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ABSTRACT
A class of semilinear parabolic reaction diffusion equations with multiple time delays
is considered. These time delays and corresponding weights are to be optimized such
that the associated solution of the delay equation is the best approximation of a
desired state function. The differentiability of the mapping is proved that associates
the solution of the delay equation to the vector of weights and delays. Based on an
adjoint calculus, first-order necessary optimality conditions are derived. Numerical
test examples show the applicability of the concept of optimizing time delays.
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1. Introduction

In this paper, we consider the optimization of Pyragas type feedback controllers in
reaction-diffusion equations with respect to finitely many time delays. The simplest
example of an associated optimization problem is the following: Let the semilinear
parabolic equation with time delay s ≥ 0

∂

∂t
y(x, t)−∆y(x, t) +R(y(x, t)) = κ (y(x, t− s)− y(x, t)), (x, t) ∈ Q (1)

be given in Q := Ω × (0, T ), where Ω ⊂ Rd, d ≤ 3, is a bounded Lipschitz domain.
The equation is complemented by homogeneous Neumann boundary conditions and
associated initial conditions.
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Find a time delay s and a weight κ ∈ R such that the associated state function
y minimizes the distance to a desired state function yQ in the norm of L2(Q). In
particular, we directly optimize, say ”control”, the time delay s.

The optimization with respect to finitely many time delays and weights, associated
first-order necessary optimality conditions, and numerical tests constitute the main
novelty of our paper.

In view of the needed differentiability of the mapping s 7→ y, the theory of optimality
conditions turns out to be quite delicate. This differentiability issue was investigated
first by Hale and Ladeira in [1] for ordinary differential equations and in [2] for non-
linear reaction-diffusion equations. They proved a version that is local in time, since
under their assumptions the solution y could blow up in finite time. By a different
method including certain monotonicity arguments, we were able to prove a general
result on existence and uniqueness for nonlocal reaction-diffusion equations including
measures in [3]. This result is valid for arbitrary time horizons T > 0 and includes the
equations considered here. Having this at our disposal, the proof of differentiability
with respect to time delays became possible for arbitrary T > 0.

More generally, we will consider multiple time delays si and associated weights
κi, i = 1, . . . ,m, cf. equation (2) below. To our best knowledge, the optimization
with respect to time delays si and associated weights κi was not yet investigated in
literature. Compared with optimal control problems, the time delay s and the weight
κ play the role of the control, while y is the state function of the control system.
Although u = (s, κ) is not a control in the standard sense, we will occasionally call
this vector a control.

This question might be interesting for applications. For instance, in laser technology,
feedback controllers of Pyragas type are considered. Here, a laser beam is partially
reflected by a semi-permeable mirror and the reflected part is fed back after some
time delay s. More general, a finite number of mirrors can be used giving rise to
finitely many time delays s1, . . . , sm. Then, instead of (1), the more general equation

∂

∂t
y(x, t)−∆y(x, t) +R(y(x, t)) =

m∑
i=1

κi y(x, t− si) (2)

is of interest, where the vectors s = (s1, . . . , sm) and κ = (κ1, . . . , κm) are at our
disposal. For Pyragas type problems with single or multiple time delays, the reader is
referred to [4,5], the survey volume [6], and exemplarily to the papers [7–9].

Our optimization problems with respect to the equation (2) are somehow interme-
diate between the ones in our former contributions [10] and [3] that investigate the
optimization of feedback kernels in nonlocal reaction-diffusion equations. In [10], a
nonlocal Pyragas type control system of the form

∂

∂t
y(x, t)−∆y(x, t) +R(y(x, t)) = κ

[∫ T

0
g(s)y(x, t− s) ds− y(x, t)

]
(3)

is considered, where the kernel function g is to be optimized, i.e. it plays the role of
a control. Later, in [3], we allowed measures as controls so that, in particular, Dirac
measures could appear,

∂

∂t
y(x, t)−∆y(x, t) +R(y(x, t)) =

∫ T

0
y(x, t− s) dµ(s), (4)
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where the control µ is a regular Borel measure on [0, T ].
Our control system cannot be subsumed as a particular case of (4). In (4), the

measure µ can be composed of an absolutely continuous part (that is somehow related
to g in (3)) and a singular part that can be a combination of Dirac measures. There
is no a priori information on how the structure is, how many Dirac measures appear,
and where they are concentrated. In this sense, (4) is much more general than (2).
On the other hand, the optimization of (2) is restricted to a subset of the admissible
controls for (4); in (2) the measure µ is required to be a linear combination of m Dirac
measures δsi , i ∈ {1, . . . ,m}, with m fixed.

