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Abstract A class of Pyragas type nonlocal feedback controllers with time-
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kernel in the controller such that the associated solution of the controlled equa-
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taken as control function. The well-posedness of the optimal control problem
and necessary optimality conditions are discussed for different types of kernels.
Special emphasis is laid on time-periodic functions as desired patterns. Here,
the cross correlation between the state and the desired pattern is invoked to
set up an associated objective functional that is to be minimized. Numerical
examples are presented for the 1D Schlögl model and a class of simple step
functions for the kernel.
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1 Introduction

In this paper, we consider a class of nonlocal feedback controllers with appli-
cation to the control of certain nonlinear partial differential equations. The
research on feedback control laws of this type has become quite active in theo-
retical physics for stabilizing periodic wave-type solutions of reaction-diffusion
systems such as the Schlögl model (also known as Nagumo or Chafee-Infante
equation) or the FitzHugh-Nagumo system.

The controllers can be characterized as follows: First of all, they are gen-
eralizations of Pyragas type controllers that became very popular in the past.
We refer to [21], [22], and the survey volume [25]. In [21], a time-delayed feed-
back was suggested as a method to stabilize unstable periodic orbits embedded
in a chaotic attractor in the context of ordinary differential equations (chaos
control). In the simplest form of Pyragas type feedback control, applied to
partial differential equations, the difference of the current state u(x, t) and the
retarded state u(x, t− τ), multiplied with a real number κ, is taken as control,
i.e. the feedback control f is

f(x, t) := κ (u(x, t)− u(x, t− τ)),

where τ is a fixed time delay and κ is the feedback gain. A feedback of Pyragas
type can be applied to stabilize periodic orbits of dynamical systems. If, for
instance, a solution u has the time period τ , then f vanishes so that the
feedback is called noninvasive. In contrast to well known Riccati or Lyapunov
type stabilization techniques, Pyragas type feedback control does not require
the knowledge of a reference solution that is to be stabilized. It is sufficient to
know the existence of a periodic solution with period τ . This method has been
applied to a great variety of systems, e.g., lasers, optoelectronic oscillators,
chemical reactions, cardiac dynamics etc., cf. [12].

In the nonlocal generalization we consider in this paper, the feedback con-
trol is set up by an integral operator of the form

f(x, t) := κ

(∫ T

0

g(τ)u(x, t− τ) dτ − u(x, t)

)
. (1)

Here, varying time delays appear in a distributed way. Depending on the par-
ticular choice of the kernel g, various spatio-temporal patterns of the controlled
solution u can be achieved. In particular, stable periodic patterns can be gen-
erated. We refer to [2,20,27], and [26] with application to the Schlögl model
and to [1,17,30] with respect to control of ordinary differential equations.

Our main goal is the selection of the kernel g in an optimal way. We want to
achieve a desired spatio-temporal pattern for the resulting state function and
look for an optimal feedback kernel g to approximate this pattern as closely as
possible. For this purpose, in the second half of the paper we will concentrate
on a particular choice of g as a step function.

We are optimizing feedback controllers but we shall apply methods of op-
timal control to achieve our goal. This leads to new optimal control problems
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for reaction-diffusion equations containing nonlocal terms with time delay in
the state equation. We develop the associated necessary optimality conditions
and discuss numerical approaches for solving the problems posed. Working
on this class of problems, we observed that standard quadratic tracking type
objective functionals are possibly not the right tool for approximating desired
time-periodic patterns. We found out that the so-called cross correlation par-
tially better fits to our goals. We report on our numerical tests at the end of
this paper.

This research contributes results to the optimal control of nonlinear re-
action diffusion equations, where wave type solutions such as traveling wave
fronts or spiral waves occur in unbounded domains. We mention the papers [3,
4,9] on the optimal control of systems that develop spiral waves or [14–16] on
systems with heart medicine as background. Moreover, we refer to [5,7], where
different numerical and theoretical aspects of optimal control of the Schlögl
or FitzHugh-Nagumo equations are discussed. It is a characteristic feature of
such systems that the computed optimal solutions might be unstable with
respect to perturbations in the data, in particular initial data.

Feedback control aims at generating stable solutions. Various techniques
of feedback control are known, we refer only to the monographies [10,18,19,
28] and to the references cited therein. Moreover, we mention [13] on feedback
stabilization for the Schlögl model. Pyragas type feedback control is one as-
sociated field of research that became very active, cf. [25] for an account on
current research in this field. In associated publications, the feedback control
laws were considered as given. For instance, the kernel in nonlocal delayed feed-
back was given and it was studied what kind of patterns arise from different
choices of the kernel.

The novelty of our paper is that we study an associated inverse (say de-
sign) problem: Find a kernel such that the associated feedback solution best
approximates a desired pattern. We do not investigate the question, whether
and under which conditions the state function u approaches a periodic solution
as t→∞.

2 Two models of feedback control

We consider the following semilinear parabolic equation with reaction term R
and control function (forcing) f ,

∂tu−∆u+R(u) = f (2)

subject to appropriate initial and boundary conditions in a spatio-temporal
domain Q := Ω× (0, T ). Using a feedback control in the form (1), we arrive at
the following nonlinear initial-boundary value problem that includes a nonlocal
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term with time delay,

∂tu(x, t)−∆u(x, t) +R(u(x, t)) = κ

(∫ T

0

g(τ)u(x, t− τ) dτ − u(x, t)

)
in Q,

u(x, s) = u0(x, s) in Ω × [−T, 0],

∂nu(x, t) = 0 on Σ,
(3)

where, ∂n denotes the outward normal derivative on Γ = ∂Ω and we
introduced Σ := Γ × (0, T ). We want to determine a feedback kernel g ∈
L∞(0, T ) such that the solution u to (3) is as close as possible to a desired
function ud. The function g will have to obey certain restrictions, namely

0 ≤ g(t) ≤ β a.e. on [0, T ], (4)∫ T

0

g(s) ds = 1, (5)

where β > 0 is a given (large) positive constant. This upper bound is chosen
to have a uniform bound for g. It is needed for proving the solvability of the
optimal control problem.

We shall present the main part of our theory for the general type of g
defined above. In our numerical computations, however, we will concentrate
on functions g of the following particular form: We select t1, t2 such that
0 ≤ t1 < t2 ≤ T , t2 − t1 ≥ δ > 0 and define

g(t) =


1

t2 − t1
, t1 ≤ t ≤ t2

0, elsewhere.
(6)

It is obvious that g satisfies the constraints (4),(5) with β = 1/δ. Using this
form for g, we end up with the particular feedback equation

∂tu(x, t)−∆u(x, t) +R(u(x, t)) = κ

(
1

t2 − t1

∫ t2

t1

u(x, t− τ) dτ − u(x, t)

)
.

(7)
In (7), we will also vary κ in the state equation as part of the control variables
to be optimized. In contrast to this, κ is assumed to be fixed in the model with a
general control function g. In the special model, we have a restricted flexibility
in the optimization, because only the real numbers k, t1, t2 can be varied. Yet,
we are able to generate a class of interesting time-periodic patterns.

Throughout the paper we will rely on the following

Assumptions. The set Ω ⊂ RN , N ≤ 3, is a bounded Lipschitz domain;
for N = 1, we set Ω = (a, b). By T > 0, a finite terminal time is fixed. In
theoretical physics, also the choice T = ∞ is of interest. However, we do not
investigate the associated analysis, because an infinite time interval requires
the use of more complicated function spaces. Moreover, the restriction to a
bounded interval fits better to the numerical computations. Throughout the
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paper, we use the notation Q := Ω × (0, T ) and Σ = Γ × (0, T ). for the
space-time cylinder.

Remark 1 We will often use the term ”wave type solution” or ”traveling wave”.
This is a function (x, t) 7→ u(x, t) that can be represented in the form u(x, t) =
v(x − c t) with some other smooth function v. Here, c is the velocity of the
wave type solution. Such solutions are known to exist in Ω = R but not in in
a bounded interval Ω = (a, b).

