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ERROR ESTIMATES FOR A SEMILINEAR ELLIPTIC CONTROL
PROBLEM

Nadir Arada!, Eduardo Casas?, Fredi Troltzsch.

Abstract

We study the numerical approximation of distributed nonlinear optimal control prob-
lems governed by semilinear elliptic partial differential equations with pointwise con-
straints on the control. The analysis of the approximate control problems is carried
out. In particular, characterization results for the optimal control and the discretized
optimal controls are stated. The uniform convergence of discretized controls to op-
timal controls is proven under natural assumptions. Finally, error estimates are

established.

Keywords: Distributed control, semilinear elliptic equation, numerical approximation,
finite element method, error estimates.

AMS subject classification: 49J20, 49K20, 49M05, 65K10

1 Introduction

The paper is concerned with the discretization of the following optimal control problem
(P) inf J(u)= /QL(x,yu(x), u(z)) dz,
subject to (y,,u) € (C(Q) N H(Q)) x L®(),
Ayy + f(-,yu) =u in Q, Yy =0 on T, (1.1)
ue U ={uec L®(Q)|a<u(z) < foraa z €},

where () is a convex bounded domain, I' is the boundary of 2; A denotes a second order

elliptic operator of the form Ay(z) = N1 Di(ai;(z)Djy(x)) where D; denotes the

ij=1
partial derivative with respect to z;, and « anjd [ are real numbers. Here u is the control
while y, is said to be the associated state.
Under some natural assumptions, we prove the existence of solutions for the problem (P).
By using the associated optimality conditions, a characterization of the optimal control is

given, and a corresponding regularity result is established.

The second part of the paper is concerned with the full discretization of the control
and the state equation by a finite element method. The asymptotic behavior of the cor-
responding discretized problem (P,) is studied, and a stability result established. As for
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the continuous problem, we give a characterization result concerning the solutions of (Py,).
This enables us to prove the uniform convergence of these solutions to a solution of (P).

Finally, the last and main part is devoted to the approximation errors for the optimal
control. Under some natural assumptions, with a second order and a stability condition,
we derive some error estimates. Moreover, we show how the error estimates for the state
equation and the adjoint equation can be transferred to associated error estimates for the
optimal controls.

Let us briefly comment on the relevant literature. There are two early papers on the nu-
merical approximation of linear-quadratic control-constrained elliptic control problems by
Falk [11] and Geveci [12]. L?-error estimates are obtained which reflect the H'-regularity
of the optimal control and the optimal regularity of the state function. Falk considered
distributed controls, while Geveci concentrates on Neuman boundary controls. More re-
cently, Arnautu and Neittaanmaéki [3] contributed further errors estimates to this clan of
problems. Their technique, however, slightly overestimates the order of the error. More-
over, we refer to Arada and Raymond [2], where estimates and convergence results are
performed for relaxed optimal control problems governed by semilinear elliptic equations,
and Casas [6], where convergence results are proved for optimal control problems governed
by linear elliptic equations with controls in the coefficient. We also mention the thesis by
Mateos [20], who carefully studies error estimates for semilinear elliptic equations.

In contrast to the elliptic case, quite a number of papers was devoted to parabolic
problems, although the associated theory is far from being complete. We refer to Alt and
Mackenroth [1], Knowles [14], Lasiecka [15], [16], Mackenroth [17], [18], McKnight and
Bosarge [21], Tiba and Troltzsch [23] and Tréltzsch [24], [25], [26], [27]. The papers [1],
[14],[15], [16], [17], [18], [24] consider linear parabolic equations, which are approximated by
a semidiscrete Ritz-Galerkin or finite element scheme. Different aspects are investigated.
In particular, the (strong) convergence of optimal values and/or optimal controls is shown.
In [17] and [18] the final state is required to reach a convex target set, thus a special state
constraint is considered. [21] is concerned with the case of unrestricted control for a non-
linear parabolic state equation. Here, the optimal error estimates for parabolic equations
extend directly to associated estimates for the controls. The assumption made in [21] on
Fréchet-differentiability is only satisfied in particular cases.

In [23], a convex problem with constraints on the control and the state is studied. The
state equation is approximated by a fairly general assumption on the approximation in
space and an implicit Euler scheme in time. Error estimates are derived, which express the
estimate for the optimal control by relevant interpolation errors. Moreover, a semilinear
problem without state-constraint is discussed. [24] deals with convergence of switching
points for a linear-quadratic parabolic problem. The papers [25]-[27] deal with semilinear
equations and constraints on the control. Except [25], where the Fourier method is used
to approximate the state equation, the other papers assume a semidiscrete scheme for the
parabolic equation under quite abstract assumptions.

Our paper differs from the ideas presented in literature in several points. The equation



is semilinear. Due to this, we had to derive L* error estimates in order to deal correctly
with the given nonlinearities. We discuss the finite element approximation in more detail
than in the papers mentioned above. In particular, the approximation of the given domain
2 by polygonal domains is considered. Moreover, the following ideas are essentially new:

In the first part, the strong convergence of subsequences of approximate controls is
proven under a fairly weak assumption. In the second part, error estimates are established
for such subsequences. Extending an idea due to Malanowski et. al [19], which was used
earlier for the case of ordinary differential equations, we are able to improve the error
estimates in [3] and [6]. We are not sure that our results express the optimal ones in the
nonlinear case. However, they seem to be optimal in the case of linear equations, where
L?-estimates can be used.

2 General assumptions and notation

Throughout the sequel, {2 denotes a convex bounded open subset in R" (n =2 or n = 3)
of class C™'. The coefficients a;; of the operator A belong to C%!(Q2) and satisfy the ellip-
ticity condition
N
m0|£|2 S Z aij(a:)ﬁiﬁj V (5,.%‘) - RN X Q, mo > 0

i.j=1

Moreover, we require:

A1 - The function f is a Carathéodory function from Q x IR into IR. For every z € Q,
f(z,-) is of class C?, and D, f(z, -) is nonnegative. For all M > 0 there exists Cjs > 0 such
that

[z, )| + [Dyf(z,y)| + |[Dyy f(z,y)| < Cmr,
[Dyy f(2,91) — Dyy f(2,92)| < Crrlyr — v
for all (z,y,v1,y2) € Q x [-M, +M]3.

A2 - L is a Carathéodory function from © x IR? into IR. For every z € Q, L(z,-,-) is
of class C2. For all M > 0, and all (z, 1, To, Y, Y1, Yo, U, U1, Uz) € O3 x [~M,+M]% the
following estimates hold

|DUL(x17y7 ’LL) - DuL(x27y7u)| S C’M|-7/'1 - .7}2|
Ly (5 Y, ) [ p2xe < Cy
L0y (@5 Y1, w1) = L0 (2, Y2, ua) [ g2 < Cur(yr — Yol + Jur — ual),

where Ly, € L*(Q), Ly, € LP(Q), p > n, Cy > 0, E'('y,u) is the Hessian matrix of L with
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respect to (y,u), and | - | gex2 is any norm of matrices. Moreover, there exists a positive
constant m such that the following estimate holds:

Dy L(z,y,u) > m Y (z,y,u) € Q x IR?.

In all the sequel || - ||2.0 and || - ||c,o denote the usual norms in L?(2) and L*(f2), respec-
tively, and ¢ will denote a generic constant.