This restriction to finitely many Dirac measures might be dictated by the technical
background. In the application to Laser technology mentioned above, the number of
semi-permeable mirrors might be fixed for a given construction. Another application
comes from medical science. For instance, in Holt and Netoff [11], linear combinations
of a fixed number of Dirac measures are used in experiments that are related to the
treatment of Parkinson’s disease.

Our paper is organized as follows: In Section 2, we define and analyze our optimiza-
tion problem. First, we prove the differentiability of the mapping s 7→ ys. In principle,
this differentiability is known from [2]. However, in the setting of [2], the existence of
y is only known locally in an interval [0, α). At α, the solution y can blow up. A new
version of the Banach fixed-point theorem was applied to prove differentiability. In
our case, thanks to certain monotonicity properties, we have global existence on any
interval [0, T ] and are able to prove differentiability of the control-to-state mapping.
Then, the existence of a solution and the optimality conditions is addressed. Section
3 is devoted to the numerical discretization of the problem. In Section 4 we present
some numerical examples that show the applicability of our concept of controlling time
delays.

2. Analysis of the optimization problem

In this work, Ω is a domain of Rd, d ≤ 3, with Lipschitz boundary Γ, while T > 0 is
a fixed final time; we will write Q = Ω× (0, T ) and Σ = Γ× (0, T ). Moreover, we fix
m ∈ N, real parameters 0 ≤ ai ≤ bi, i = 1, . . . ,m, and set b = max{bi : i = 1, . . . ,m}
and Q− = Ω× (−b, 0). We assume that b < T .

The initial data are defined in Q̄− by a continuous function y0 : Q̄− → R. The
reaction term is given by a function R : Q × R → R. The assumptions on Ω, y0, and
R will be detailed later.

Finally, we introduce the admissible set

Uad = {u = (s, κ) ∈ Rm × Rm : ai ≤ si ≤ bi, αi ≤ κi ≤ βi, 1 ≤ i ≤ m},

where −∞ ≤ αi ≤ βi ≤ ∞, i = 1, . . . ,m, are given real numbers.
We consider the optimization problem

(P) min
u∈Uad

J(u) =
1

2

∫
Q

(yu − yQ)2 dxdt+
ν

2
|κ|2,

where ν ≥ 0, |κ| denotes the Euclidean norm of κ in Rm, and yu is the unique solution
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of the state equation (5) below,
∂ty −∆y +R(x, t, y) =

m∑
i=1

κiy(x, t− si) in Q

∂ny = 0 on Σ
y(x, t) = y0(x, t) in Q−.

(5)

By ∂n, we denote the outward normal derivative on Γ.
Notice that the right hand side of (5) can be written as

m∑
i=1

κiy(x, t− si) =

∫
[0,T ]

y(x, t− s)dµ(s)

with µ =

m∑
i=1

κiδsi ∈M[0, T ].

Let us mention that the right-hand side of (5) is more general than a standard
Pyragas feedback as in equation (1) that includes the term −y(x, t) in the right-hand
side. This term is obtained in (5) by the particular delay s1 = 0 with a suitable
coefficient.

We impose the following assumptions on the given data in (P).

(A1) The domain Ω is W 2,q regular for some q > d
2 +1, i.e., if y ∈ H1(Ω), ∆y ∈ Lq(Ω)

and ∂ny ∈W 1−1/q,q(Γ), then y ∈W 2,q(Ω).

(A2) We require y0 ∈ C(Q̄−) ∩W 1,q(−b, 0;Lq(Ω)) and y0(·, 0) ∈W 2− 2

q
,q(Ω).

(A3) R is a Carathéodory function of class C1 with respect to the last variable such
that

R(·, ·, 0) ∈ Lq(Q),

∃CR ∈ R : ∂yR(x, t, y) ≥ CR, ∀y ∈ R,
∀M > 0 ∃CM : |∂yR(x, t, y)| ≤ CM , ∀|y| ≤M,

holds for almost all (x, t) ∈ Q.

Notice that (A1) is satisfied in convex plane polygonal domains or in domains with
boundary of class C1,1.

We will consider the state space

Y = C(Q̄) ∩W 2,1
q (Q),

where W 2,1
q (Q) = Lq(0, T ;W 2,q(Ω))∩W 1,q(0, T ;Lq(Ω)); Y is a Banach space endowed

with the usual intersection norm.

