
On some Variational Principles in

Discrete Differential Geometry

Jan Techter

January 15, 2015

Masterarbeit im Studiengang
Mathematik

zur Erlangung des akademischen Grades
Master of Science

eingereicht an der
TU Berlin

Erstgutachter: Prof. Dr. Alexander I. Bobenko
Zweitgutachter: Prof. Dr. Boris Springborn



Abstract

The focus lies on introducing some exemplary variational principles
in discrete differential geometry. We characterize some specific discrete
objects as critical points of a suitable functional. The work is intended to
be suitable as an introductory text to the topics at hand. Most sections
are preceded by a condensed version of the corresponding smooth theory,
which is presented in a way fitting the following discretization scheme.

The first part treats discrete curves.
After introducing discrete curves with emphasis on discrete arc length
parametrized curves, we discuss some notions of discrete curvature from
osculating circles. The focus of the first part lies on discrete elastica. We
explain the characterization of smooth and discrete elastic curves

§ as critical points of a bending energy

§ by the corresponding Euler-Lagrange equations

§ in terms of the evolution under the Heisenberg flow

as well as the Kirchhoff analogy. After discussing the generalization to
isotropic elastic rods in the smooth case, we state the idea of the corre-
sponding discretization.
On the way we introduce the discrete tangent flow, the discrete Heisen-
berg flow and the quaternionic description of Euclidean motions, rotating
frames and the Lagrange top.

The second part treats discrete surfaces.
We introduce the notion of discrete surfaces from the point of view of
topology (abstract discrete surfaces), metric geometry (piecewise flat sur-
faces) and Euclidean geometry (polyhedral surfaces). We introduce the
discrete cotan Laplace operator of a simplicial surface and more general of
a geodesic triangulation of a piecewise flat surface as coming in a natural
way from considering the Dirichlet energy of piecewise affine functions.
A proof for the characterization of Delaunay triangulations of a piecewise
flat surface in terms of a local edge property is given. This implies an
angle criterion identical to the planar case. We show how to construct the
Delaunay tessellation of a piecewise flat surface by means of an edge-flip
algorithm from any given start triangulation. The intrinsic notion of the
Delaunay triangulation enables us to define the discrete Laplace-Beltrami
operator of a piecewise flat surface.
For both discrete Laplace operators of a simplicial surface –the extrinsic
cotan Laplace operator and the intrinsic Laplace-Beltrami operator– we
discuss discrete minimal surfaces as an application. Both notions come
with a construction algorithm.

In the appendix we discuss the Heisenberg magnet model as an exam-
ple of a physical system involving the Heisenberg flow.



German Abstract

Der Fokus der Arbeit liegt auf der Beschreibung einiger examplar-
ischer Variationsprinzipien in der diskreten Differentialgeometrie. Wir
charakterisieren bestimmte diskrete Objekte als kritische Punkte eines
geeigneten Funktionals. Die Arbeit soll dabei als einführender Text in
die behandelten Themen geeignet sein. Den meisten Kapiteln geht eine
komprimierte Version der entsprechenden glatten Theorie veraus, die auf
die darauffolgende Diskretisierung zugeschnitten ist.

Der erste Abschnitt behandelt diskrete Kurven.
Nach Einführung diskreter Kurven, mit Schwerpunkt auf diskreten nach
Bogenlänge parametrisierten Kurven, werden mehrere Möglichkeiten der
Definition von oskulierenden Kreisen behandelt, die jeweils zu verschiede-
nen diskreten Krümmungen führen. Im Zentrum des ersten Abschnittes
stehen diskrete Elastika. Wir beschreiben die Charakterisierung von glat-
ten und diskreten elastischen Kurven

§ als kritische Punkte einer Biegeenergie

§ durch die entsprechenden Euler-Lagrange-Gleichungen

§ durch die Evolution unter dem Heisenberg-Fluss

sowie die Kirchhoff-Analogie. Nach der Behandlung von glatten elastis-
chen Stäben wird die Idee einer entsprechenden Diskretisierung genannt.
Auf dem Weg werden der diskrete Tangential-Fluss, der diskrete Heiseberg-
Fluss und die quaternionische Beschreibung Euklidischer Bewegungen,
rotierender Rahmen und dem Lagrange-Kreisel eingeführt.