Remark 1 In particular, the following simple linear-quadratic optimal control problem fits
in this setting. We shall refer to this example to illustrate some of the ideas in the Sections

4,6, and 7.

) 1
(B) inf S (ly

subject to

20 + Allullz ),

—Ay =wu in S, Yo =0 on T,
a<u(zr)<pB fora.a.x €.

Here, yq € L*() and & > 0 are given, and L(z,y,u) = 1((y — ya(z))? + ku?). It is obvious
that A1 and A2 are satisfied in the example (E).

3 State equation and Adjoint equation

In this section we derive some useful estimates, which express the Lipschitz continuity of
states and adjoint states with respect to the controls.

3.1 State equation

Theorem 1 [4] Let u be in L°(Y) satisfy ||ullco,o < M. Then equation (1.1) admits a
unique solution y, € Hi () N W2P(Q), for every p > n. Moreover, there erists a positive
constant C = C(Q,n, p, M), independent of u, such that

|yullwer) < C.
Proposition 1 [4] Let a, > 0 be a function in L®(Q) satisfying ||ao||co,0 < M. Then, for
every g € LP(Q), the solution y of

Ay+ay=g inQ, yr=0,

belongs to HY(Q) N W?2P(Q) for every p > n. Moreover, there exists a positive constant
C=C(Q,n,p, M), independent of a,, such that

Iyllw2r) < C lgllp0, lyllz2) < C lgll2,0-



Proposition 2 Let uy, us be in L*(Q), and let y; and yo be the associated states, i.e. the
corresponding solutions of (1.1). Then y; — yo satisfies the estimate

ly1 — valla2@@) < C lur — usl|2,0,

where C' > 0 does not depend on u; and us.

Proof. The function y = y; — y- satisfies
Ay+fy:U2—U1 iIlQ, ?J\FZO,

where f = I Dy f(-,0y1 + (1 — 0)y2,u1) df > 0. The conclusion is a direct consequence of
Proposition 1. O

3.2 Adjoint equation

Let u be in L>(2) and vy, denote the corresponding solution of (1.1). The adjoint equation
associated with the problem we consider, has the following form:

A9+ Dyf (- 9)p = DyL(-, gy w) in ©, p=0 onT. (3.1)

Here A* is the formal adjoint operator of A. The solution ¢ = ¢, is called the adjoint
state associated to u. The next theorem follows immediately from Proposition 1.

Theorem 2 Let u € L*>(Q) satisfy ||u|lcoo < M. Then equation (3.1) admits a unique
solution @, in H(Q)NW?2P(Q) for every p > n. Moreover, there exists a positive constant
C=C(Q,n,p, M), independent of u, such that

lullw2r@y < C.
Proposition 3 Let uy, us be in L®(Q) such that ||u1|co0 + ||U2]|lc,o < M, and let @1 and
2 be the corresponding adjoint states. Then o1 — s satisfies the estimate

lor = @allm2) < C lug — us||2,0

where C' = C(Q,n, M) does not depend on u; and us.

Proof. The function ¢ = ¢, — s satisfies ¢ r = 0 and
Ao +ap = (Dyf(-;y2) — Dyf(-,91)) 02 + Dy L(-, y1,u1) — DyL(-, yo,uz) in Q,

where y; and y, are the states associated to u; and us, respectively, and a = D, f(-,y1).
Due to assumptions A1-A2, Theorem 1, and Proposition 2, we obtain

o1 — @2l w20
S C(I(Dyf(y1) = Dyf (-5 92))p2lla + 1Dy L(-; y1, ur) — DyL(-, ya2, uz)|

2,2)
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< C([[Dyf(-y1) = Dy f (-, 92|
+|DyL(-, y1, u1) = DyL(+,y2,u1)ll2,0 + | Dy L (-, y2, u1) — DyL(-, yo, u2)
< O((1+ [lezllsso)llyr — wollzn + [lur — ua
< C(llyr — »2 2.0) < Cllur — us

2,0l|P2l 00,0

|2,0)

|2,0)

2.0 + llur — us |2,0- 0

Remark 2 Notice that since n < 3, Propositions 2, 3, and classical imbedding theorems
give

1 = 2lle@) + ller — 2lle@ < C llur — w220

This estimate will be intensively used in the sequel.

4 Existence and characterisation of solutions of (P)

4.1 Existence results

We begin this section by a useful continuity result.

Proposition 4 Suppose that assumption Al is satisfied. Then the operator w v y, is
continuous from L>®(Q), endowed with the weak* topology, into C(£2).

Proof. Let (uc) be a sequence in U% converging to u in the weak*-L>®(Q) topology. Let
ye and ¥, be the solutions of (1.1) corresponding to u. and u. We have to show that (y.).
converges to ,, uniformly on €. Due to Theorem 1, the sequence (). is bounded in
Hj(Q2) N W??(Q). Then there exist a subsequence (y,); and y € Hy(Q2) N W??(Q), such
that (y.); converges to y in the weak topology of Hj(€2) N W??(Q2). Since W?>?(Q) is
continuously embedded into C*(9), it follows that (y.,); converges to y uniformly on Q.
Due to this convergence results, passing to the limit in the variational equality satisfied
by ye;, we easily show that y = y,. Finally, since any subsequence (ycj)j contains a
subsequence tending towards the same limit y,, the convergence of the whole sequence
(¥e)e follows from a standard argument. O

Theorem 3 Suppose that assumptions A1-A2 are satisfied. Then problem (P) admits at
least solution.

Proof. Let (uy), be a minimizing sequence for (P), and let y, be the state associated to
Up. Since (uy), is bounded in L>®(), there exist a subsequence, still indexed by n, and a
function u such that (u,), converges to u in the weak*- L>°(£2) topology. In addition, u is
the weak limit of u, in L*(Q) (for all ¥ > 1). Since U is convex and closed in L*(Q), it
is also weakly closed and u € U%. Due to Proposition 4, the sequence (y,), converges to
y, uniformly on Q. Therefore, u is admissible for (P), and

inf(P) < J(u). (4.1)



On the other hand, from A2 and Theorem 2.1, Chapter 8 in [10], we can prove that
_ < Timi
J(u) /QL(x, Yuru) dz < liminf | L(z, yu, un) dz,

expressing the weak*-lower semicontinuity with respect to u. Moreover, by using A2 and
the mean value theorem, we have

lim \/Q(L(x,yu,un) — L(z, Yn, un)) dz| < 7}1_)1{.10/QLM($)|yu — yn|(z) dz = 0.

n—oo

With these continuity results, we easily deduce that
J(u) < lim inf J(u,,) = inf(P). (4.2)

The conclusion follows from (4.1) and (4.2). O

4.2 Characterization of the optimal control

Let us first state for convenience the known first order optimality conditions for problem
(P). The classical proof is omitted.

Theorem 4 If u is a solution of (P), then there ewists an adjoint state g5z € Hg(Q2) N
CYY(Q) such that the following conditions hold:

A*u+ Dy f(x,ya)pa — DyL(z, Yz, w) =0 i Q, (4.3)
/ (pa + DuL(z,yz,0))(u —@)dz >0 YV ueU™. (4.4)
Q
To derive a characterization of the optimal control, we first prove two auxiliary results.