Theorem 2.1. Under assumptions (A1), (A2), and (A3), for every u ∈ Uad there
exists a unique solution yu ∈ Y of (5). Moreover, for all r > 0 there exists a constant
Cr such that

‖yu‖Y ≤ Cr

(
‖y0‖C(Q̄−)

m∑
i=1

|κi|+ ‖y0(·, 0)‖
W

2− 2
q
,q

(Ω)
+ ‖R(·, ·, 0)‖Lq(Q)

)
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holds for all u = (s, κ) ∈ Rm × Rm with |κ| ≤ r.

Proof. Existence and uniqueness of the solution yu ∈ C(Q̄) ∩ L2(0, T ;H1(Ω)) follow
from [3, Th. 2.2] with u =

∑m
i=1 κiδsi , where the following estimate is proved

‖yu‖C(Q̄) ≤ cr
(
‖y0‖C(Q̄−)‖u‖M[0,T ] + ‖y0(·, 0)‖C(Ω̄) + ‖R(·, ·, 0)‖Lq(Q)

)
.

Notice that ‖u‖M[0,T ] =
∑m

i=1 |κi|. Once this is obtained, from (5) and assump-

tions (A1)-(A3) we infer ∂tyu − ∆yu ∈ Lq(Q). Now, the W 2,1
q (Q) regularity and the

corresponding estimate follows from [12, Th. IV.9.1] and the inequality established
above.

We mention that the function ỹu, defined by

ỹu(x, t) =

{
yu(x, t), 0 ≤ t ≤ T,
y0(x, t), −b ≤ t < 0,

belongs to W 1,q(−b, T ;Lq(Ω)). This is a consequence of the regularity established
in the theorem and assumption (A2). In what follows, when this does not lead to
confusion, we will identify yu with its extension ỹu.

By the next result, we improve the differentiability result of [2].

Theorem 2.2. The control-to-state mapping G : Uad → Y, u 7→ yu has partial deriva-
tives ∂siG(u) and ∂κiG(u) given as follows: For every u ∈ Uad and 1 ≤ i ≤ m, we
have ∂siG(u) = zi where zi satisfies the equation

∂tz −∆z + ∂yR(x, t, yu)z =

m∑
j=1

κjz(x, t− sj)− κi∂tyu(x, t− si) in Q

∂nz = 0 on Σ, z = 0 in Q−,

(6)

and ∂κiG(u) = ηi, where ηi satisfies
∂tη −∆η + ∂yR(x, t, yu)η =

m∑
j=1

κjη(x, t− sj) + yu(x, t− si) in Q

∂nη = 0 on Σ, η = 0 in Q−.

(7)

Proof. We fix u = (s, κ) ∈ Uad and write y = G(u) = G(s, κ). First, we calculate
the partial derivative with respect to si. For sufficiently small |ρ|, we write yρ =
G(s + ρei, κ), where ei denotes the i-th vector of the canonical base of Rm. We have
to compute

∂siG(s, κ) = lim
ρ→0

yρ − y
ρ

,

where the limit is restricted to ρ > 0 if si = ai and to ρ < 0 if si = bi, since we have to
determine the right and left derivatives in these points, respectively. Define zρ = yρ−y

ρ ;
subtracting the partial differential equations and dividing by ρ we get by the mean
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value theorem for ŷρ(x, t) = y(x, t) + θ(x, t)(yρ(x, t)− y(x, t)), 0 < θ(x, t) < 1,

∂tzρ −∆zρ + ∂yR(x, t, ŷρ)zρ

=
∑
j 6=i

κj
yρ(x, t− sj)− y(x, t− sj)

ρ
+ κi

yρ(x, t− si − ρ)− y(x, t− si)
ρ

=
∑
j 6=i

κjzρ(x, t− sj) + κizρ(x, t− si − ρ) + κi
y(x, t− si − ρ)− y(x, t− si)

ρ
. (8)

Using Theorem 2.1 and taking into account that z(0) = 0 in Ω and ∂nz = 0 on Σ, we
deduce

‖zρ‖Y ≤ C
(∫

Q

(
y(x, t− si − ρ)− y(x, t− si)

ρ

)q
dxdt

)1/q

= C

∥∥∥∥y(·, · − si − ρ)− y(·, · − si)
ρ

∥∥∥∥
Lq(Q)

(9)

with some constant C > 0, which may depend on κ, but is independent of ρ and s.
Since y ∈W 1,q(0, T, Lq(Ω)), we have that

lim
ρ→0

y(x, t− si − ρ)− y(x, t− si)
ρ

= −∂ty(x, t− si) in Lq(Q). (10)

Indeed, consider ε > 0 arbitrary. Then, for all |ρ| small enough, applying [13, Thm 1.1
in page 57], we obtain

(∫
Q

(
y(x, t− si − ρ)− y(x, t− si)

ρ
+ ∂ty(x, t− si)

)q
dxdt

)1/q

=

(∫
Q

(
−
∫ 1

0
(∂ty(x, t− si − λρ)− ∂ty(x, t− si)) dλ

)q
dxdt

)1/q

=

∥∥∥∥−∫ 1

0
(∂ty(·, · − si − λρ)− ∂ty(·, · − si)) dλ

∥∥∥∥
Lq(Q)

≤
∫ 1

0
‖∂ty(·, · − si − λρ)− ∂ty(·, · − si)‖Lq(Q) dλ

<

∫ 1

0
εdλ = ε.