Der zweite Abschnitt behandelt diskrete Flächen.
Wir betrachten diskrete Fächen vom Standpunkt der Topologie (abstrakte
diskrete Flächen), der metrischen Geometrie (stückweise flache Flächen)
und der Euklidischen Geometrie (polyedrische Flächen). Die Dirichlet-
Energie von stückweise affinen Funktionen auf einer siplizialen Fläche und
allgemeiner auf einer geodätischen Triangulierung einer stückweise flachen
Fläche führt zur Definition des diskreten cotan Laplace-Operators.
Wir führen einen Beweis zur Charakterisiering von Delaunay-Triangulierungen
einer stückweise flachen Fläche mit Hilfe einer lokalen Kanten-Eigenschaft.
Dies impliziert ein Winkelkriterium, das identisch zum planaren Fall ist.
Wir zeigen wie man die Delaunay-Tesselierung einer stückweise flachen
Fläche mit Hilfe eines Kanten-Flip-Algorithmus aus einer beliebigen Start-
Triangulierung erzeugen kann. Die intrinsische Natur der Delaunay-Tesselierung
ermöglicht die Definition eines diskreten Laplace-Beltrami-Operators einer
stückweise flachen Fläche.
Als Anwendung beider diskreter Laplace-Operatoren einer simplizialen
Fläche (dem extrinsischen cotan Laplace-Operator und dem intrinsischen
Laplace-Beltrami-Operator) besprechen wir Definitionen von diskreten
Minimalflächen und zugehörige Konstruktionsalgorithmen.

Im Anhang findet sich eine Besprechung des Heisenberg-Magnet-Modells
als Beispiel eines physikalischen Systems, das den Heisenberg-Fluss enthält.
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Part I

Discrete Curves

1 Curves and curvature

1.1 Basic definitions

Definition 1.1 (smooth curves). Let I Ă R be a finite or infinite interval.
Then a smooth curve in RN is a map

γ : I Ñ RN

such that all derivatives γ1, γ2,. . . exist.
The length of a smooth curve γ is defined by

Lpγq–

ż

I

›

›γ1pxq
›

›dx.

γ is called regular if }γ1pxq} ą 0 for all x P I.
For a regular curve γ the (unit) tangent vector at x P I is defined by

T pxq–
γ1pxq

}γ1pxq}
.

γ is called arc length parametrized if }γ1pxq} “ 1 for all x P I.

Remark 1.1.

§ Any arc length parametrized curve is regular and any regular curve can be
parametrized by arc length. We usually denote the arc length parameter of
a curve by s.

§ The length of an arc length parametrized curve is given by Lpγq “ |I|.

§ We defined curves as ’parametrized curves’. But we are also interested in
quantities that are invariant under reparametrization and Euclidean trans-
formations, i.e. well-defined on equivalence classes representing the ’shape of
a curve’.

Definition 1.2 (discrete curves). Let I Ă Z be a finite or infinite interval.
Then a discrete curve in RN is a map

γ : I Ñ RN .

For a discrete curve γ we define the vertex difference vector at the edge pk, k`1q
with k, k ` 1 P I by

∆γk – γk`1 ´ γk,

and its length by
Lpγq–

ÿ

k,k`1PI

}γk`1 ´ γk} .
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If any two successive points of γ are different, i.e. }∆γk} ą 0 we can define the
(unit) tangent vector at the edge pk, k ` 1q with k, k ` 1 P I by

Tk –
γk`1 ´ γk
}γk`1 ´ γk}

.

We further define

γ regular :ô any three successive points γk´1, γk, γk`1

are different for all k ´ 1, k, k ` 1 P I

γ arc length parametrized :ô }γk`1 ´ γk} “ 1 for all k P I

Ti´1

Ti

γi

γi´1

γi`1

Figure 1.1. Part of a discrete arc length parametrized curve.

Remark 1.2.

§ The vertex difference vectors ∆γk and tangent vectors Tk are naturally de-
fined on edges rather than vertices despite the notation.

§ For a discrete arc length parametrized curve γ the tangent and vertex dif-
ference vectors coincide

Tk “ ∆γk “ γk`1 ´ γk.

It is regular if and only if two successive tangent vectors Tk´1 and Tk are
not anti-parallel.

§ The definition of regularity is more than is needed to define edge tangent
vectors. But we will see that it allows to have a well defined discrete tangent
flow at vertices as well.

§ For plane curves it will be sometimes convenient to identify R2 – C and for
space curves R3 – ImH

1.2 On the smooth limit

Consider a discrete curve γ : ZÑ RN . To obtain a continuous limit we introduce
a small parameter ε ą 0 and replace the lattice Z by

Bε – εZ

for ε ą 0 and B0 – R. So the discrete curve is replaced by a family

γε : Bε Ñ RN .
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In the limit εÑ 0 the vertices εk P εZ become points x P R.1

We will not concern ourselves with the question of convergence of the curve
itself but are more interested whether we can recover the smooth quantities –like
tangent vectors and arc length– from the corresponding discrete definitions.
Suppose that γε possesses a smooth limit

γε Ñ γ pεÑ 0q.

or alternatively start with the smooth curve and define the family of discrete
curves by sampling. Then we can investigate how properties from the discrete
case transfer to the smooth case in the following way:

§ Take some local discrete quantity depending on some vertex k P Z and its
neighbors.