Lemma 1 Suppose that assumptions A1-A2 are satisfied. Then, for all x € Q, the equa-
tion
va(z) + Dy L(z,yz(x),t) =0, (4.5)

has a unique solution t = 5(x). Moreover, the mapping 5 : Q — IR is of class C%(Q).

Proof. Let us first prove uniqueness of the solution. Suppose that, for z € Q, equation
(4.5) admits two solutions s;(z) and ss(z). By Assumption A2, we find

0 = [DyL(z, ya(z), 51(z)) — DuL(z, ya(z), s2(2))|
= | /01 Dy L(z,yz(2),0s1(z) + (1 — 0)s2(x)) dO] |s1(x) — s2(x)|

>m |si(z) — s2(z)],

hence si(z) = sa(z) must hold. To prove existence of a solution to (4.5), we consider

7



the function g defined by g¢(t) = @u(z) + DyL(z,ya(x),t). The assumptions on L imply
g € C1(Q) and ¢'(t) > m > 0. It follows that

. > g(0)+mt  fort >0,
0)-1—/0 g'(s)ds

and thus tlgnoo g(t) = —o0, and tlgpoo g(t) = +o00. Therefore, due to the continuity of g,

there exists a solution t = 5, = s(z) of (4.5). Finally, let us prove that s € C%'(Q). We
observe that, due to the Lipschitz continuity of ¢y, v and that of u — D,L(-, -, u), by A2
and equation (4.5), we have

<g(0)+mt fort <O,

m [5(z) = 5(z,)
<1 [ Do, ya(o).05(a) + (1 = 6)s(a2)) b (5(2)  s(z.)
= ID.L(e. s(z),5(z) = DuL(@. 33(x). 5(w.))

= | = va(x) + a(®o) + DuL(%o, ya(2o), $(20)) — DuL(x, ya(x), 5(20))]
< lpa(®) = pulwo)| + Curfle — ol + lya(x) = ya(wo)[} < Clo — |- =

Remark 3 For the example (E), the variational inequality reads
/Q(goﬂ-l—/-iﬂ)(u—ﬁ)dxz() Y ou e U™,
The equation (4.5) reads gz + Kkt = 0, hence in this case 5(x) = —%(pﬂ(x).
Lemma 2 Suppose that the assumptions A1-A2 are satisfied. Let @ be an optimal control
for (P), and let s be the corresponding solution of (4.5). Then
pa(z) + DuL(®,ya(x),0) 20 iff  a(z) =0, (4.6)

ou(®) + DuL(z,ya(x), ) <0 off  u(z)=4. (4.7)
If pu(®) + Dul(x, ya(), @) < 0 < pu(x) + DuL(z, ya(x), B)

(4.8)
then ¢gz(z) + DyL(z,ya(z), d(z)) =

Proof. First, let us notice that the optimality condition (4.4) can be rewritten as

(pa() + DuL(z, ya(x), u(z))) (v — a(z)) = 0 (4.9)
for all v € [a, 8] and all z € Q,, where Q, C Q and |Q\ Q,| = 0.
e Let z € Q, be such that @z(x) + D, L(z, ya(x), @) > @a(r) + Dy Lz, yz(z), 5(x)) = 0.

8



The monotonicity of D, L w.r. to u yields s(z) < «, and
(pa(r) + Dy L(z, ya(z), @) (a — u(z)) <0

follows from a < #@(z). Moreover, since the function ¢ — @g(z) + DyL(z,ya(x),t) is
increasing, by taking v = « in (4.9), we obtain

(#a(2) + Dul(z, ya(2), a))(a — ulz))
> (pa(®) + DyL(z, ya(2), a(z))) (@ — @(z)) = 0.

Therefore, (¢z(z) + Dy L(z,yz(z), o)) (o — a(x)) = 0. If pgz(z) + D, L(z, yz(z),a(z)) > 0,
the conclusion @ = « is direct. If not, from the uniqueness of the solution of (4.5), we
deduce that a < @(z) = 5(z) < a, and thus @(z) = a.

Conversely, if a(z) = «, then (4.9) implies that ¢y (z) + Dy L(z, ya(z), @) = pa(x) +
D, L(z,ya(z),u(x)) is nonnegative. We have proved (4.6), and assertion (4.7) can be
obtained by similar arguments.

e Finally, let us prove (4.8). Let z € Q, be such that
pu(z) + Dy L(z, yu(2), @) <0 < @u(x) + DyL(z, yu(z), B).

From (4.6) and (4.7), we get o < @(x) < . Setting v = o and v = 3 in (4.9), we deduce
that @z (z) + Dy L(z, ya(z), u(z)) = 0. O

The next result is fundamental for the sequel. It provides a useful characterization of the
optimal control, which is well known for linear-quadratic optimal control problems.

Theorem 5 Suppose that assumptions A1-A2 are satisfied. Let u be an optimal control,
and let § be the associated solution of equation (4.5). Then

i(e) = Proj 5 (3(x) = max(o min(8. 5(@))).
and i belongs to C*(Q).
Proof. First, suppose that s(z) < a. Then

0 = ¢a(2) + DuL(z, ya(z), 5(z)) < ¢a(z) + DuL(z, ya(z), o).

From (4.6) we obtain 4(x) = a = Projj, 5(5()). In the same way, the statement follows
from (4.7) if 5(z) > (. Finally, if o < 5(z) < 3, then

©a(7) + Dy L(7, ya(7), @) < @g(x) + Dy Lz, ya(x),5(z)) =0
< pa(z) + Dy L(z, yz (), B).

Now (4.8) yields @g(z) + DyL(z,ya(x),w(x)) = 0. Since the solution of (4.5) is unique,
it follows that @(z) = §(z) = Projy, 4(5(x)). The Lipschitz continuity of @ is a direct
consequence, since § is Lipschitz (see Lemma 1) and the projection operator Proji, g is
Lipschitz continuous with constant 1. O



Remark 4 In the example (E), the statement of Theorem 5 reduces to the well known
characterization

— oulo))

TL(.’L‘) = P’I"Oj[a”g](
Remark 5 The results of Theorem 5 can be easily extended to the case where o and (3 are
functions of x. In this case, the Lipschitz continuity of the optimal control u is obtained
under the assumption that o and 3 are Lipschitz continuous.

5 Finite-element approximation of (P)

Here we define a finite-element based approximation of the optimal control problem (P).
To this aim, we consider a family of triangulations (75 )ns0 of Q. With each element T' € Ty,
we associate two parameters p(T) and o(T'), where p(T') denotes the diameter of the set
T and o(T) is the diameter of the largest ball contained in 7. Define the mesh size of
the grid by h = maxrer, p(T). We suppose that the following regularity assumptions are
satisfied.

() - There exist two positive constants p and o such that

p(T) h
— S0, —=<p
o(T) p(T)

hold for all T" € T, and all h > 0.