From (9) and (10), we deduce that {zρ}ρ is uniformly bounded in Y. Hence we can
extract a subsequence that converges weakly in Y to some z. Since Y is compactly
embedded in Lq(Q), we also have that zρ → z strongly in Lq(Q). Since the right hand
side of (8) is bounded in Lq(Q) and y0(·, 0) is a Hölder function in Ω̄, we have that
there exists µ ∈ (0, 1) such that {zρ}ρ is bounded in C0,µ(Q̄), see [12, III-10]. Using
that C0,µ(Q̄) is compactly embedded in C(Q̄), we have that zρ → z strongly in C(Q̄).
Passing to the limit in (8), in view of (10), we obtain (6).
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Now, we calculate the partial derivative with respect to κi. For small |ρ|, we define
yρ = G(s, κ + ρei) and ηρ = (yρ − y)/ρ. As above, there exists ŷρ(x, t) = y(x, t) +
θ(x, t)(yρ(x, t)− y(x, t)) with some measurable function 0 < θ(x, t) < 1 such that

∂tηρ −∆ηρ + ∂yR(x, t, ŷρ)ηρ =

m∑
j=1

κjηρ(x, t− sj) + yρ(x, t− si).

Again {ηρ}ρ is uniformly bounded in Y ∩C0,µ(Q̄) for some µ > 0, and we can pass to
the limit to obtain (7).

By Theorem 2.2 and the chain rule, the functional J is differentiable and its deriva-
tive has the following form.

Theorem 2.3. The functional J has partial derivatives

∂J

∂si
(u) = −κi

∫
Q
ϕu(x, t)∂tyu(x, t− si) dxdt, (11)

∂J

∂κi
(u) = νκi +

∫
Q
ϕu(x, t)yu(x, t− si) dxdt, (12)

for 1 ≤ i ≤ m, where the adjoint state ϕu ∈ Y is the unique solution to the advanced
adjoint equation

−∂tϕ−∆ϕ+ ∂yR(x, t, yu)ϕ = yu − yQ +

m∑
i=1

κiϕ(x, t+ si) in Q

∂nϕ(x, t) = 0 on Σ, ϕ(x, t) = 0 if t ≥ T.

(13)

Proof. Using the chain rule, we obtain

∂J

∂si
(u) =

∫
Q

(yu − yQ)zi dxdt and
∂J

∂κi
(u) =

∫
Q

(yu − yQ)ηi dxdt+ νκi,

where zi ∈ Y is the solution of (6) and ηi is the solution of (7).
Let us consider the derivative with respect to si. Using the adjoint state equation

(13), integration by parts and the equation (6) satisfied by zi, we obtain∫
Q

(yu − yQ)zi dxdt =∫
Q

[
− ∂tϕu −∆ϕu + ∂yR(x, t, yu)ϕu −

m∑
j=1

κjϕu(x, t+ sj)
]
zi dxdt

=

∫
Q
ϕu
[
∂tzi −∆zi + ∂yR(x, t, yu)zi −

m∑
j=1

κjzi(x, t− sj)
]
dxdt

=− κi
∫
Q
ϕu(x, t)∂tyu(x, t− si) dxdt.
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Here we performed the change of variables t̃ = t + sj and took into account the final
conditions satisfied by ϕu along with the initial conditions satisfied by zi to write∫

Q
ϕu(x, t+ sj)zi(x, t)dtdx =

∫
Q
ϕu(x, t)zi(x, t− sj) dtdx

The derivative with respect to κi is obtained in a similar way.

Next, we show the well-posedness of (P).

Theorem 2.4. If ν > 0 or −∞ < αi ≤ βi < ∞ for all i ∈ {1, . . . ,m}, then Problem
(P) has a solution ū = (s̄, κ̄).

Proof. If uk = (sk, κk) → u = (s, κ) in Rm × Rm, then
∑m

i=1 κ
k
i δski

∗
⇀
∑m

i=1 κiδsi in
M[0, T ] as k → ∞. So following [3, Lemma 3.2], we have that yuk → yu strongly in
L2(0, T ;H1(Ω))∩C(Q̄). Therefore J is continuous in Uad and obviously Uad is closed
in Rm × Rm.