In our paper, the terms ” wave type solution” or ”traveling wave” stand
for solutions of the Schlögl model in the bounded domain (a, b). We use these
terms, since the computed solutions exhibit a similar behavior as associated
solutions in Ω = R.

The reaction term R is defined by

R(u) = ρ (u− u1)(u− u2)(u− u3), (8)

where u1 ≤ u2 ≤ u3 and ρ > 0 are fixed real numbers. In our computational
examples, we will take ρ := 1. The numbers ui, i = 1, . . . , 3, define the fixed
points of the (uncontrolled) Schlögl model (2). In view of the time delay, we
have to provide initial values u0 for u in the interval [−T, 0] for the general
model (3) and in [−t2, 0] for the special model (7). We assume u0 ∈ C(Ω̄ ×
[−T, 0]) or u0 ∈ C(Ω̄ × [−t2, 0]), respectively. The desired state ud is assumed
to be bounded and measurable on Q.

3 Well-posedness of the feedback equation

In this section, we prove the existence and uniqueness of a solution to the
general feedback equation (3). To this aim, we first reduce the equation to an
inhomogeneous initial-boundary value problem. For t ∈ [0, T ], we write∫ T

0

g(τ)u(x, t− τ) dτ =

∫ t

0

g(τ)u(x, t− τ) dτ +

∫ T

t

g(τ)u(x, t− τ) dτ︸ ︷︷ ︸
=:Ug(x,t)

=

∫ t

0

g(τ)u(x, t− τ) dτ + Ug(x, t).

The function Ug is associated with the fixed initial function u0 and is defined
by

Ug(x, t) =

∫ T

t

g(τ)u0(x, t− τ) dτ ;

notice that we have t− τ ≤ 0 in the integral above. By the assumed continuity
of u0, the function Ug belongs to C(Ω̄ × [0, T ]). The mapping g 7→ Ug is
linear and continuous from L∞(0, T ) to C(Ω̄× [0, T ]), hence it is also Fréchet-
differentiable. The derivative ∂gUg is given by

(∂gUgh)(x, t) =

∫ T

t

h(τ)u0(x, t− τ) dτ.
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Next, for given g ∈ L2(0, T ), we introduce a linear integral operator K(g) :
L2(Q)→ L2(Q) by

(K(g)u)(x, t) :=

∫ t

0

g(τ)u(x, t− τ) dτ. (9)

Substituting s = t− τ , we obtain the equivalent representation

(K(g)u)(x, t) =

∫ t

0

g(t− s)u(x, s) ds.

Inserting Ug and K(g) in the state equation (3), we obtain the following non-
local initial-boundary value problem:

∂tu−∆u+R(u) + κu− κK(g)u = κUg in Q,

u(x, 0) = u0(x, 0) in Ω,

∂nu = 0 on Σ.

(10)

In the next theorem, we use the Sobolev space

W (0, T ) = L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)).

Theorem 1 For all g ∈ L∞(0, T ), Ug ∈ Lp(Q), p > 5
2 , and u0 ∈ C(Ω̄ ×

[−T, 0]), the problem (10) has a unique solution u ∈W (0, T ) ∩ C(Q̄).

Proof We use the same technique that was applied in [8] to show the existence
and continuity of the solution to the FitzHugh-Nagumo system. Let us mention
the main steps. First, we apply a simple transformation that is well-known in
the theory of evolution equations. We set

u = eλtv

with some λ > 0. This transforms the partial differential equation in (10) to
an equation for the new unknown function v,

vt −∆v + e−λtR(eλtv) + (λ+ κ)v = κKλ(g)v + e−λtκUg, (11)

where the integral operator Kλ(g) is defined by

(Kλ(g)v)(x, t) =

∫ t

0

e−λ(t−s)g(t− s)v(x, s) ds.

If g ∈ L∞(0, T ), then both operators K(g) and Kλ(g) are continuous linear
operators in Lp(Q), for all p ≥ 1. Moreover, due to the factor e−λ(t−s), the
norm of Kλ(g) : L2(Q)→ L2(Q) tends to zero as λ→∞. We obtain

‖Kλ(g)‖L(L2(Q)) ≤
c√
λ
‖g‖L∞(0,T ) (12)
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with some constant c > 0. To have this estimate, we assumed in (4) that g is
uniformly bounded by the constant β. If λ is sufficiently large, then we have∫

Q

[e−λtR(eλtv) + (λ+ κ)v − κKλ(g)v] v dxdt ≥ λ

2
‖v‖2L2(Q) ∀v ∈ L2(Q),

because the coercive term (λ + κ) v in the left side is dominating the other
terms, cf. [8].

With this inequality, an a priori estimate can be derived in L2(Q) for any
solution v of the equation (10). Now, we can proceed as in [8]: A fixed-point
principle is applied in L2(Q) to prove the existence and uniqueness of the
solution v that in turn implies the same for u. For the details, the reader
is referred to [8], proof of Theorem 2.1. However, we mention one important
idea: Thanks to (12), the term (λ+κ) absorbes the non-monotone terms in the
equation (11) so that, in estimations, equation (11) behaves like the parabolic
equation

vt −∆v + R̃(v) = F

with a monotone non-decreasing nonlinearity R̃ and given right-hand side
F ∈ Lp(Q), p > 5/2. This fact can be exploited to verify, for each r > 0,
the existence of a constant Cr > 0 with the following property: If g ∈ L∞(Q)
obeys ‖g‖L∞(Q) ≤ r and u is the associated solution to (3), then

‖u‖L∞(Q) ≤ Cr. (13)

2

4 Analysis of optimization problems for feedback controllers

4.1 Definition of two optimization problems

General kernel as control

Let a desired function ud ∈ L∞(Q) be given. In our later applications, ud
models a desired spatio-temporal pattern. Moreover, we fix a non-negative
function cQ ∈ L∞(Q). This function is used for selecting a desired observation
domain. We consider the feedback equation (3) and want to find a kernel g
such that the associated solution u approximates ud as close as possible in
the domain of observation. This goal is expressed by the following functional
j : L2(Q)× L∞(0, T )→ R that is to be minimized,

j(u, g) :=
1

2

∫∫
Q

cQ(u− ud)2 dxdt+
ν

2

∫ T

0

g2(t) dt.

Here, ν ≥ 0 is a Tikhonov regularization parameter that is introduced for
convenience. In our numerical tests, we observed that this regularization is not
needed for the numerical stability. The standard choice of cQ is cQ(x, t) = 1
for all (x, t) ∈ Q. Another selection will be applied for periodic functions ud:
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c(x, t) = 1 for all (x, t) ∈ Q with t ≥ T/2 and c(x, t) = 0 for all (x, t) ∈ Q with
t < T/2.

By Theorem 1, to each g ∈ L∞(0, T ) there exists a unique associated state
function u that will be denoted by ug. Then j does only depend on g and we
obtain the reduced objective functional J ,

J : g 7→ j(ug, g).

Therefore, our general optimization problem can be formulated as follows:

min
g∈C

J(g) :=
1

2

∫∫
Q

cQ(ug − ud)2 dxdt+
ν

2

∫ T

0

g2(t) dt, (PG)

where C ⊂ L∞(0, T ) is the convex and closed set defined by

C :=

{
g ∈ L∞(0, T ) : 0 ≤ g(t) ≤ β a.e. in [0, T ] and

∫ T

0

g(t) dt = 1.

}

Notice that C is a weakly compact subset of L2(0, T ). The restrictions on g
are motivated by the background in mathematical physics. In particular, the
restriction on the integral of g guarantees that∫ T

0

g(τ)u(x, t− τ) dτ − u(x, t) = 0,

if u(x, t−τ) = u(x, t) in Q. By the definition of ug, the optimization is subject
to the state equation (3).