§ Replace k P Z by a point x P R, k ´ 1 by x´ ε, k ` 1 by x` ε, . . .

§ Investigate the limit εÑ 0, e.g. by applying Taylor’s theorem at ε “ 0.

The discrete unit tangent vectors Tk “
γk`1´γk
}γk`1´γk}

become smooth unit tan-

gent vectors T “ γ1pxq
}γ1pxq} :

Tk “
γpx` εq ´ γpxq

}γpx` εq ´ γpxq}
“

γ1pxqε` opεq

}γ1pxqε` opεq}

“
γ1pxq ` op1q

}γ1pxq} ` op1q
Ñ

γ1pxq

}γ1pxq}
.

If we consider the (non-unit) vertex differences ∆γk “ γk`1 ´ γk we have to
scale appropriately to obtain the tangent vector γ1pxq in the limit. Indeed

1

ε
pγk`1 ´ γkq “

1

ε
pγ1pxqε` opεqq Ñ γ1pxq.

Starting with a discrete arc length parametrized curve for ε “ 1, i.e. }∆γk} “
1, we take all curves of the family γε to have vertex differences of constant length,
i.e. }∆γεεk} “ ε for all ε ą 0, k P Z. Then the smooth limit is also arc length
parametrized:

›

›γ1pxq
›

›Ð
1

ε
}γk`1 ´ γk} “

ε

ε
“ 1.

In the arc length parametrized case the tangent vectors Tk are equal to the
vertex differences ∆γk. But while scaling down the lattice size by ε we get

Tk “
∆γk
ε
,

due to the normalization of Tk.

1Depending on the situation it might be more convenient to consider a refinement of the
lattice, like 1

2k
Z. The procedure described above is convenient for the investigation of local

properties around 0.
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Let us investigate sum and difference of two neighboring tangent vectors Tk and
Tk´1 in the smooth limit. In this limit the angle between the vectors tends to 0.

Tk ` Tk´1 “
1

ε
p∆γk `∆γk´1q

“
1

ε
pγpx` εq ´ γpx´ εqq

“
1

ε
pγpxq ` εγ1pxq ´ γpxq ` εγ1pxq ` opεqq

“ 2γ1pxq ` op1q.

Tk ´ Tk´1 “
1

ε
p∆γk ´∆γk´1q

“
1

ε
pγpx` εq ´ 2γpxq ` γpx´ εqq

“
1

ε

ˆ

εγ1pxq `
1

2
ε2γ2pxq ´ εγ1pxq `

1

2
ε2γ2pxq ` opε2q

˙

“ εγ2pxq ` opεq.

So to approximate the second derivative of the curve we have to scale the dif-
ference of the tangent vectors by 1

ε .

1.3 Discrete curvature from osculating circles

Definition 1.3 (curvature of smooth curves). Let γ : I Ñ RN be a smooth
curve parametrized by arc length. Then the curvature of γ at s P I is

κpsq–
›

›γ2psq
›

› .

This definition extends to any smooth regular curve upon reparametrization by
arc length.

Remark 1.3.

§ The osculating circle at s P I is the unique circle best approximating γ at
γpsq. It can for example be obtained

‚ as the arc length parametrized circle through γpsq agreeing with γ up to
second order.

‚ by a limiting procedure of circles through three distinct points on γ going
to γpsq.

‚ as the circle among all tangent circles at γpsq for which the distance to
γ in normal direction decays the least.

Let Rpsq ą 0 be the radius of the osculating circle. Then the curvature of γ
at s P I is the reciprocal

κpsq “
1

Rpsq
.

§ If γ2psq ‰ 0 the osculating circle lies in the osculating plane which is the
plane spanned by γ1psq and γ2psq.
If γ2psq “ 0 it degenerates to a line and κpsq “ 0.
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§ Let γ : I Ñ R2 be a plane curve parametrized by arc length. Then we can
define a signed curvature κ˘psq of γ at s P I by

T 1psq “ κ˘psqNpsq,

where T psq “ γ1psq and Npsq– iT psq is T psq rotated by π
2 .

We consider three possibilities of defining osculating circles in the discrete
case leading to different notions of discrete curvature. Let γ : I Ñ RN be a
discrete curve. We define

ϕk – ?p∆γk,∆γk´1q “ ?pTk, Tk´1q P r0, πs.

Δγk-1

Δγk

φk

Figure 1.2. Turning angle at a vertex of a discrete curve.

For planar curves γ : I Ñ R2 we can define the angle ϕk to be in r´π, πs.