Thanks to our assumptions, either the objective functional is coercive or Uad is
compact. Since we are dealing with a finite dimensional problem, it is clear that (P)
has a global solution.

Now we are able to set up the first order necessary optimality conditions.

Theorem 2.5. Let ū ∈ Uad be a local solution of (P) and let ȳ be the associated state
defined by 

∂tȳ −∆ȳ +R(ȳ) =

m∑
j=1

κ̄iȳ(x, t− s̄i) in Q

∂nȳ = 0 on Σ
ȳ(x, t) = y0(x, t) in Q−.

(14)

Then there exists a unique adjoint state ϕ̄ ∈ Y such that the adjoint equation
−∂tϕ̄−∆ϕ̄+ ∂yR(x, t, ȳ)ϕ̄ = ȳ − yQ +

m∑
i=1

κ̄iϕ̄(x, t+ s̄i) in Q

∂nϕ̄ = 0 on Σ
ϕ̄ = 0 if t ≥ T,

(15)

the variational inequalities

−κ̄i
∫
Q
∂tȳ(x, t− s̄i) ϕ̄(x, t) dxdt(si − s̄i) ≥ 0 ∀si ∈ [ai, bi], (16)

and (
νκ̄i +

∫
Q
ȳ(x, t− s̄i) ϕ̄(x, t) dxdt

)
(κi − κ̄i) ≥ 0 ∀κi ∈ [αi, βi] ∩ R, (17)

are satisfied for i = 1, . . . ,m.
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3. Numerical Discretization

We suppose that Ω is polygonal or polyhedral and consider, cf. [14, definition (4.4.13)],
a quasi-uniform family of triangulations {Kh}h>0 of Ω̄ and a quasi-uniform family of
partitions of size τ of [0, T ], 0 = t0 < t1 < · · · < tNτ = T . We define Ik = (tk−1, tk],
τk = tk − tk−1, τ = max{τk}, and introduce the space-time mesh size σ = (h, τ).

Now we consider the finite dimensional spaces

Yh = {zh ∈ C(Ω̄) : zh|K ∈ P1(K) ∀K ∈ Kh},

Y0
σ = {φσ ∈ L2(0, T ;Yh) : φσ|Ik ∈ P

0(Ik;Yh) ∀k = 1, . . . , Nτ},

Y1
σ = {yσ ∈ C([0, T ];Yh) : yσ|Ik ∈ P

1(Ik;Yh) ∀k = 1, . . . , Nτ}

where P1(K) is the set of polynomials of degree 1 in K and, for i = 0, 1, P i(Ik;Yh) is
the set of polynomials of degree i defined in Ik with values in Yh.

For φσ ∈ Y0
σ, we denote by φkσ ∈ Yh the value of φσ in Ik. We also remark that Y1

σ

is contained in W 1,q(0, T ;Lq(Ω)) and, if yσ ∈ Y1
σ, then ∂tyσ can be identified with an

an element of Y0
σ.

The discrete state equation is defined in a variational form as follows: For given
control vector u = (s, κ), the associated discrete state yσ(u) ∈ Y1

σ is the unique
solution of (cf. [15, Eq. (23)])

yσ(x, 0) = Πhy0(x, 0),∫
Q

∂yσ
∂t

φσ dxdt+

∫
Q
∇xyσ∇xφσ dxdt+

∫
Q
R(x, t, yσ)φσ dxdt (18)

=

m∑
i=1

κi

[∫ si

0
y0(x, t− si)φσ dxdt+

∫ T

si

yσ(x, t− si)φσ dxdt
]
, ∀φσ ∈ Y0

σ,

where Πh : L2(Ω)→ Yh is the projection onto Yh in the L2(Ω)-sense.
The discretized optimization problem is

(Pσ) min
u∈Uad

Jσ(u) =
1

2

∫
Q

(yσ(u)(x, t)− yQ(x, t))2 dxdt+
ν

2
|κ|2.

To compute the partial derivatives of Jσ, we invoke an associated discrete adjoint
equation. For every u ∈ Uad, we define the associated discrete adjoint state ϕσ(u) ∈ Y0

σ

as the unique solution of (cf. [15, Eq. (25)])

ϕNτ+1
σ = 0

−
Nτ∑
k=1

∫
Ω
zσ(x, tk)(ϕ

k+1
σ − ϕkσ) dx+

∫
Q
∇xzσ∇xϕσ dxdt

+

∫
Q
∂yR(x, t, yσ(u))zσϕσ dxdt =

∫
Q

(yσ(u)− yQ)zσ dxdt (19)

+

m∑
i=1

κi

∫ T−si

0

∫
Ω
ϕσ(x, t+ si)zσ dxdt, ∀zσ ∈ Y1

σ,
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where we have introduced an artificial ϕNτ+1
σ to simplify the notation.