Special kernel as control

The other optimization problem we are interested in, uses the particular form
(6) of the kernel g,

min
0≤t1<t2≤T

JS(κ, t1, t2) :=
1

2

∫∫
Q

cQ(u(κ,t1,t2) − ud)2 dxdt+
ν

2
(t21 + t22 + κ2),

where u(κ,t1,t2) is the solution of (7) for a given triplet (κ, t1, t2). This problem
might fail to have an optimal solution, because the set of admissible triplets
(κ, t1, t2) is not closed. Notice that we need t1 < t2 in (7). Therefore, we fix
δ > 0 and define the slightly changed admissible set

Cδ :=
{

(κ, t1, t2) ∈ R3 : 0 ≤ t1 < t2 ≤ T, t2 − t1 ≥ δ, κ ∈ R
}

that is compact. In this way, we obtain the special finite-dimensional optimiza-
tion problem for step functions g,

min
(κ,t1,t2)∈Cδ

JS(κ, t1, t2) :=
1

2

∫∫
Q

cQ(u(κ,t1,t2) − ud)2 dxdt+
ν

2
(t21 + t22 + κ2).

(PS)
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4.2 Discussion of (PG)

The control-to-state mapping G

Next, we discuss the differentiability of the control-to-state mappings g 7→ ug
and (κ, t1, t2) 7→ u(κ, t1, t2). First, we consider the case of the general kernel
g. The analysis for the particular kernel (6) is fairly analogous but cannot
deduced as a particular case of (PG). We will briefly sketch it in a separate
section.

By Theorem 1, we know that the mapping G : g 7→ ug is well defined
from L∞(0, T ) to C(Q̄). Now we discuss the differentiability of G. To slightly
simplify the notation, we introduce an operator K : L∞(0, T )×C(Q̄)→ C(Q̄)
by

K(g, u) = K(g)u,

where K(g) was introduced in (9); notice that K is bilinear. Let us first show
the differentiability for K.

We fix g ∈ L∞(0, T ), u ∈ C(Q̄), and select varying increments h ∈ L∞(0, T ),
v ∈ C(Q̄). Then we have

K(g + h, u+ v) =

∫ T

0

[g(τ) + h(τ)][u(x, t− τ) + v(x, t− τ)] dτ

=

∫ t

0

g(τ)u(x, t− τ) dτ +

∫ t

0

h(τ)u(x, t− τ) dτ +

∫ t

0

g(τ)v(x, t− τ) dτ︸ ︷︷ ︸
A(g,u)(h,v)

+

∫ t

0

h(τ)v(x, t− τ) dτ︸ ︷︷ ︸
R(h,v)

= K(g, u) +A(g, u)(h, v) +R(h, v),

where A(g, u) : L∞(0, T )× C(Q̄)→ C(Q̄) is a linear continuous operator and
R : L∞(0, T )× C(Q̄)→ C(Q̄) is a remainder term. It is easy to confirm that

‖R(h, v)‖C(Q̄)

‖(h, v)‖L∞(0,T )×C(Q̄)

→ 0, if ‖(h, v)‖L∞(0,T )×C(Q̄) → 0.

Therefore, K is Fréchet-differentiable. As a continuous bilinear form, K is also
of class C2.

Now, we investigate the control-to-state mapping G : L∞(0, T ) → C(Q̄)
defined by G : g 7→ ug, where the state function ug is defined as the unique
solution to

∂tu−∆u+R(u) + κu = κK(g, u) + κUg in Q
∂nu = 0 in Σ
u(0) = u0(0) in Ω.

(14)

In what follows, the initial function u0 will be kept fixed and is therefore not
mentioned. Of course, Ug, G and some of the operators below depend on u0,
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but we will not explicitely mention this dependence. To discuss G, we need
known properties of the following auxiliary mapping G : v 7→ u, where

∂tu−∆u+R(u) + κu = v in Q
∂nu = 0 in Σ
u(0) = u0(0) in Ω.

This mapping G is of class C2 from Lp(Q) to W (0, T ) ∩ C(Q̄), if p > 5
2 , in

particular from L∞(Q) to L∞(Q), cf. [8] or, for monotone R, [6], [24], [29].
Now (consider v := κ (K(g, u) + Ug) as given and keep the initial function

u0 fixed), u solves (14) if and only if u = G(κK(g, u) + κUg), i.e.

u− G(κK(g, u) + κUg) = 0. (15)

We introduce a new mapping F : L∞(Q)× L∞(0, T )→ L∞(Q) defined by

F(u, g) := u− G(κK(g, u) + κUg).

Then, (15) is equivalent to the equation

F(u, g) = 0. (16)

We have proved above that the mapping (g, u) 7→ K(g, u) is of class C2 from
L∞(0, T ) × L∞(Q) to L∞(Q). Obviously, also the linear mapping g 7→ Ug is
of class C2 from L∞(0, T ) to L∞(Q). By the chain rule, also F is C2 from
L∞(Q) × L∞(0, T ) → L∞(Q) and the mappings ∂gF(ū, ḡ), ∂uF(ū, ḡ) are
continuous in the associated pairs of spaces.

To use the implicit function theorem, we prove that ∂uF(ū, ḡ) is continu-
ously invertible at any fixed pair (ū, ḡ). Therefore, we consider the equation

∂uF(ū, ḡ)v = z (17)

with given right-hand side z ∈ L∞(Q) and show the existence of a unique
solution v ∈ L∞(Q). The equation is equivalent with

v − G′(κK(ḡ, ū) + κUg︸ ︷︷ ︸
p̄

)κK(g, v) = z. (18)

Writing for convenience p̄ = κK(ḡ, ū) + κUg, we obtain the simpler form

v − G′(p̄)κK(ḡ)v = z.

A function z ∈ L∞(Q) does not in general belong to W (0, T ). To overcome
this difficulty, we set w := v − z and transform the equation to

w = G′(p̄)κK(ḡ)(w + z)︸ ︷︷ ︸
q

= G′(p̄)q. (19)

where q := κK(ḡ)(w + z). As the next result shows, w is the solution of a
parabolic PDE, hence w ∈W (0, T ).
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Lemma 1 Let q ∈ Lp(Q) with p > 5/2 be given. Then we have y = G′(p̄)q if
and only if y solves

∂ty −∆y +R′(ū)y + κ y = q in Q
∂ny = 0 in Σ
y(0) = 0 in Ω,

where ū is the solution associated with p̄, i.e.

∂tū−∆ū+R(ū) + κ ū = p̄ in Q
∂nū = 0 in Σ
ū(0) = u0 in Ω.

We refer to [8]. For monotone non-decreasing functions R, this result is well
known in the theory of semilinear parabolic control problems, see e.g. [6], [23],
or [29, Thm. 5.9]. By Lemma 1, the solution w of (19) is the unique solution
of the linear PDE

(∂tw −∆w +R′(ū)w + κw)(x, t) = q(x, t)

= κ

∫ t

0

ḡ(τ)w(x, t− τ) dτ + κ

∫ t

0

ḡ(τ)z(x, t− τ) dτ
(20)

subject to w(0) = 0 and homogeneous Neumann boundary conditions. By the
same methods as above we find that, for all z ∈ L∞(Q), equation (20) has a
unique solution w ∈W (0, T ) ∩ L∞(Q).

After transforming back by v = w + z, we have found that for all z ∈
L∞(Q), (17) has a unique solution v ∈ L∞(Q) given by v = w+ z. Therefore,
the inverse operator ∂uF(ū, ḡ)−1 exists. The continuity of this inverse map-
ping follows from a result of [8] that the mapping z 7→ w defined by (20) is
continuous in L∞(Q).

Next, we consider the operator ∂gF . It exists by the chain rule and admits
the form

∂gF(ū, ḡ)h = G′(κ (K(ḡ)ū+ Ug))κ (K(h)ū+ ∂gUgh).