(17) - Let us take Q, = UTEET,_and let 25, and I';, denote its interior and its boundary,
respectively. We assume that €2, is convex and that the vertices of 7, placed on the
boundary of I';, are points of I'. From [22], estimate (5.2.19), we know

Q\ Q] < Ch2 (5.1)

Now, to every boundary triangle 7" of 7, we associate another triangle T ¢ Q with curved
boundary as follows: The edge between the two boundary nodes of 7T is substituted by
the part of I' connecting these nodes and forming a triangle with the remaining interior
sides of T. We denote by 7, the union of these curved boundary triangles with the interior
triangles to Q of 7y, so that Q = UTeﬁT' Let us set

Un={u€ L®(Q) | uz is constant on all T' € T},  Up =U, N U™,
Vi ={yn € C(Q) | Ynir € P, for all T € Ty, and y, =0 on Q\ O},

where P; is the space of polynomials of degree less or equal than 1. For each u, € Uy, we
denote by yp(up) the unique element of Vj, that satisfies

alyn(un)m) = [ (un = f(@.yn(w))m(e) de Vi€ Vi (52)

10



where a : Vj, x Vj, — IR is the bilinear form defined by

n

alym) = | (X aij(x)Diy(a) Di()) d.
i,j=1
In other words, yn(up) is the approximate state associated with ;. Notice that y =7 =0
on Q\ Q, hence the last integral is equivalent to integration on 2. The finite dimensional
approximation of the optimal control problem is defined by
(Py) inf Jh(up) = /Q L(z, yn(un) (z), un(z)) dz,  up € UM
h

Existence of a solution for (P,) follows from the continuity of J, and the compactness of
Up.

Remark 6 We tacitly assume that we are able to evaluate the integrals in (5.2) and (Py)

exactly. In general, numerical integration has to be used, which generates another sort of
errors. We do not include them in our analysis.

6 Characterization of solutions of (F;)

The aim of this section is to characterize solutions of the problem (P) similarly to the ideas
introduced in Section 4.2 for the characterization of optimal solutions for the continuous
problem (P).

Proposition 5 Suppose that assumptions A1-A2 are satisfied. If uy is a solution of (Pr),
then there exists a unique @p () € Hi (Q)NC%H(Q) such that the following conditions hold:

(2 auDyen(un) D) do + [ Dy fo.ynn).w)n(in o de

ij=1

= /QDyL(xa?Jh(ﬂh)a Up)pdz Yy € Vi, (6.1)

/Q (on(@n) + DuL (@, yn(@n), @) (u — @) dz >0 Y u e U, (6.2)
h

Throughout the sequel, for v fixed in L*(Q2), we denote by y,(v) and ¢, (v) respectively
the solutions of (5.2) and (6.1) corresponding to v.

Lemma 3 Suppose that assumptions A1-A2 are satisfied, and that 4y is an optimal so-

lution of (Py). Then there exists a unique function 55, : Q, — IR such that 3,(z) = s is
constant on each triangle T € Ty, and the equation

/T(Qoh('ah)(x) + Dy L(z, yn(@n), sT)) dz =0 VT €T, (6.3)
18 satisfied.

11



Proof. Existence of a unique solution of equation

| (0n(@) @) + DuL(w, yn @), 1)) da =0,

can be proved upon defining g(¢) = [7(¢n(un)(2) + DuL(z, yn(us),t)) dz, along the lines of
proof of Lemma, 1. O

Remark 7 In the case of (E), equation 6.3 is obvious again. We obtain
/T(<ph(ﬂh)(x) + kst)dzr = 0,

1
and this equation has the unique solution s = —W/ on(ap)(x) dz.
k|T| JT

Theorem 6 Suppose that A1-A2 are satisfied. Let uy, be an optimal solution of (Py), and
let 55, be the solution of (6.3) corresponding to uy,. Then ay, is given by

up(z) = Projy, 5(3n(x)) = max(a, min(B, 3,(z))) for a.e. x € Q.
Proof. First, let us observe that (6.2) can be rewritten as:
/T(SOh(ﬂh) + Dy L(z, yn(@n), @n|r) dz (t — @p [1)) = 0

for all t € [, 8] and all T € Tj,. Following the proof of Lemma 2, we find

/T (on(@n) + DuL(z, yn(@n)),a)dz >0 iff @ |r= o,

| (@n(@n) + DuLi@,yn(in), @) dw <0 iff iy 1= .
Moreover, if

/T((Ph(’l_th) + DyL(-,yp(tp), ) dz < 0 < /T(<ph(ah) + Dy L(-, yn(n), B)) dzz,
then

[ on(@n) + DuL (@), 12))) do = .

The characterization of %, can be derived by proceeding as in the proof of Theorem 5. O

Remark 8 Let us complete this discussion by the example (E). Here we get

: 1 _
p|r= Proji, g( — wIT] /T on(ap)(x) dr) VT €T

7 Error-estimates for the state and the adjoint state

In this section, we recall some results concerning the finite element approximation of the
state equation (1.1) and its adjoint equation (3.1).
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Theorem 7 Let (v,vp) € L®(Q2) x Uy, fulfil ||v]|co0 + ||Vnllco,0 < M, and suppose that y,
and yp(vy) are the solutions of (1.1) and (5.2) corresponding to v and vy. Moreover, let
0w and @p(vy) be the solutions of (4.3) and (6.1) corresponding to v and v,. Then the
following estimates hold

lvo — yn(vr)l| @) + 0o — On(vn)||z1 @) < C(h+ |lv — vi|l2,0), (7.1)

150 = yr(on)llze + leo — en(vn)ll2e < C(A* + [lv — vall20), (7:2)

yo = yn(0n) ||, + |00 — @n(vh) oo, < C (R + |[v — vpll2,0), (7.3)

where C = C(Q,n, M) is a positive constant independent of h, and A = 2—n/2. Moreover,
iof the triangulation is of nonnegative type, then

190 = yn(0n)lloo, 0 + 100 = @n(vn)llcon < (Ch+[lv = vall20), (7.4)

holds independently of h.

Proof. According to Theorem 8.2.9 in [20], the following estimates hold

”yvh - yh(vh)”Hl(Q) + ||S0vh - SOh(Uh)HHl(Q) < Ch, (7-5)
190, = Yn(vn) 2,0 + 190, — @n(vn)ll20 < Ch2, (7.6)
1%, — Y (n)llso.2 + [19u, — @n(vn)lloose < CH*3, (7.7)

and if the triangulation is of nonnegative type, then
190, = yn(vi)llso,2n + llov, = n(va)lloo, < Ch. (7.8)
To prove (7.1), notice that due to (7.5), and Propositions 2, 3, we have
190 = yn(vn)llm1(0) + [lev — en(vn)llarq)
< yo = Yol ) + [1Yor, — yn(vn)ll (o)
+llow = ullar@) + I, — en(vn)lar@) < C(h + [[v — vall20)-

The estimates (7.2), (7.3), and (7.4), can be obtained by using similar arguments together
with (7.6), (7.7), and (7.8). 0

Remark 9 From Theorems 1, 2, and 7, we can easily see that

|y (Vi) oo, + [l (VR)]|co,0 < C,

where C' = C(Q,n, M) is a positive constant independent of h.

Remark 10 In all what follows, let us fir A = 2—n/2 for reqular triangulations and A = 1,
if the reqular triangulation if of nonnegative type.
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The following proposition will be useful for the sequel.