Both the discrete state equation (18) and the discrete adjoint state equation (19)
can be solved using a time-marching scheme. Despite the differences in the variational
formulations, in both cases a Crank-Nicholson time-marching scheme is obtained, cf.
[15, p. 824].

Remark 1. Notice that the time instants tk, k = 1, . . . Nτ , can be taken completely
independent of the location of the time delays. Moreover, the time delays can admit
any value between 0 and b; they also can coincide with some of the the tk’s. Compared
with standard Euler time stepping methods, this is an essential advantage of this
numerical technique.

Now, with exactly the same technique used for problem (P), we can prove that Jσ
has partial derivatives and that

∂Jσ
∂si

(u) =− κi
[∫ si

0

∫
Ω
∂ty0(x, t− si)ϕσ(x, t) dxdt

+

∫ T

si

∫
Ω
∂tyσ(x, t− si)ϕσ(x, t) dxdt

]
(20)

∂Jσ
∂κi

(u) =νκi +

∫ si

0

∫
Ω
y0(x, t− si)ϕσ(x, t) dxdt

+

∫ T

si

∫
Ω
yσ(x, t− si)ϕσ(x, t) dxdt. (21)

The proof of existence of partial derivatives can be done following the same steps as for
the continuous case. In a first step, we compute the partial derivatives of the discrete
state as in Theorem 2.2. The key estimate (9) is replaced by the stability estimates in
[16, Corollary 4.8]; the limit in (10) is also valid, since Y1

σ ↪→ W 1,q(0, T ;Yh). Finally,
we can pass to the limit in the linearized discrete equation taking into account that
the discretization parameters (h, τ) are fixed, so we are working in a finite dimensional
space. The expressions for the derivatives of the discrete functional follow from the
chain rule as in the proof of Theorem 2.3.

Remark 2. In recent contributions to PDE control, discontinuous Galerkin (dG)
methods became quite popular, [15]. We are able to discretize both the state equation
and the adjoint state equation using the same set of discontinuous Galerkin elements
dG(0), cf. [15, Eqs. (18) and (20)] and to derive expressions for the partial derivatives
of the resulting discrete functional. However, the partial derivatives of the discrete
objective functional are not everywhere continuous. The reason is the following:

To simplify the exposition, suppose that τk = τ for all k = 1, . . . , Nτ . Then, the
control-to-discrete-state mapping is not differentiable at the nodes of the time mesh.
Notice that the technique used in Theorem 2.2 cannot be applied because the discrete
states are piecewise constant in time and Y0

σ 6↪→W 1,q(0, T ;Yh), so the derivative with
respect to time of the discrete state can not be identified with a function in Lq(Q).
Taking advantage of the fact that we are dealing with a finite dimensional problem,
the partial derivatives of the discrete state with respect to the delays can be computed
for any t 6= tk, but jump discontinuities will appear at the nodes of the time mesh.

These jump discontinuities are inherited by the partial derivatives of the discrete
functional. The expressions we obtain for the derivatives of the discrete functional are
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formally the same as (20) and (21) if we identify the time derivatives of elements in
Y0
σ with combinations of Dirac measures centered at the time nodes. This leads to the

discontinuities in the partial derivatives of Jσ with respect to the delays.

4. Examples

The aim of this section is to confirm that optimizing time delays in nonlinear parabolic
delay equations is a useful concept. In particular, we demonstrate that oscillatory
patterns can be achieved by an associated feedback control. In this way, our method
is also some contribution to the topic of “learning controller”.

In our test examples, we do not restrict ourselves to problem (P). We will start with
an example for a related ordinary differential delay equation. They are covered by our
parabolic problem as particular case. It might be useful to first solve an ODE control
problem and take the obtained result as initial guess for the solution of the associated
PDE control problem. In addition, in the case of ordinary differential equations the
graphs of the desired state and the computed optimal state can be graphically better
compared.

Moreover, in the context of approximating periodic states of parabolic delay equa-
tions, we also consider a problem with slightly changed ”shifted” objective functional
as suggested in [10]; see examples 4.3 and 4.4 below.

To perform the optimization numerically, we use the Matlab code fmincon with the
option (’SpecifyObjectiveGradient’,true) that needs the gradient of the function
to be minimized. This code uses subroutines for calculating the functions u 7→ Jσ(u)
and u 7→ ∇Jσ(u). Both functions are evaluated by solving the discretized state equa-
tion and adjoint equation, respectively, according to the methods explained in the last
section.