Setting again p̄ = κ (K(ḡ)ū+ Ug) and q = κ (K(h)ū+ ∂gUgh), we see that

∂gF(ū, ḡ)h = η,

where, by Lemma 1, η solves the equation

∂tη −∆η +R′(ū)η + κ η = q = κK(h)ū+ κ ∂gUgh

subject to homogeneous initial and boundary conditions. Therefore, η is the
unique solution to

(∂tη −∆η +R′(ū)η + κ η)(x, t) = κ

∫ t

0

h(τ)ū(x, t− τ) dτ

+κ

∫ T

t

h(τ)u0(x, t− τ) dτ

η(x, 0) = 0

∂nη = 0.
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By ū(x, t) = u0(x, t) for −T ≤ t ≤ 0, we can re-write this as

(∂tη −∆η +R′(ū)η + κ η)(x, t) = κ

∫ T

0

h(τ)ū(x, t− τ) dτ

∂nη = 0

η(x, 0) = 0.

Again, the mapping h 7→ w is continuous from L∞(0, T ) to W (0, T ) ∩ C(Q̄).

Collecting the last results, we have the following theorem:

Theorem 2 (Differentiability of G) The control-to-state mapping G : g 7→
ug associated with equation (10) is of class C2. The first order derivative
z := G′(g)h is obtained as the unique solution to

(∂tz −∆z +R′(ug)z + κ z)(x, t) = κ

∫ T

0

h(τ)ug(x, t− τ) dτ

+κ

∫ t

0

g (τ)z(x, t− τ) dτ in Q

∂nz = 0 in Σ
z(·, t) = 0, −T ≤ t ≤ 0 in Ω.

(21)

Proof We already know by Theorem 1 that, for all g ∈ L∞(0, T ), there exists
a unique solution u = G(g) ∈W (0, T ) ∩ C(Q̄) solving the equation

F(u, g) = 0.

We have discussed above that the assumptions of the implicit function theorem
are satisfied. Now this theorem yields that the mapping g 7→ G(g) is of class
C2.

The derivative G′(g)h is obtained by implicit differentiation. By definition
of G(g), we have

(∂tG(g)−∆G(g) +R(G(g)) + κG(g))(x, t) = κ

∫ t

0

g(τ)G(g)(x, t− τ) dτ

+κ

∫ T

t

g(τ)u0(x, t− τ) dτ

∂nG(g) = 0

G(g)(·, t) = u0(·, t), −T ≤ t ≤ 0.
(22)

Implicit differentiation yields that z := G′(g)h is the unique solution of (21).
Notice that∫ t

0

g(τ)G(g)(x, t−τ) dτ +

∫ T

t

g(τ)u0(x, t−τ) dτ =

∫ T

0

g(τ)G(g)(x, t−τ) dτ.

2
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4.3 Existence of an optimal kernel

Theorem 3 For all ν ≥ 0, (PG) has at least one optimal solution ḡ.

Proof Let (gn) with gn ∈ C for all n ∈ N be a minimizing sequence. Since C is
bounded, convex, and closed in L∞(0, T ), we can assume without limitation
of generality that gn converges weakly in L2(0, T ) to ḡ, i.e. gn ⇀ ḡ, n → ∞.
The associated sequence of states un obeys the equations

∂tun −∆un + κun = dn := −κR(un) + κK(gn)un + κUg. (23)

By the principle of superposition, we split the functions un as un = û +
ũn, where û is the solution of (23) with right-hand side dn := 0 and initial
value û(0) = u0(0), while ũn is the solution to the right-hand side dn defined
above and zero initial value. In view of (13), all state functions un, hence also
the functions ũn, are uniformly bounded in L∞(Q). Thanks to [11, Thm. 4],
the sequence (ũn) is bounded in some Hölder space C0,λ(Q). By the Arzela-
Ascoli theorem, we can assume (selecting a subsequence, if necessary) that ũn
converges strongly in L∞(Q). Adding to ũn the fixed function û, we have that
(un) converges strongly to some ū in L∞(Q).

The boundedness of (un) also induces the boundedness of the sequence (dn)
in L∞(Q), in particular in L2(Q). Therefore, we can assume that dn converges
weakly in L2(Q) to d̄, n → ∞. Since (un) is the sequence of solutions to the
”linear” equation (23) with right-hand side dn, the weak convergence of (dn)
induces the weak convergence of un ⇀ ū in W (0, T ), where ū solves (23) with
right-hand side d̄.

Finally, we show that

d̄(t) = −κR(ū(t)) + κ (K(ḡ)ū)(t) + κUg(t)

so that ū is the state associated with ḡ. Obviously, it suffices to prove that
K(gn)un converges weakly to K(ḡ)ū in L2(Q). To this aim, let an arbitrary
ϕ ∈ L2(Q) be given. Then we have∫∫

Q

ϕ(x, t)

(∫ t

0

gn(τ)un(x, t− τ) dτ

)
dxdt

=

∫ T

0

gn(τ)

(∫ T

τ

∫
Ω

ϕ(x, t)un(x, t− τ) dtdx

)
dτ.

(24)

Clearly, the strong convergence of (un) in L∞(Q) yields∫ T

τ

∫
Ω

ϕ(x, t)un(x, t− ·) dtdx→
∫ T

τ

∫
Ω

ϕ(x, t)ū(x, t− ·) dtdx

in L2(0, T ). Along with the weak convergence of gn, this implies

lim
n→∞

∫ T

0

gn(τ)

∫ T

τ

∫
Ω

ϕ(x, t)un(x, t− τ) dtdxdτ

=

∫ T

0

ḡ(τ)

∫ T

τ

∫
Ω

ϕ(x, t)ū(x, t− τ) dtdxdτ.
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In view of (24), we finally arrive at

∫∫
Q

ϕ(x, t)

∫ t

0

gn(τ)un(x, t−τ) dτdxdt→
∫∫

Q

ϕ(x, t)

∫ t

0

ḡ(τ)ū(x, t−τ) dτdxdt

as n → ∞. Since this holds for arbitrary ϕ ∈ L2(Q), this is equivalent to the
desired weak convergence K(gn)un ⇀ K(ḡ)ū in L2(Q). 2

4.4 Necessary optimality conditions

4.4.1 Adjoint equation

In the next step of our analysis, we establish the necessary optimality condi-
tions for a (local) solution ḡ of the optimization problem (PG). This optimiza-
tion problem is defined by


min J(g),

0 ≤ g(t) ≤ β for almost all t ∈ [0, T ],∫ T

0

g(τ) dτ = 1.

(25)

Although the admissible set belongs to L∞(0, T ), we consider this as an opti-
mization problem in the Hilbert space L2(0, T ).

To set up associated necessary optimality conditions for an optimal solution
of (25), we first determine a useful expression for the derivative of the objective
functional J . We have

J(g) =
1

2

∫∫
Q

cQ(ug − ud)2 dxdt+
ν

2

∫ T

0

g(t)2 dt

=
1

2

∫∫
Q

cQ(G(g)− ud)2 dxdt+
ν

2

∫ T

0

g(t)2 dt.

Let now be an arbitrary (i.e. not necessarily optimal) ḡ ∈ L∞(0, T ) be given
and let ū = G(ḡ) be the associated state. Then we obtain for h ∈ L∞(0, T )

J ′(ḡ)h = ν

∫ T

0

ḡ(t)h(t) dt+

∫∫
Q

cQ(ū− ud)(G′(ū)h) dxdt

=

∫ T

0

νḡ(t)h(t)dt+

∫∫
Q

cQ(x, t)(ū(x, t)− ud(x, t))z(x, t)dxdt (26)

with the solution z to the equation (21) for ug := uḡ = ū.
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The implicit appearance of h via z can be converted to an explicit one by
an adjoint equation. This is the following equation:

(−∂tϕ−∆ϕ+R′(ū)ϕ+ κϕ)(x, t) = κ

∫ T

0

ḡ(τ)ϕ(x, t+ τ) dτ

+cQ(x, t)(ū(x, t)− ud(x, t))
a.e. in Q,

∂nϕ = 0 in Σ,

ϕ(·, t) = 0 t ∈ [T, 2T ].

