow R \in m$, d.h. von P und Q gleich weit entfernte Punkte $R \in \mathbf{E}$ liegen auf der Mittelsenkrechten m.

(<u>Hinweis</u>: Man verwende für Teil (a) Satz 3.3 und zeige in (b), daß für die Winkelhalbierende w des Winkelfeldes $\mathcal{W} = \not< PRQ$ gilt: w = m.)

30. Aufgabe (Hausaufgabe):

- a) Beweisen Sie, dass in jeder Geometrie ($\textbf{\textit{E}},\textbf{\textit{G}}$), welche die Axiome (I) bis (VIII) erfüllt, für alle Geraden $g,h,k\in\textbf{\textit{G}}$ gilt: $g\perp h$ und $h\perp k\Rightarrow g\parallel k$.
- b) Zeigen Sie unter Rückgriff auf Teil (a), dass durch das doppelte Lot in (E,G) die Existenz von Parallelen gesichert ist, d.h. dass gilt:
 Zu jeder Geraden g∈ G und zu jedem Punkt P∈E mit P∉g existiert mindestens eine Gerade k∈G mit P∈k und g | k.
- c) Geben Sie für die Poincarésche Halbebene ($\textbf{\textit{E}}_N$, $\textbf{\textit{G}}_N$) unter Verwendung der Konstruktionsvorschrift für die nichteuklidische Achsenspiegelung γ_{g_N} auf Seite 3.16 im Skript eine *euklidische* Konstruktionsbeschreibung für das *Lot* sowie das *doppelte Lot* in einem Punkt $P \in \textbf{\textit{E}}_N$ zu einer gegebenen Geraden $g_N \in \textbf{\textit{G}}_N$ mit $P \notin g_N$ und fügen Sie ergänzend für den Fall (i) eines euklidischen Halbkreises g_N siehe nachfolgende Ausgangsskizze sowie (ii) einer euklidischen Halbgeraden g_N jeweils eine Konstruktionsskizze mit Zirkel und Lineal für das doppelte Lot $k_N \in \textbf{\textit{G}}_N$, $P \in \textbf{\textit{E}}_N$ bei.

Skizze für den Fall (i) zu (c) :



8,0