Since the code fmincon will in general find a local minimum, we performed several
solves with different initial points to have a better chance for finding a global minimum.

In all our examples we focus on the non-monotone non-linearity

R(y) = y(y − 0.25)(y − 1)

and fix T = 80. We take ν = 0, and impose the bounds 0 ≤ si ≤ T , |κi| ≤ 1000 for
i = 1 : m. Figures 1 and 2 show the states up to t = 2T to confirm that the obtained
solutions exhibit a stable behavior for t > T .

Example 4.1. We start with one example for an ordinary differential delay equation
(ODE). This fits in our setting as long as y0 and R are constant with respect to x,
because then the equation (5) reduces to an the ODE. We consider the ODE with
delay

y′(t) +R(y) =

m∑
i=1

κiy(t− si) for t ∈ (0, T ], y(t) = y0(t), if t ≤ 0 (22)

for y : [−b, T ] → R, where y0 : [−b, 0] → R is given and R : R → R is the given
reaction term.
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Figure 1. Example 4.1; Target state (green), optimal state (blue), and uncontrolled state (red).

We select the target state yQ solving the linear delay equation

y′(t) = −π
2
y(t− 1) in [0, T ], y(t) = 1 in [−1, 0).

This function exhibits a stable oscillatory behavior; displayed as green curve in Fig.
1. A nice discussion of this particular equation can be found in Erneux [17].

For m = 1 and an appropriate choice of the parameters u = (s, κ), we want to
mimic that behavior by the solution of the nonlinear delay equation (22) with initial
data y0(t) = 1.

For the choice s = 1 and κ = −π/2, the state exhibits an oscillatory behavior, but
|yu| decays in time, see the red dashed curve in Fig. 1. Our optimization problem is
to minimize

J(s, κ) =
1

2

∫ T

0
(yu(t)− yQ(t))2dt (23)

subject to the state equation (22) and 0 ≤ s ≤ T and |κ| ≤ 1000. Numerically, we
obtained the solution ū = (s̄, κ̄) with

s̄ = 1.2409, κ̄ = −1.7668

and an associated value J(ū) = 1.8701 of the objective functional. The gradient of
J at the computed solution has the norm |∇J(ū)| = 3.8 × 10−7. Figure 1 displays
the optimal and the desired state in blue and green respectively. For comparison,
yu(t) for u = (1,−π/2) is plotted in dashed red. We had to use 212 time steps in
the discretization to capture correctly the behaviour of the linear delay equation that
defines the target state.

For all the next examples, we consider the data of Example 3 in [10]: We fix Ω =
(−20, 20) ⊂ R. The initial function y0 models an incoming traveling wave, namely

y0(x, t) =
1

2

[
1− tanh

(
x− vt

2

)]
,
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with v = 0.25
√

2. This kind of problems appear in chemical wave propagation; see
[18]. We aim at steering the system to the target state shown in Fig. 2a

yQ(x, t) = 3 sin
(
t− cos

( π
20

(x+ 20)
))

.

For the discretization, we take 27 finite elements in space and 27 steps in time.

Example 4.2. We fix m = 6 and obtain the optimal parameters shown in Table 1. A
graph of the optimal state is shown in Fig. 2b.

i s̄i κ̄i
1 0.0000 0.9846
2 0.9367 −1.5039
3 6.7481 0.4542
4 28.3843 −2.2799
5 32.2258 3.7013
6 39.8133 −1.3844

Table 1. Example 4.2: Computed optimal result.

For these values, we have computed an optimal value J(ū) = 4209.3. This value
is quite large, but note that the measure of Q = (−20, 20) × (0, 80) is equal to 3200.
Therefore, the function y ≡ 1 has a norm square of 3200 in L2(Q).

Notice that the lower constraint for the delays is achieved, since s̄1 = 0, and∑
i 6=1 κi = −1.0127, which is quite close to −κ1. This somehow resembles the orig-

inal Pyragas feedback form, since the term y(x, t) = y(x, t − s1) appears in the
right-hand side of the partial differential equation, cf. also the subsection on Pyra-
gas type control below. First order optimality conditions are satisfied: we obtain that
∂s1J(ū) = 486 ≥ 0, remember s̄1 attains the lower constraint, and the maximum of
the absolute value of the rest of the components of the gradient is 2.0× 10−4.

Objective functional with shift in the target If a given periodicity of the state
is desired, then two states with the same period should be considered as equal if
they differ only by a time shift. For instance, the functions t 7→ sin(t) and t 7→
sin(t+π) should be considered as equal. This is natural, since the time until developing
an oscillatory behavior may depend on the selected delays. This inherent shift in
time is unavoidable and makes the minimization of standard quadratic tracking type
functionals difficult.