(27)

The solution ϕ̄ of (27) is said to be the adjoint state associated with ḡ.

Lemma 2 Let ḡ, h̄ ∈ L∞(0, T ), and ū = uḡ be given. If z is the solution to
the linearized equation (21) for ug := ū and ϕ̄ is the unique solution to the
adjoint equation (27), then the identity

∫∫
Q

(cQ (ū− ud) z)(x, t) dxdt = κ

∫∫
Q

ϕ̄(x, t)

(∫ T

0

h(τ)ū(x, t− τ) dτ

)
dxdt

(28)
is fulfilled:

Proof We multiply the first equation in (21) by the adjoint state ϕ̄ as test
function and the first equation in (27) by z. After integration on Q and some
partial integration with respect to x, we obtain∫∫

Q

(∂tz ϕ̄+∇z · ∇ϕ̄+ (R′(ū) + κ)z ϕ̄) dxdt

= κ

∫∫
Q

(∫ T

0

ḡ(τ)z(x, t− τ) dτ

)
ϕ̄(x, t) dxdt

+ κ

∫∫
Q

(∫ T

0

h(τ)ū(x, t− τ) dτ

)
ϕ̄(x, t) dxdt

and∫∫
Q

(−z ∂tϕ̄+∇z · ∇ϕ̄+ (R′(ū) + κ)z ϕ̄) dxdt

= κ

∫∫
Q

(∫ T

0

ḡ(τ)ϕ̄(x, t+ τ) dτ

)
z(x, t) dxdt+

∫∫
Q

cQ(ū− ud) z dxdt.

Integrating by parts with respect to t, we see that∫∫
Q

(−z) ∂tϕ̄ dxdt =

∫∫
Q

ϕ̄ ∂tz dxdt;
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notice that we have z(0) = 0 and ϕ̄(T ) = 0. Comparing both weak formulations
above, it turns out that we only have to confirm the equation

∫∫
Q

∫ T

0

ḡ(τ)z(x, t−τ) ϕ̄(x, t) dτ dxdt =

∫∫
Q

∫ T

0

ḡ(τ)ϕ̄(x, t+τ) z(x, t) dτ dxdt.

(29)
Then the claim of the Lemma follows. To show (29) , we proceed as follows:

∫∫
Q

∫ T

0

ḡ(τ)z(x, t− τ)ϕ(x, t) dτ dxdt

=

∫
Ω

∫ T

0

∫ T

0

ḡ(τ) z(x, t− τ) ϕ̄(x, t) dτdtdx

=

∫
Ω

∫ T

0

∫ t

0

ḡ(τ) z(x, t− τ) ϕ̄(x, t) dτdtdx

=

∫
Ω

∫ T

0

∫ t

0

ḡ(t− η) z(x, η) ϕ̄(x, t) dηdt dx

=

∫
Ω

∫ T

0

∫ T

η

ḡ(t− η) ϕ̄(x, t) dt z(x, η) dη dx

=

∫
Ω

∫ T

0

∫ T−η

0

ḡ(σ) ϕ̄(x, η + σ) dσ z(x, η) dη dx

=

∫
Ω

∫ T

0

∫ T

0

ḡ(σ) ϕ̄(x, η + σ) dσ z(x, η) dη dx

=

∫∫
Q

∫ T

0

ḡ(τ) ϕ̄(x, t+ τ) z(x, t) dτ dxdt.

(30)

We used z(x, t − τ) = 0 for τ > t (due to (21)) in the second equation, the
substitution η = t − τ in the third, the Fubini theorem in the fourth, the
substitution σ = t − η in the fifth, the property ϕ̄(x, t) = 0 for t ≥ T in the
sixth equation. Finally, we re-named the variables. 2

Corollary 1 At any ḡ ∈ L∞(0, T ), the derivative J ′(ḡ)h in the direction
h ∈ L∞(0, T ) is given by

J ′(ḡ)h =

∫ T

0

ν ḡ(t)h(t) dt+ κ

∫ T

0

h(τ)

(∫∫
Q

ϕ̄(x, t)ū(x, t− τ) dxdt

)
dτ,

where ϕ̄ is the unique solution of the adjoint equation (27).

This follows immediately by inserting the right-hand side of (28) in (26)
and by interchanging the order of integration with respect to t and τ .
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4.4.2 Necessary optimality conditions for (PG)

Let us now establish the necessary optimality conditions for an optimal solu-
tion ḡ of (25). They can be derived by the Lagrangian function L : L∞(0, T )×
R→ R,

L(g, µ) := J(g) + µ

(∫ T

0

g(τ) dτ − 1

)
.

If ḡ is an optimal solution, then there exists a real Lagrange multiplier µ̄ such
that the variational inequality

J ′(ḡ)(g − ḡ) + µ̄

∫ T

0

(g − ḡ) dt ≥ 0 for all g ≥ 0

is satisfied. Inserting the result of Corollary 1 for h := g − ḡ, we find∫ T

0

(
νḡ(t) + µ̄+ κ

∫∫
Q

ϕ̄(x, s)ū(x, s− t) dxds
)

(g(t)− ḡ(t)) dt ≥ 0 (31)

for all 0 ≤ g ≤ β.
Remark 2 For a Lagrange multiplier rule to hold, a regularity condition must
be fulfilled. Here, the constraints are obviously regular at any ḡ: Define F :
L2(0, T )→ R by

F (g) =

∫ T

0

g(τ) dτ − 1.

Then

F ′(g)h =

∫ T

0

h(τ) dτ,

and hence F ′(g) : L2(0, T )→ R is surjective for all g ∈ L2(0, T ).

A simple pointwise discussion of (31) leads to the following complementar-
ity conditions for almost all t ∈ [0, T ]:

g(t) =


0 if νḡ(t) + µ̄+ κ

∫∫
Q

ϕ̄(x, s)ū(x, s− t) dxds > 0

β if νḡ(t) + µ̄+ κ

∫∫
Q

ϕ̄(x, s)ū(x, s− t) dxds < 0.
(32)

If the expression in right-hand side above vanishes, then we obviously have

g(t) = −1

ν

(
µ̄+ κ

∫∫
Q

ϕ̄(x, s)ū(x, s− t) dxds
)
.

In a known way, the last three relations can be equivalently expressed by the
projection formula

ḡ(t) = P[0,β]

(
−1

ν

(
µ̄+ κ

∫∫
Q

ϕ̄(s)ū(x, s− t) dxds
))

,

where P[0,β] : R→ [0, β] is defined by

P[0,β](x) = max(0,min(β, x)).
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5 Discussion of (PS)

Let us now discuss the changes that are needed to establish the necessary
optimality conditions for the problem (PS) with the particular form (6) of g.
Now, κ, t1, and t2 are our control variables. Let us denote by u(κ,t1,t2) the
unique state associated with (κ, t1, t2).

The existence of the derivatives ∂tiu(κ,t1,t2), i = 1, 2, and ∂κu(κ,t1,t2) can
be shown again by the implicit function theorem. We omit these details, be-
cause one can proceed analogously to the discussion for (PG). To shorten the
notation, we write

zi := ∂tiu(κ,t1,t2), i = 1, 2, z3 := ∂κu(κ,t1,t2).

By implicit differentiation, we find the functions zi from linearized equations.
Assume that the derivatives have to be determined at the point (κ, t1, t2) and
fix the associated state u := u(κ,t1,t2) for a while. Then, z1 solves

(∂tz1 −∆z1 +R′(u)z1 + κ z1) (x, t) =
∂

∂t1

[
κ

t2 − t1

∫ t2

t1

u(x, t− τ) dτ

]
=

κ

t2 − t1

[
1

t2 − t1

∫ t2

t1

u(x, t− τ) dτ − u(x, t− t1) +

∫ t2

t1

z1(x, t− τ) dτ

]
.