Proposition 6 Let (vy, wp) be in Uy x Uy satisfy ||vnlleo,e + [|Whllco,0 < M, and let z,,
and zp(vy) be the solutions of the following equations

Az + Dyf(z,Yuw,)z =vp  n €, zp=0, (7.9)

G(Zh(’Uh),nh)+/QDyf($a?/h(wh)) 25 (Vp)Mn d Z/thnh dx (7.10)

for all g, € Vi, where yy,, and y,(wy) are the solutions of (1.1) and (5.2) corresponding to
wy. Then the following estimates hold

120, = 2n(vn)ll20 < C h*[|vall20, (7.11)

20, = 20 (o0)llsey < € Bllonlzc (7.12)
Proof. Let Z,, be the solution of

Az+ Dyf(z,yp(wp))z =v, inQ, zr=0. (7.13)

Subtracting (7.9) from (7.13) we see that z = Z,, — z,, satisfies
Az + Dyf(xayh(wh))z = (Dyf(l', ywh) - Dyf(xa yh(wh))zvh in Q; z|1" =0.
Proposition 1, assumption A1, and Theorem 7 yield

”th - ZUhHOO,Q

< Cl(Dyf (5 Yuwn) = Dyf o yn(wn)) 2o, ll2.0 < Cllg, — yn(wn)llz.0 120, ]loc.0

2 [[vnllz,0 < Ch?|lon]l20- (7.14)

< Cllywy, = yn(wn)|

On the other hand, by arguments similar to those used in the proof of Theorem 7, and due
to Proposition 1, we have

1Z0, = 20 (va)llz0 < CR? |20, | m20) < CH?[|vnllzz, (7.15)
120, = 20 (vn)llcos, < CR12u, () < CRM||vn]l20. (7.16)
The conclusion follows from (7.14), (7.15) and (7.16). O

8 Convergence results

Lemma 4 Suppose that assumptions A1-A2 are satisfied, and let v € L*(2) and v, € Uy,
satisfy ||vallco,e + [[0lleoe < M. If limpo |lvn — v][2,0 =0, then

fllll)% Jh(vh) = J(’U)
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Proof. With assumptions on L, Remark 9, (7.2) and (5.1) we have
@) = Ju(on)| = | [ Lia.goo)da— [ La.yu(on),on) do

h

< [ 1@ o,v) = Lz, yoron)| do
Q

[ LG,y vn) = Lz, n(on), o)l do+ [ (LG, yn(on), o) da
Q Q\Qp,

< C(lv = vallzo + v = ya(wn)llae + 12\ [2) < C(llv = valla0 + h).
The last expression tends to zero when h — 0. O
Lemma 5 Suppose that assumptions A1-A2 are satisfied, and let the sequence (vy)p C
U converge weakly* to v. Then v € U and
J(v) < liminf Jy(vp).
h—0
Proof. Obviously, v is also the weak limit of (vy)pso in L*(Q) (for all & > 1). Since

Ud C U and U is convex and closed in L*(Q), it is weakly closed and v € U%¢. On the
other hand, notice that

Jp(vp) = /Q (L(z, yn(vp), vn) — L(z, Yy, vp)) dz + L(z,yy,,vp) dx

h Qp,
= | (L@ ynon). o) = Lz, yorvn)) do+ [ Liz,pos o) do
h
- L(z, yy, vp) dz. 8.1
2\, (xay Uh) X ( )

With A2, we follow the proof of Theorem 3 to show

/ L(z,yy,v)dz < liminf [ L(z,y,,vp) dz. (8.2)
Q

h—0 Qp

Moreover, with assumptions on L and (5.1), we easily see that

‘/ L(z,yy,vp) dx‘ <Ch—0 ash—0. (8.3)
0\,

Finally, A2, (7.2), (7.3) and Proposition 4, give
[ (L@ (o), 00) = Lz, g0 0n)) da
h
< Cllyn(vn) = woll20, < Cllya(vr) = vur 20 + 190, — voll20)

< Cllyn(vn) = vollzo + 190, = Bolloo) — 0 if A = 0. (8.4)
The conclusion follows from (8.1), (8.2), (8.3), and (8.4). 0
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Proposition 7 Suppose that A1-A2 are satisfied, and let (un)p>0 be any sequence of so-
lutions to (Py). Then there exist weakly*-converging subsequences (still indexed by h). If
the subsequence (ip)p>o S converging weakly* to , then u is a solution of (P). Moreover,

lim Jj () = J(a) = inf(P). (8.5)

Proof. The sequence (&p)p>o is bounded in L*(€2). Then there exists a subsequence, still
indexed by h, which converges to some element @ in the weak-* toplogy of L>(2). Lemma
5 implies % € U*? and

J(u) < hgln_)lglf I (1p,). (8.6)

On the other hand, let w be a solution of (P), and let IT, be the interpolation operator
defined by

1
My = m/Tv(:v) dx for all T € Tp,.

Put o

whm = Hh’u_J|T VTe 77,,
where T € T, is the triangle associated with 7". Since @ € W1H*(€,), due to Theorem 16.1
in [9], we have

[0 = wpllcog, < Chll@]lwieoy)-

Therefore,

|@ = whllz.0 < C([@ = whlloo,0, + |2\ Qa]) < Ch.

From Lemma 4, we deduce that
’lll_r)r(l) Jp(wp) = J(w) = inf(P).

Moreover, wy, is obviously admissible for (P,), and thus
Jh(’l_th) < Jh(wh).

Passing to the limit in the last inequality, we obtain

lim inf J;, (@) < limsup Jy,(@,) < limsup Jy,(wp) = J(). (8.7)
h—0 h—0 h—0
By (8.6) and (8.7), we arrive at
}lbin(l) Ip(tp) = }lbin(l) inf(Py) = J(a) = inf(P). O

Remark 11 Throughout the sequel, we fix such a subsequence, still indexed for simplicity
by h, and we denote by u its limit, solution of (P).

Now, we state the main result of this section.
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Theorem 8 If the assumptions A1-A2 are satisfied, then
lim [|@), — @f|oc,0 = 0. (8-8)
Proof. The proof is split into two steps.
Step 1. Let us first prove the convergence result in the L?-norm:
}lgr(l) |@n — a@|2,0 = 0. (8.9)

Due to assumptions A2, Proposition 4, (7.2), (8.5), and the weak-* convergence of (@p)p,
to @, we have

2w, — al
2 h

2, < % [ DL, g, O + (1 — 0)) dO (7, — 0)? d
= [ (L@, o, ) = Lw,ya, ) da + | DLz, ye, 0)(a— i) do

= [ (L, y0 ) = L, u(30). ) d

+ /Q(L(x, un(@in), @) — L(x, ya, @) dz + /Q DuL(, ya, @) (@ — p) do

< Cllya — yn(ap)|l2.0 + Jp(tn) — J(@) + Ch + /Q Dy L(x, yg, @) (u — uy) dx

< Cllya — ya,|

+/ DuL(2, yu, @)(@ — @) dz —s 0
Q

2,0+ |[Ya, — yn(@n)ll2,0 + h) + Jn(ur) — J ()

when h — 0. Thus, we have shown (8.9).