Therefore, in [10] it was suggested to include a shift ς in the target state yQ. Then
the target can be adjusted to the computed states during the numerical algorithm. In
view of this, we will minimize now the shifted functional

J(u, ς) =
1

2

∫ T

0
(yu(x, t)− yQ(x, t− ς))2 dxdt (24)

simultaneously with respect to u ∈ Uad and ς ∈ R.
We assume that the desired state yQ is time-periodic with period p > 0. Then we

might impose the additional constraint ς ∈ [0, p] that shows the existence of an optimal
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shift by compactness. However, by periodicity, this constraint can be skipped and is
numerically not needed.

The associated optimality conditions are obtained by minor modification. It is easy
to see that, for given (u, ς), the adjoint state ϕ is the solution of the equation
−∂tϕ−∆ϕ+R′(yu)ϕ = y(x, t)− yQ(x, t− ς) +

m∑
i=1

κiϕ(x, t+ si) in Q

∂nϕ(x, t) = 0 on Σ
ϕ(x, t) = 0 if t ≥ T.

The expressions for the derivatives with respect to the delays and the weights are
the same as the ones given in Theorem 2.3. The partial derivative with respect to the
shift ς is

∂J

∂ς
(u, ς) =

∫ T

0

∫
Ω

(yu(x, t)− yQ(x, t− ς))
∂yQ
∂t

(x, t− ς) dxdt. (25)

Example 4.3. We take the same data as in Example 4.2, fix m = 2 delays, and
minimize the shifted objective functional (24). Note that the desired function yQ has
the time period 2π.

The result is displayed in Table 2, the computed optimal state is shown in Fig. 2c. It
is amazing, how good the desired pattern is approximated with only two time delays.

i s̄i κ̄i
1 2.2785 −8.2564
2 4.8126 −5.2898
Target shift ς̄ = 2.3775

Table 2. Example 4.3 (shifted functional): Optimal result

In this case, fmincon computed as optimal value J(ū, ς̄) = 2114.5 with gradient
|∇J(ū, ς̄)| = 1.1 × 10−6; It is remarkable that the shift essentially improved the nu-
merical result of Example 4.2. Moreover, the computed periodic pattern remains stable
after t = 80.

In [10] it is also suggested to change the objective functional to

∂J(u, ς) =

∫ T

T/2

∫
Ω

(yu(x, t)− yQ(x, t− ς))2 dxdt

because it is reasonable to assume that it takes some time to transfer the incoming
traveling wave y0 into a periodic solution. Using this new functional and increasing
the number of time delays to m = 8, the objective value can be reduced down to
J(ū, ς̄) = 218.75.
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Pyragas type feedback control Finally, we investigate the approximation of oscil-
latory patterns that are characteristic for Pyragas type feedback control as in (1),

∂ty −∆y +R(x, t, y) =

m∑
i=1

κi(y(x, t− si)− y(x, t)) in Q

∂ny = 0 on Σ
y(x, t) = y0(x, t) in Q−.

(26)

We want to design a feedback controller by adjusting finitely many time delays and
associated weights minimizing the shifted functional (24).

The adjoint state equation in this case is

−∂tϕ−∆ϕ+R′(yu)ϕ = y(x, t)− yQ(x, t− ς)

+

m∑
i=1

κi (ϕ(x, t+ si)− ϕ(x, t)) in Q

∂nϕ(x, t) = 0 on Σ
ϕ(x, t) = 0 if t ≥ T.

The expressions for the derivatives with respect to the delays and the shift are the
same as the ones given in equations (11) and (25), while the derivative with respect
to the weight is given by the expression

∂J

∂κi
(u) = νκi +

∫
Q
ϕu(x, t)(yu(x, t− si)− yu(x, t)) dxdt.

Example 4.4. With the same data as in examples (4.2), we fix m = 4 and obtain
the optimal parameters shown in Table 3. A plot of the optimal state is displayed
in Fig. 2d. For these values, we computed an optimal value J(ū, ς̄) = 3763.4 with
|∇J(ū, ς̄)| = 4.8× 10−4.

i s̄i κ̄i
1 1.8308 −2.1661
2 7.0918 2.2636
3 28.3354 −1.7753
4 36.1215 1.7550
Target shift ς̄ = −2.5013

Table 3. Example 4.4: Computed optimal result.
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Figure 2. Examples 4.2-4.4: Target and optimal states. All functions are shown in Ω× [−T/2, 2T ].
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