(33)

Analogously, we find for z2

(∂tz2 −∆z2 +R′(u)z2 + κ z2)(x, t) =

=
−κ

t2 − t1

[
1

t2 − t1

∫ t2

t1

u(x, t− τ) dτ − u(x, t− t2) +

∫ t2

t1

z2(x, t− τ) dτ

]
(34)

and for z3

(∂tz3 −∆z3 +R′(u)z3 + κ z3 + u)(x, t) =
∂

∂κ

[
κ

t2 − t1

∫ t2

t1

u(x, t− τ) dτ

]
=

1

t2 − t1

[∫ t2

t1

u(x, t− τ) dτ + κ

∫ t2

t1

z3(x, t− τ) dτ

]
.

Therefore, the equation for z3 is

(∂tz3 −∆z3 +R′(u)z3 + κ z3)(x, t)− κ

t2 − t1

∫ t2

t1

z3(x, t− τ) dτ

=
1

t2 − t1

∫ t2

t1

u(x, t− τ) dτ − u(x, t).

(35)

Again, we introduce an adjoint equation to set up the optimality conditions. To
this aim, let (κ, t1, t2) an arbitrary fixed triplet and u(κ,t1,t2) be the associated
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state function. The adjoint equation is

(
−ϕt −∆ϕ+R′(u(κ,t1,t2))ϕ+ κϕ

)
(x, t) =

κ

t2 − t1

∫ t2

t1

ϕ(x, t+ τ) dτ

+cQ(x, t)(u(κ,t1,t2)(x, t)− ud(x, t))
in Q,

∂nϕ = 0 in Σ,

ϕ(x, t) = 0 in Ω × [T, 2T ].
(36)

This equation has a unique solution ϕ ∈ L∞(Q) denoted by ϕ(κ,t1,t2) to in-
dicate the correspondence with (κ, t1, t2). Existence and uniqueness can be
shown in a standard way by the substitution t̃ := T − t that transforms this
equation to a standard forward equation that can be handled in the same way
as the state equation.

Theorem 4 (Derivative of JS) Let (κ, t1, t2) be given, u := u(κ,t1,t2) be the
associated state, and ϕ := ϕ(κ,t1,t2) be the associated adjoint state, i.e. the
unique solution of the adjoint equation (36). Write for short δ := 1/(t2 − t1).
Then the partial derivatives of JS at (κ, t1, t2) are given by

∂t1JS = νt1 +
κ

δ

∫∫
Q

ϕ(x, t)

[
1

δ

∫ t2

t1

u(x, t− τ) dτ − u(x, t− t1)

]
dxdt,

∂t2JS = νt2 −
κ

δ

∫∫
Q

ϕ(x, t)

[
1

δ

∫ t2

t1

u(x, t− τ) dτ − u(x, t− t2)

]
dxdt

∂κJS = νκ+

∫∫
Q

ϕ(x, t)

[
1

δ

∫ t2

t1

u(x, t− τ) dτ − u(x, t)

]
dxdt.

Proof We verify the expression for ∂t1JS(κ, t1, t2), the other formulas can be
shown analogously. To this aim, let z1 = ∂t1u(κ,t1,t2) be the solution of the
linearized equation (33). For convenience, we write z := z1 within this proof.
Following the proof of Lemma 2, we multiply (33) by ϕ and integrate over Q.
We obtain∫∫

Q

(∂tz ϕ+∇z · ∇ϕ+ (R′(u) + κ)z ϕ) dxdt

=
κ

δ

∫∫
Q

ϕ(x, t)

[
1

δ

∫ t2

t1

u(x, t− τ) dτ − u(x, t− t1)

]
dxdt

+
κ

δ

∫∫
Q

ϕ(x, t)

∫ t2

t1

z(x, t− τ) dτdxdt.

(37)
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Next, we multiply the adjoint equation (36) by z and integrate over Q to find∫∫
Q

(−z ∂tϕ+∇z · ∇ϕ+ (R′(u) + κ)z ϕ) dxdt

=
κ

δ

∫∫
Q

∫ t2

t1

ϕ(x, t+ τ) dτ z(x, t) dxdt+

∫∫
Q

cQ(ū− ud) z dxdt.

(38)

Now recall that

g(t) =


1

t2 − t1
, t1 ≤ t ≤ t2

0, elsewhere.

Therefore, we can write

1

δ

∫∫
Q

ϕ(x, t)

∫ t2

t1

z(x, t− τ) dτdxdt =

∫∫
Q

∫ T

0

ϕ(x, t)g(τ)z(x, t− τ) dτdxdt

=

∫∫
Q

∫ T

0

g(τ)ϕ(x, t+ τ)dτz(x, t)dxdt =
1

δ

∫∫
Q

∫ t2

t1

ϕ(x, t+ τ)dτz(x, t)dxdt,

where the second equation follows from (30). In view of∫∫
Q

(−z) ∂tϕdxdt =

∫∫
Q

ϕ∂tz dxdt,

a comparison of the equations (37) and (38) yields∫∫
Q

cQ(u− ud) z dxdt =

=
κ

δ

∫∫
Q

ϕ(x, t)

[
1

δ

∫ t2

t1

u(x, t− τ) dτ − u(x, t− t1)

]
dxdt.

Since

∂t1

[
1

2

∫∫
Q

cQ(u(κ,t1,t2) − ud)2dxdt

]
=

∫∫
Q

cQ(u(κ,t1,t2) − ud) z1 dxdt,

the first claim of the theorem follows immediately. 2

As a direct consequence of the theorem on the derivative of JS , we obtain
the following corollary.

Corollary 2 (Necessary optimality condition for (PS)) Let (κ̄, t̄1, t̄2)
be optimal for the problem (PS) and let ū := u(κ̄,t̄1,t̄2) and ϕ̄ := ϕ(κ̄,t̄1,t̄2)

denote the associated state and adjoint state, respectively. Then, with the gra-
dient ∇JS(κ̄, t̄1, t̄2) defined by Theorem 4 with ϕ̄ and ū inserted for ϕ and u,
respectively, the variational inequality

∇JS(κ̄, t̄1, t̄2) · (κ− κ̄, t1 − t̄1, t2 − t̄2)> ≥ 0 ∀(κ, t1, t2) ∈ Cδ (39)

is satisfied.
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Since the variable κ is unrestricted, the associated part of the variational
inequality amounts to

νκ̄−
∫∫

Q

ϕ̄(x, t)ū(x, t) dxdt+
1

t̄2 − t̄1

∫∫
Q

ϕ̄(x, t)ū(x, t− t̄2) dxdt = 0.

If (t̄1, t̄2) belongs to the interior of the admissible set Cδ, then the associated
components of ∇JS must vanish as well, hence

νt̄1 +
κ̄

t̄2 − t̄1

∫∫
Q

ϕ̄(x, t)

[
1

t̄2 − t̄1

∫ t̄2

t̄1

ū(x, t− τ) dτ − ū(x, t− t̄1)

]
dxdt = 0

νt̄2 −
κ̄

t̄2 − t̄1

∫∫
Q

ϕ̄(x, t)

[
1

t̄2 − t̄1

∫ t̄2

t̄2

ū(x, t− τ) dτ − ū(x, t− t̄2)

]
dxdt = 0.

Remark 3 (Application of the formal Lagrange technique) To find the form
of ∇JS and for establishing the necessary optimality conditions, it might be
easier to apply the following standard technique that is slightly formal but
leads to the same result: We set up the Lagrangian function L,

L(u, κ, t1, t2, ϕ) =
1

2

∫∫
Q

cQ(u− ud)2dxdt−
∫∫

Q

ϕ(x, t) ·

·
[
(∂tu−∆u+R(u) + κu)(x, t)− κ

t2 − t1

∫ t2

t1

u(x, t− τ) dτ

]
dxdt.

If (κ, t1, t2) is a given triplet, then the adjoint equation for the adjoint state
ϕ(κ,t1,t2) is found by

∂uL(u, κ, t1, t2, ϕ) v = 0 ∀v : v(·, t) = 0 for t ≤ 0.