Step 2. Let us now confirm (8.8). Due to Lemma 1 and Lemma 3, there exist 5 € C%(Q)
and §, € L*>(Qy) such that

va(r) + DyL(z,ya(x),3(z)) =0 VeeT andV T €7, (8.10)
Sh|T = ST, /T(S(?h(ﬂh) + Dy L, yn(in), sT)) dz =0 VT €T (8.11)

From (8.11), we deduce that for every T" € Ty, there exists xp € T such that

on(tn)(xr) + DyL(zr, yn(tn) (xr), s7) = 0. (8.12)

Suppose that T" € 7Ty, is given fixed, and select an arbitrary = € T'. By making the difference
between (8.10) and (8.12), and due to the assumptions on D, L along with hypothesis A2,
it follows that

m |u(x) = un(2)| = m [Projj 5(5(x)) — Proj g (5a(x))]
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<m |s(z) - sn(z)| = m |s(z) — sz
< [DyL(2,ya(2), 5(z)) — DuL(z, ya(x), s7)|
= [(pa(z) = on(un) (1)) + (DuL(z,ya(2), s7) — DuL(zr, yn(@n)(z7), 57))|
< lpu(@) = pn(un)(@r)| + C{lz — wr| + ya(z) — ya(wn)(zr)[}-

We know from Theorem 1 and 2 that y; and ¢z are Lipschitz, hence
m |u(z) — un(z)| < Clz — zr| + la — n(tn)llcor + 1ya — Yn(Un)lloo,r)
< O(h + llpa — on(tn)lloo,r + 1Y — yn(@n)llcor)-

Invoking Theorem 7, we get

1@ = @hlloo,0, = sUP [|& = Unlloor
TeTh

< C(h+lea — en(@n)llooo, + 1va — yn(@n)lls0,) < Clh+[a—unllz0+hY). (8.13)

Regard now any 7' € 975, and let T € 8T;, be the corresponding boundary triangle (here
0T, and OT;, denote the sets of boundary triangles in T, and Tr). For & € T \ T, let z be
its projection on the boundary I'j, of €2,. Taking into account the Lipschitz continuity of
i, we obtain

|a(2) — un(2)] < [u(2) — u(z)| + |u(z) — un(2)| = |u() — u(z)] + [u(z) — wn(2)]
< ClE = ]+ ||u = unlloc,0, < Ch+ ||t = unlloo,0-
Hence ||& — @y 7 < Ch+ || — tpco,0,, and

1% = nlloconen, = sup [1& = @nlloq inp < Ch+ ([ = Tlloo,- (8.14)
TedT;,

Therefore, (8.13) and (8.14) ensure

||ﬂ_ﬂh”oo,9 < C(h+ ||ﬂ—ﬂh|l2,9+h)\) — 0 when h — 0. O

9 Error-estimates for the optimal control

We start our investigations with a sequence (@p)p>o of solutions of (Py), h > 0, converging
to a solution @ of (P). Given this a priori information, we shall establish error estimates
for |4 — |20 and ||@ — @p||con. These estimations are performed under the following
second order sufficient optimality condition:

(SSC) There is 6 > 0 such that
T (@) =6 |lvl3q (9-1)
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holds for all v € L*(Q) satisfying
>0 if w(z) =a,
v(z) <0 if a(z) =40, (9.2)

=0 if |pa(x) + DyL(z,ys(z), u(x))| > 7> 0.

Remark 12 It can be shown that (SSC) is equivalent to the condition
J"(@)v® > 0
for all v € L>®(Q) satisfying the two first relations in (9.1) together with v(x) = 0 if

|oz(z) + Dy L(x, yz(x), @(z))| > 0. Notice that this condition leaves no gap to the necessary
conditions, which require J"(uw)v? > 0 for the same set of functions (cf. [20]).

In our analysis, we need an element u;, admissible for (P,) (so that it can serve as a "test
function” in the variational inequality), close to @, and such that @, — u; belongs to the
cone where our second order sufficient condition applies. A natural choice is given by

Up € Uh, ’U,h|T = Proj[a,ﬁ](Hh§)|T i T € 7\7,,

where T € 7}, is the triangle associated with 7' € 7, and 5 is the solution of (4.5) associated
with %. This element is admissible and close to u, but 4, —u; does not belong to the critical
cone. To overcome this difficulty, we introduce a perturbation @, of u; defined by

ap(z) if z€Q\ Qy,

ap(z) =< a(x) if z€Q, and (4(z) =« or u(z) = f),

up(z) if € Q, and a < u(z) < p.

Before we derive some auxiliary results, and to simplify the redaction of this section, let
us introduce the following notation:

d = s+ DuL(- ys w),  da(u) = @n(u) + DyL(- yn(u),u),  dp = da(an),
DfnL(w) = D§77L('aywa w)a D@]Lh(w) = D@]L('a yh(w)’ w) 67 ne {ya U},
Dyyt(w) = Dyy f (-, Yu), Dyyfh(w) = Dy, f (-, yn(w)).

Lemma 6 Suppose that assumptions A1-A2 are satisfied and that u satisfies the second
order sufficient condition (SSC). Then there exists h, > 0, such that for all h < h,

J"(w) (wn — @n)* > 6 ||un — dnll3q-

Proof. We have to show that v = @, — @y, satisfies the relations (9.2). Then the second
order condition yields the statement.
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e On Q\ Qp, it is clear that v = u;, — a;, = 0 satisfies (9.2).

o Let z € Q. If u(z) = «, then 4,(z) = a. Therefore, v(z) = up(z) — Gp(z) > 0.
Analogously, @(z) =  implies v(z) < 0.

e Finally, we prove
v(z) = Up(x) —dp(z) =0 on Q) ={z € Q||d(z)] >7>0}NQ,

for all sufficiently small & > 0. From (7.3) and Corollary 8, we conclude that limy_,g |d —
dp||co,0 = 0. Therefore, there exists h, > 0 such that for all A < h,, we have ||d —dp |0 <
7/2, and hence

|dn(2)] > d(2)] — |d — da()] >

T T

It is easy to verify that the functions d and dj, have the same sign on QF. Let z € QF, and
suppose that d(z) > 0. Then, for all A < h,, |ds(z)| = dp(z) > Z > 0. From Lemma 2
and Theorem 6, it follows that @(z) = @ () = up(x) = «, and thus @, (z) = a. Therefore,
Uy (x) —dp(x) = 0. If d(z) < 0, we prove in the same way that i, (z) = @(z) = i (z) = 8.0

Lemma 7 Suppose that A1-A2 are satisfied, and let w € Uy, fulfil ||w||ooo < M. Then,
for all v € Uy, satisfying v =0 on Q\ Q, we have

[T (w)v? = Ji(w)v?| < CR |loll3q,

where C'= C(Q,n, M) is a positive constant independent of v and h.