The derivatives of JS are obtained by associated derivatives of L. For instance,
we have

∂tiJS(κ, t1, t2) = ∂tiL(u, κ, t1, t2, ϕ)

if u = u(κ,t1,t2) and ϕ = ϕ(κ,t1,t2) are inserted after having taken the derivative
of L with respect to ti. This obviously yields the first two components of ∇JS
in Theorem 4. For the third component, we proceed analogously.

6 Numerical examples for (PS)

6.1 Introductory remarks

The numerical solution of the problems posed above requires techniques that
are adapted to the desired type of patterns ud. In this paper, we concentrate
on numerical examples for the simplified problem (PS), where the kernel g
is a step function. Although this problem is mathematically equivalent to a
nonlinear optimization problem in a convex admissible set of R3, the obtained
patterns are fairly rich and interesting in their own. In a forthcoming paper
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to be published elsewhere, we will report on the numerical treatment of the
more general problem (PG), where a kernel function g is to be determined.

In this section, we present some results for the problem (PS), where a
standard regularized tracking type functional J is to be minimized in the set
Cδ. It will turn out that (PS) is only suitable for tracking desired states ud
of simple structure. In all what follows, Ω = (a, b) is an open interval, i.e. we
concentrate on the spatially one-dimensional case.

Compared to many optimal control problems for semilinear parabolic equa-
tions that were investigated in the literature, the numerical solution of the
problems posed here is a bit delicate. We are interested in approximating de-
sired states ud that exhibit certain geometrical patterns. If they have a periodic
structure, then the objective function J may exhibit many local minima with
very narrow regions of attraction for the convergence of numerical techniques.
Therefore, the optimization methods should be started in a sufficiently small
neighborhood around the desired optimal solution. Moreover, the standard
functional J does not really fit to our needs. We will address the tracking of
periodic patterns ud in Section 7.

6.2 Discretization of the feedback system

To discretize the feedback equation (6), we apply an implicit Euler scheme with
respect to the time and a finite element approximation by standard piecewise
linear and continuous ansatz functions (”hat functions”) with respect to the
space variable.

For this purpose, we define a time grid by an equidistant partition of [0, T ]
with mesh size τ = T/m and node points tj = j τ , j = 0, . . . ,m. Associated
with this time grid, functions uj : Ω → R are to be computed that approximate
u(·, tj), j = 0, . . . ,m, i.e. uj ∼ u(·, tj). Based on the functions uj , we define
grid functions uτ : Q→ R by piecewise linear approximation,

uτ (x, t) =
1

τ
[(tj+1 − t)uj(x) + (tj − t)uj+1(x)], if t ∈ [tj , tj+1], j = 0, . . . ,m.

By the implicit Euler scheme, the following system of nonlinear equations is
set up,

uτ (x, tj+1)− uτ (x, tj)

τ
−∆uτ (x, tj+1) +R(uτ (x, tj+1))

=
κ

t2 − t1

∫ t2

t1

uτ (x, tj+1 − s) ds− κuτ (x, tj+1), j = 0, . . . ,m− 1.

The spatial approximation is based on an equidistant partition of Ω = (a, b)
with mesh size h > 0. Here, we define standard piecewise affine and continuous
ansatz functions (hat functions) φi : Ω → R and approximate the grid function
uτ by uτh,

uτh(x, tj) =

n∑
i=0

ujiφi(x)
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with unknown coefficients uji ∈ R, j = 0, . . . ,m, i = 0, . . . , n.
To set up the discrete system, we define vectors uj ∈ Rn+1 by uj =

(uj0, . . . , ujn)>, j = 0, . . . ,m. Moreover, we establish the mass and stiffness
matrices

M :=

(∫
Ω

φk(x)φ`(x) dx

)n
k,`=0

, A :=

(∫
Ω

φ′k(x)φ′`(x) dx

)n
k,`=0

,

and, for j = 0, . . . ,m, the vectors

R(uj) :=

(∫
Ω

R(uτh(x, tj))φi(x) dx

)n
i=0

K(uj) :=
κ

t2 − t1

(∫
Ω

∫ t2

t1

(uτh(x, tj)− s) ds φi(x) dx

)n
i=0

.

Remark 4 To compute the integrals R(uj), we invoke a 4 point Gauss integra-
tion. Notice that the functions x 7→ R(uτh(x, tj)) are third order polynomials
so that the integrand of R(uj) is a polynomial of order 4. Here, the 4 point
Gauss integration is exact.

For the computation of the vectors K(uj), we use the trapezoidal rule.
Here, for tj − s ≤ 0, the values u0(x, tj − s) must be inserted. To increase the
precision, the primitive of u0 is used. The complete discrete system is

Muj+1−Muj+τAuj+1+τ R(uj+1) = τK(uj+1)−τκMuj+1 j = 0, 1, . . .m−1.

We define
F (u) := [(1 + τκ)M + τA]u + τ R(u)− τK(u).

In each time step, we solve the nonlinear equation F (u) = Muj to obtain
uj+1. To this aim, we apply a fixed point iteration.

6.3 Numerical examples for the standard tracking functional

For testing our numerical method, we generate the desired state ud as solution
of the feedback system for a given triplet (κ̂, t̂1, t̂2), i.e.

ud := u(κ̂,t̂1,t̂2).

If the regularization parameter ν is small, then the numerical solution of (PS)
should return a vector that is close to (κ̂, t̂1, t̂2).

In all of our computational examples, we selected a small number δ > 0
so that the restriction t2 − t1 ≥ δ was never active. Moreover, the Tikhonov
regularization parameter ν was set to zero, because a regularization was not
needed for having numerical stability. This indicates that the unknown locally
optimal solution satisfies a second-order sufficient optimality condition, since
this is known to be sufficient for numerical stability of the solution. In this
case, one should also be able to show that, for ν ↓ 0, the sequence of associated
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(locally) optimal solutions tends to the solution for ν = 0. We do not discuss
this fairly technical issue here.

In the first numerical examples of this paragraph, the aim is to generate
desired wave type solutions that expand with a given velocity.

Example 1 (Desired traveling wave with pre-computed ud) We select Ω =
(−20, 20), T = 40, u1 = 0, u2 = 0.25, u3 = 1, κ = 0.5. Moreover, we take
as initial function

u0(x, t) :=
1

2

(
1− tanh

(
x− vt
2
√

2

))
, x ∈ Ω, t ≤ 0,

where v = (1−2u2)/
√

2 is the velocity of the uncontrolled traveling wave given
by u0. Following the strategy explained above, we fix the triplet (κ̂, t̂1, t̂2) by
(0.5, 0.456, 0.541) and obtain ud = u(κ̂,t̂1,t̂2). This is a traveling wave with
a smaller velocity vd ≈ 0.25 due to the control term. To test our method,
we apply our optimization algorithm to find (κ̄, t̄1, t̄2) such that the associated
state function u coincides with ud. The method should return a result (κ, t1, t2)
that is close to the vector (0.5, 0.456, 0.541).

To solve the problem (PS) in Example 1, we applied the Matlab code
fmincon. For the gradient ∇JS(κ, t1, t2), a subroutine was implemented by
our adjoint calculus. In this way, we were able to use the differentiable mode
of fmincon.

During the optimization, we fixed κ = 0.5 and considered the minimization
only with respect to (t1, t2). Taking t1 = 0, t2 = 1 as initial iterate for the
optimization, fmincon returned t1 = 0.4322, t2 = 0.5649 as solution; notice
that we fixed ν = 0. The computed optimal value was JS(κ, t1, t2) = 3.305e−06
and the Euclidean norm of the gradient was ‖∇JS(κ, t1, t2)‖ = 4.194e − 03.
The result is displayed in Fig. 1.

Fig. 1 Example 1, desired traveling wave ud (left) and computed optimal state u (right).

Example 2 (Stopping a traveling wave ) In contrast to Example 1, here we fix
the desired pattern ud that is displayed in Fig. 2, left side. This desired pat-
tern was not pre-computed but geometrically designed, i.e. it is a ”synthetic”
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pattern that shows a traveling wave stopping at the time t ≈ 16. The other
data are selected as in Example 1.

In the optimization process for Example 2, we fixed κ = −1.5. The initial
iterate was t1 = 0, t2 = 1; fmincon returned t1 = 0.05, t2 = 0.94 as solution.
The optimal state is displayed in Fig. 2.

Fig. 2 Example 2, synthetic desired state ud (left) and computed optimal state u (right).

The next example shows that the applicability of the standard tracking
functional J of (PS) is limited to simple patterns ud, e.g. wave type solutions
of constant velocity.

Example 3 (Periodic pattern) Also here, ud is a synthetic pattern that was
not precomputed. In Ω = (−20, 20), we define

ud(x, t) = 3 sin(t− cos(
π

40
(x+ 40))).

Notice that this function ud obeys the homogeneous Neumann boundary con-
ditions. It is displayed in Fig. 3, left. Since such a periodic pattern cannot be
expected for small times, we consider the tracking only on [T/2, T ]. Therefore,
here we re-define the objective functional J by

JS(κ, t1, t2) :=

∫ T

T/2

∫
Ω

(u(κ,t1,t2) − ud)2 dxdt+
ν

2
(κ2 + t21 + t22).

During the optimization run, we fixed the values κ = −2 and t1 = 0 and
optimized only with respect to t2. Starting from t2 = 2, the code fmincon
returned the solution t2 = 3.7163. At this point, the Euclidean norm of ∇JS
is |∇JS(−2, 0, 3.7163)| ≈ 0.0451. This is a fairly good value and indicates that
the result should be close to a local minimum. Nevertheless, the computed
optimal objective value is very large,

JS(−2, 0, 3.7163) = 1.322 · 103.
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Fig. 3 Example 3, Desired periodic pattern ud (left) and computed optimal state u (right).

Remark 5 In this and in the next examples, we fix t1 = 0. We observed in
our computational examples that the optimization with respect to (κ, t2) and
t1 = 0 yields sufficiently good results. Moreover, we found examples, where we
got the same optimal objective value of J for very different triplets (κ, t1, t2).

The computed optimal state for Example 3 is far from the desired one.
In particular, the temporal periods are very different. The reason is that the
standard quadratic tracking type functional J is not able to resolve the desired
periodicity. The main point is that the L2-norm of the difference of a time-
periodic function t 7→ ud(t) and its phase shifted function t 7→ ud(t−s) can be
very large, although both functions have the same time period. For instance,
in Q = (−20, 20)× (0, 40) we have∫∫

Q

(
3 sin(t− cos(

π

20
(x+ 20)))− 3 sin(t− 3− cos(

π

20
(x+ 20)))

)2

dxdt = I,

where I ≈ 1.4374·104. This brought us to considering another type of objective
functionals that is discussed in the next section.

7 Minimizing a cross correlation type functional

The cross correlation

As Example 3 showed, we need an objective functional that better expresses
our goal of approximating periodic structures. This is the cross correlation
between u and ud. Moreover, in the functional, we have to observe a later part
of the time interval, where u already has developed its periodicity.

Let us briefly explain the meaning of the cross correlation. Assume that
xd : R → R is a periodic function with (possibly not minimal) period T and
x : [0, T ]→ R is another function; think of a function x that is identical with
xd after a time shift.
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To see, if xd and x are time shifts of each other, we consider the extremal
problem

min
s∈R

∫ T

0

(x(t)− xd(t+ s))2dt. (40)

If x and xd are just shifted, then the minimal value in (40) should be zero by
taking the correct time shift s. The functional (40) can be simplified. To this
aim, we expand the integrand,∫ T

0

(x(t)−xd(t+s))2dt =

∫ T

0

x2(t) dt−2

∫ T

0

x(t)xd(t+s)dt+

∫ T

0

x2
d(t+s) dt.

The first integral does not depend on s. Since xd is a T -periodic function, also
the last integral is independent of the shift s. Therefore, instead of minimizing
the quadratic functional above, we can solve the following problem:

max
s∈R

∫ T
0
x(t)xd(t+ s)dt

‖x‖L2(0,T )‖xd‖L2(0,T )
, (41)

where we additionally introduced a normalization. The result is the normalized
cross correlation between x and xd. The largest possible value in (41) is 1; in
this case, both functions are collinear.

In the application to our control problems, this induces two equivalent
objective functionals. The minimization problem (40) leads to the optimization
problem

min
(κ,t1,t2)∈Cδ

(
min
s∈R

∫
Q

(u(x, t)− ud(x, t+ s))2dxdt+
ν

2
(κ2 + t21 + t22)

)
. (42)

The other way around is an equivalent problem that uses the cross corre-
lation,

min
(κ,t1,t2)∈Cδ

Jcorr(κ, t1, t2) (43)

where

Jcorr(κ, t1, t2) := 1−max
s∈R

∫∫
Q

u(x, t)ud(x, t+ s)dxdt

‖u‖L2(Q)‖ud‖L2(Q)
+
ν

2
(κ2 + t21 + t22). (44)

In our applications, we use the cross-correlation functional also in cases,
where T is not exactly a multiple of the (minimal) period of ud. Here, the
objective functionals (43) and (42) are not completely equivalent.

For solving (43), we applied the Matlab code pattern search that turned
out to be fairly efficient in finding global minima for functions that exhibit
multiple local minima. In the periodic case, we have to deal with multiple lo-
cal minima indeed. Here, the cross correlation based functional Jcorr is more
useful, as the next figure shows.
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Example 4 (Multiple local minima) We pre-compute the desired state by ud =
u(−2,0,2.5) and consider the functions κ 7→ JS(κ, 0, 2.5) and κ 7→ Jcorr(κ, 0, 2.5)
for κ around the (optimal) parameter κ̄ = −2.

The two functions defined in Example 4 are shown in Fig. 4. The function
κ 7→ JS(κ, 0, 2.5) behaves more wildly around κ = −2 than the function
κ 7→ Jcorr(κ, 0, 2.5) that is based upon the cross correlation.

Fig. 4 Example 4, goal functions κ 7→ JS(κ, 0, 2.5) (left) and κ 7→ Jcorr(κ, 0, 2.5) (right).

Let us re-consider the optimization problem of Example 3, but now by
the cross correlation based optimization problem (43). Here, we apply the
following strategy: We keep t1 = 0 fixed and optimize only with respect to
(κ, t2). Moreover, at the beginning we fixed κ = −2 and optimized with respect
to κ in a second run. The computed solution was t2 = 2.763 with a value
Jcorr = 0.1604, (t1 = 0, κ = −2); as before the Tikhonov parameter was
selected as ν = 0. The computed u of this first step is shown in Fig. 5. Now
the agreement, in particular of the temporal period, is much better.

Next, we performed an alternating search for (κ, t2) starting with the result
obtained in the first step. We obtained t2 = 2.7631, κ = −2.4318 and the
improved objective value Jcorr = 0.1229. This improvement is graphically
hardly to distinguish from Fig. 5.

Finally, we consider another example with synthetic ud that has a larger
period than ud of Example 3.

Example 5 We consider again Ω = (−20, 20) and observe ud only in the time
interval [20, 40]. For ud we select

ud(x, t) = 3 sin

(
t

2
− cos

( π
20

(x+ 20)
))

.

Again, t1 = 0 is fixed and the iteration is started with t2 = 2, κ = −2.
The optimal control parameters are t2 = 6.9419, κ = −2.2837 with computed
optimal objective value Jcorr = 0.1209. The computed optimal state is shown
in Fig. 6.
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Fig. 5 Example 3, Desired pattern ud (left) and computed pattern after minimizing Jcorr
with respect to t2 (right) for fixed κ = −2, t1 = 0.

Fig. 6 Example 5, desired pattern ud (left) and optimal pattern (right) for fixed t1 = 0.
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