Proof. From [8], we know that

J" (w)v? :/

. ((Dny(w) — @uDyf(w))22 + 2Dy, Li(w) 20 + DuuL(w)UQ) dx

and

Ty (w)v? =
=/, ((DyyL" (w) — @n(w) Dy £ (w)) 2, (v)? + 2Dy L (w) 23, () + Dy L (w)v?) dt
- /Q ((Dyy Lt (w) = on(w) Dy £ (w)) 24 (v)? + 2Dy L () 2 (v) v + Dy L (w)?) d

where ¢, ¢ (w) are the solutions of (4.3) and (6.1) corresponding to w, z,, z,(v) are the
solutions of (7.9) and (7.10) corresponding to (v, w), respectively. It follows that

| T (w)v? — T (w)v?|
< /Q ‘(Dny(w) - QOwDyyf(w))Zg - (Dnyh(w) - @h(w)Dyyfh(w))zh(v)2| dz
+ /Q Dy L(w) — Dy L (w)] v* dzz + 2 [Q DL (w) 200 — Dy Lt (w) 2 (v)v| daz
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(9.3)

= 11 + IQ + ]3.
e First we consider I;. Due to the assumptions on L and f, and thanks to Proposition 1
we have

I < [ 1Dy L(w) = @Dyt (w)) = (DL (w) = pn(w) Dy ()] |23 do

+/Q | Dy L™ (w) — o (w) Dy £ (w)] |22 — 24(v)?| da

< [[(DyyL(w) = o Dyyf(w)) — (DyyL" (w) — on(w) Dy £ (w))[loo2 120130

+[ Dy L (w) — pn(w ) h(w)lloon 75 — 21 (v)®

< [[(DyyL(w) = 9o Dyyf(w)) — (Dyy L" (w) — pn(w) Dy £ (w)) |02 I0ll3.0

1Dy L () = 01(w) Dy () i (20 + 24(0) a).
Propositions 1 and 6 permit to estimate

120 = 20 (v)[l200 < CH*[[V]|20,

20 + 2 (v) — 2 (V)llz0 < C(1+A%) |lvlz0 < C v
Moreover, due to A1, A2, (7.3), (7.4), and Remark 9, we have

1Dy L(w) = 90Dy (W) — (Dyy L (w) = 4(w) Dy (W)l

< 1Dy L(w) = Dyy L (w)lloo + pullooall Duyf (1) — Dyt (@) st

HI Dyt (w)llos,allpw — @n(w)llcg

< Cllyw — ya(W)|loon + 0w — on(w)lleo,0) < C Y,

IDyy L (w) — @ (w) Dy " (w) ||, < C.
Therefore, from (9.4), (9.5), (9.6), (9.7), and (9.8), we deduce that

|2 — zn(v)

L < C(R* + k) |lvll3e < CR* [Jv]l0-
In the same way we estimate
I < Cllyw — yn(w) oo [I0]l3

Is < Cllyw — yn(w)lson(llzollocg + [l20 = 2n(v)[l20) vll20 < OB [lv]3 q-
The statement follows from (9.3), (9.9), (9.10) and (9.11).

< Ch* |lvllz0

Proposition 8 Suppose that assumptions A1-A2 are satisfied together with the second

order condition (SSC). Then there exists hy > 0, such that for all h < h,
Ty (@) (@, — )* > = ||t — tall3 g
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Proof. This is a direct consequence of Lemma 6 and Lemma 7. a

Lemma 8 Suppose that Al- A2 are satisfied. Let wy and wy be in L®(Q) such that
|wi]lso0 + |wallcon < M. Then,

[T (w1)v? — Ty (w2)v?] < C(|lwy — walloo,0, + 1Y) [l0]50, (9.12)
for all v € Uy, where C = C(Q,n, M) is a constant independent of v and h.

Proof. By simple calculations, and using the estimates of the last proof, we can see that

| Ty (w1)v* = Jj (ws)v?|
< /Qh |(Dyy L™ (w1) = n(w1) Dy £ (w1)) — (Dyy L™ (w3) — p(w3) Dy £ (w1)) |24 (v)? dez
-1—/Q \DuuLh(wl) — DuuLh(w2)| vidz
,
+2 /Q Dy (wn) = Do (o) |z (0} da
< C(IIDyy L (w1) = Dy L (w2) o2, + | Dy " (w1) — Dy (w2) | o2,

+/lon(wi) = @n(w2) oo,y + [ Dyul® (w1) — Dyu L™ (w2)|] 0,2,

HIDuu LM (w1) = Dus L (w2) o2, ) V1130,

< C(|lyn(wy) — ’yh(wz)Hoo,ﬂh + |ln(w1) — (ph(wz)”‘x’aﬂh + [Jwy — w2||oo,9h) ||v |§,9h

< C(llyn(wn) = Y lloe.0 + 1 = Yn(w2)lloo,,

Hlon(w1) = Punlloo,an + 10w — @n(w2) |00 + Jwr — ’w2||oo,ﬂh) | v] g,nh

< C(P* + |lwy — well20 + lwr — wallo0,) |v]

2

2th
1

< C(R+ 12\ Ul? + o — walloes,) 0lEa,

< C(P* + b+ lwr — walloey) V130,

The proof is complete, since A < 1 holds in all cases. O
By (6.2) and the definition of dj, the approximate optimal control @, satisfies
/Q d(v —ap)(z)dz >0 Vv e UM
h
The auxiliary control u, will not fulfil the analogous inequality
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/Q du(un) (v — up)(z)dz >0 Yo e US.
h

Instead of this, we are able to show that wu;, satisfies an associated perturbed variational
inequality with perturbation (p. To this aim, we introduce (, : 2, — IR by

|T|/dh Uh dil?} if uh\T = «,

Chir = —{ﬁ/ipdh(uh)(f) de}" i upr =,

—l/dh(uh)(x) dx otherwise,
\ T T

forall T € T,.
Lemma 9 The auxiliary control uy satisfies the variational inequality

/ (dp(un) + G) (v —up)(z)dz >0  Ywve U (9.13)

Qp,

Proof. First, observe that (9.13) can be equivalently rewritten as
/ dh uh dx + |T| Ch|T)(t - ’Ll/h‘T) >0 (914)

forall T € T, and all t € [, f]. Let T € T, be given fixed.

e Suppose that a < uppr < . From the definition of d;(up) and ¢, we easily see that
Jr dn(up)(z) dz + |T'| Cpr = 0. Therefore (9.14) is satisfied.

o Ifupp=a,thent—upp=t—a>0forallte[af], and

/ dh uh d$+ ‘T| Ch|T = / dh Uh d$+ / dh Uh > 0.

Therefore (9.14) holds in this case too.
e Finally, if up = 3, then t — upp =t — 3 <0 for all ¢ € [a, 8], and

/dh up) (z) dz + |T)| Ch|T_/dh up) (z )dx—(/Tdh(uh)(x)dx)+ <0.

We confirm again that (9.14) is true. Since all possible cases have been considered, the
proof is complete. O

Lemma 10 Suppose that A1- A2 are satisfied. Then, there exists a positive constant C,
independent of h, such that

1¢ull2,0, < Ch. (9.15)
Proof. Let T € T, be fixed.
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e Suppose that (47 # 0 and upr = Projy, 4(1145) . = a. Hence,

T
1
e = o /T 5(z) dz < a. (9.16)

Let zp € T be such that 11,57 = 5(zr). From (9.16), we deduce that

u(zr) = Proji, 5(8(z7)) = Proji, g/(Uns ) = @ = upr,

and
0= (Pa(xT) + DuL(xTa yﬂ(xT)’ E(QZT))

< wa(rr) + DyL(z7,ya(27), @) = d(27).
Notice that (up # 0 and upr = o imply that / d; (up)(z) dz is negative. Therefore,
T
T/ [Gurl = = | () (@) da

< - [ (@u(w)(@) = dlar))dr = | | (d(w)(2) - d(ar)) do

= | [ ((on(un)(@) + DuL (. () (x), @) = (¢a(wr) + DuL(wr, ya(ar), a))) da
< [ lentwn)(@) —@ulan) o+ [ DL, ynw)(2). 0) = DuL(er. yo(ar), )| do
< [ len(w)(@) = pa(a) o + [ lpal@) = palar)] da

+ [ IDuL (. yu(wn)(x), @) = Doz, ya(w), )| do

+ [ 1DuL (e, ya(w), ) = DuL(er,ya(e). o) do

+ [ 1DuL(ar. ya(z). 0) = DuL(ar.ya(ar). )| de

< [ lontwn) = gul() do+ C ([ lon(un) = val(x) di + [ |0~ wr|da)

< C (IT1> (lpn(un) — gallo + llyn(us) — vallar) + T| B)

After dividing by |7’| we find by the Young inequality,

5.2 + llyn(un) — wallsr) + %),

1
[ C(ﬁ(“@h(uh) ~ Pa
and thus, after integration over 7',
1Gallzr < Cllen(un) = pallzr + llyn(un) = yalloz + |T] 1?). (9.17)
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o If Gur # 0 and upp = 3, then
57 = %/TE(x) dz > B. (9.18)
Let 7 € T be such that I1,57 = s(z7). From (9.18), we deduce that u(z7) = 3 and
d(zr) = a(zr) + DuL(7, ya(zr), B)
< pa(r) + DyL(zr,ya(zr), 5(27)) = 0.

Moreover, we must have / dy(up)(z) dz > 0 and hence
T
T/ [Gurl = [ dnun)(z) do

< | (@ww)@) —d(er) dr = | [ (dn(us) () - d(ar)) dal.

Along the lines of the first part we prove (9.17) in this case, too.
e Suppose now a < upr < 3, then uyp = [I,5]7 = 5(z7). Since
d(zr) = pa(rr) + DuL(z7, ya(z7), 5(27)) = 0,

we have

T (ol = | [ dn(un) (@) da|

= I/T(wn(uh)(x) + DuL(z, yn(un)(z), u(2r))) dz|

= | /T (on(un)(2) + DuL(z, ya(un)(2), @(zr)) — d(27)) dz].

Repeating the same arguments, we show (9.17) again. Summarizing up, we have verified
(9.17) in all possible cases.

e Summing up the inequality (9.17) over all triangles T yields
IChll2.0, < Clllen(un) — wallz,, + llyn(un) — vall2o, +h)
< C(llen(un) = pall2o + llyn(un) — yallag + h)-
From (7.2), we deduce that
1€hllz,0, < C(R* + llun — allz0 +h) < Clllun — all2,0, + 12\ Q|+ R)

< Cllun — all2g, +h) < C(llun = Al + h)- (9-19)

Since s is Lipschitz continuous, we easily see that

lun = Ulloc,0, = [IPrjj4 5 (T115) — Projis, 51(5) o004
< ||Hh§ — §||Oo,Qh < Ch ||§||W1,oo(Qh). (9.20)

The conclusion follows from (9.19) and (9.20). O
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Remark 13 In the next proof we shall use the variational inequality (9.13). The function
Cp is constructed such that the auziliary function uy satisfies the first order necessary op-
timality condition of the following problem:

(Qn) inf J,(v) =/Q (L(z,yn(v),v) + Cuo) dz, v € UM,

h

Theorem 9 Suppose that assumptions A1-A2 are satisfied, and that U satisfies the second
order sufficient condition (SSC'). Then for all sufficiently small h > 0

@ — tnl[20 < Ch,
where C' s a positive constant independent of h.

Proof. From the optimality conditions for the problem (P,) and Remark 13 above, we
deduce that

T () (un — @) > 0 and  J! (up) (@ — up) + /Q () — wn) dr > 0.
Therefore,
(Jh(@n) — Jp(un))(@n — up)
< [, o) un —m) (@) de < 1

On the other hand, with Proposition 8, Lemma 8 and the Young inequality, we have for
sufficiently small h

(Jh(@n) — Jh(un)) (@ — un) = Jy (1 — 0)ap + Oun)(@n — un)?

= Jy (@) (an — un)® + (J; (1 = O)an + Oup) — Jy (@) (an — up)®

= Jy (@) (@n — @p)® + Jy (@) (@n — up)® + 2J; (@) (@ — @) (@n — un)
+(Jh (1 = 0)an + Oup) — Jy (@) (@ — up)®

(9.21)

)
)

25 lan — @nll3 .0 — Cillin — unll3q, — Callin — @nll2.a, llin — unll2q,
+(JN(Q = O)ay + Oup) — Jp (@) (@n — up)?

|an — nll3. o — Csllan — unllz o, + (J5 (1 = 0)an + Oup) — J; (@) (an — up)®

] S

(=%

> — ||ty — nll3 0 — Csllin — unllzq,

—C (h* + [lun — Ulloc.0, + 15 — Ulloc,0,) l[an — unll3 e,

J

\|an — @nll30 — Csllan — unlls g, — g llun = unll3 0,

|

with 6 € [0, 1]. The last estimate follows by considering that ||u,—@||co,0, and ||@n—1|c,q,)
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tend to zero as h \, 0. After rewriting u, — up = up — Up + Up — up, we get
_ _ 0 _ - -
(Jh(@n) — Ty (un)) (@n — up) > 16 |an — @nll5. 0 — Calldn — unll3 g, - (9.22)

From (9.21) and (9.22), we obtain
)

an — @nll3.q < Callin — unllsq, + [1Chll20n lun — Gnll2g,

1

< O(||tan — unl

20

2 _ -
l5.0,) + 3 |un —

after expanding ||up —s||2,0, = ||un —Un~+n—8p||2,0, by the Young inequality. Therefore,

50, + IChllz.0, llan — unll2g, + ISk

lan — @nll3 0 < Cllan — unll30, + 1<all2,0n lan — unllzg, + I I5.0,)

20, T IGl30,) < Cla —unllzg, +11Cl50,);

since ||@n — un|l2,0, < ||@ — un||2,0, as one can easily verify. Consequently,

2.0, + [[Call2,0,)- (9.23)

By (9.20), (9.23), (7.2), and Lemma 10, we obtain

< O(||tn — unl

lun — @nllz,0 < C(l|e — up

@ — @nlla0 < |18 — @nllog + |[in — @nll2.0

~ 1 ~ _
< C(|1a = anll2,0, + [\ Qal? + [[in — @

|2,2)

< Oz = unllz,0, + b+ [lan — @n

2,0)
< Ol = wnllao + b+ lIGill20,) < CRllsllwreo@) +h) < C h.

This proves the assertion of the lemma. O

Theorem 10 Suppose that the assumptions of Theorem 9 are satisfied. Then for all suf-
ficiently small h, we have

1@ — |l < CRY,

where C' s a positive constant independent of h.

Proof. With arguments similar to those used in the proof of Theorem 8, we obtain
[t = ] oo0
< C(h+ [t — 2 + llea, — en(@n)lloo.gn + 1Va, = Yn(tn)llw.0,)-

The conclusion follows from Theorem 9, and (7.3). O

Remark 14 We should underline that the error estimates of the Theorems 9 and 10 are
derived under the a priori assumption that (), is converging weakly* to w. By Theorem
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8, (un)n converges strongly to w. Therefore, these estimates have a local character. This
is important to be noticed, since the approzimate problem (Py) may have multiple global
solutions ay,.
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