1.3.1 Vertex osculating circle

Definition 1.4 (vertex osculating circle). The vertex osculating circle at a
vertex k is the circle through γk and its two neighbors γk´1 and γk`1.

γk

γk`1

γk´1

Figure 1.3. Vertex osculating circle as the circle through three neighboring
vertices.

Its center is given by the intersection of the two bisecting lines of the adjacent
difference vectors ∆γk and ∆γk´1. The radius is given by }γk`1 ´ γk´1} “

2Rk sinϕk which leads to the curvature

κk “
2 sinϕk

}γk`1 ´ γk´1}
.

Note that for planar curves with ϕk P r´π, πs this leads to a signed curvature
where the sign corresponds to the expected behavior from the smooth case.
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Remark 1.4. For discrete arc length parametrized curves we find

§ Tk ´ Tk´1 is perpendicular to the circle at γk. So Tk ` Tk´1 is tangent to
the vertex osculating circle.

§ The curvature is bounded from above by 2 since the radius of the vertex
osculating circle is always greater than 1

2 in this case.

1.3.2 Edge osculating circle

The edge osculating circle can only be defined for planar curves since we need
any three consecutive edges to be planar.

Definition 1.5 (edge osculating circle). Let γ be a planar discrete curve. Then
the edge osculating circle of γ at the edge pk, k` 1q is the oriented circle which
touches the lines through the three successive edges ∆γk´1, ∆γk and ∆γk`1 such
that the orientation of the circle at the touching points matches the orientation
of the lines (which are oriented by the direction of the corresponding edges).

R

γk ||∆γ||

γk`1

φk
2 φk`1

2

Figure 1.4. Edge osculating circle as the circle touching three consecutive edges.

The edge osculating circle is uniquely determined as long as the three con-
secutive edges are of different directions. Even if the curve is non-convex.

 

Figure 1.5. Edge osculating circle for a non-convex discrete curve.

Its center is the intersection of the two angular bisectors of the three consec-
utive edges. The radius is given by }∆γk} “ Rkptan ϕk

2 ` tan
ϕk`1

2 q. This leads
to the curvature

κk “
tan ϕk

2 ` tan
ϕk`1

2

}∆γk}
.
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It is unbounded from above even for arc length parametrized curves but has the
disadvantages of being not as local as the previous definition,2 while only being
applicable to planar curves.

1.3.3 Osculating circle for arc length parametrized curves

For arc length parametrized discrete curves we can achieve the locality of the
first and the unboundedness of the second definition by taking the circle touching
two consecutive edges in their midpoints. This works in any dimension.

Definition 1.6 (osculating circle for arclength parametrized curves). Let γ : I Ñ RN
be a discrete arc length parametrized curve. Then we define the osculating circle
at vertex k to be the circle touching the two edges Tk´1 and Tk in its midpoints.

1
2

1
2

1
2

1
2

R

φk

φk
2

Figure 1.6. Osculating circle for a discrete arc length parametrized curve.

The center is given by the intersection of the bisecting lines of the two edges while
we find for the radius 2Rk tan ϕk

2 “ 1 which leads to the following definition of
curvature

κk “ 2 tan
ϕk
2
. (1.1)

Note that it is zero at straight vertices and goes to infinity at non-regular ver-
tices.

2It is defined at edges while depending on the neighboring edges which makes it involve a
total of four consecutive points.
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2 Flows on curves

2.1 Flows on smooth curves

2.1.1 Local geometric flows

We want to describe the motion of a curve γ : I Ñ RN in space by applying
some vector field v. In general v might depend on the whole curve, i.e. be some
vector field on some domain in the space of curves. If v depends only locally
on γ, i.e. only on a small neighborhood at each point of the curve, we call the
generated flow a local flow. This is the case if the evolution process of γ under
the flow generated by v can be described by a differential equation

Btγ “ v
`

γ, γ1, γ2, . . .
˘

. (2.1)

A one-parameter family of curves

γ : I ˆ J Ñ RN

which is a solution of (2.1) in the sense that

Btγps, tq “ v
`

γps, tq, γ1ps, tq, γ2ps, tq, . . .
˘

— vps, tq

for all ps, tq P IˆJ is called the evolution of the curve γ0psq “ γps, 0q under the
flow given by v.
For this particular initial curve γ0 the vector field v becomes a one-parameter
family of vector fields along the parametrization

v : I ˆ J Ñ RN

and (2.1) becomes
Btγps, tq “ vps, tq.

The map
Φ : pt, γq ÞÑ Φtγ,

where Φtγpsq– γps, tq is the evolution of γ is called the curve flow given by v.
Note that in general Φ might not be well defined due to lack of existence and
uniqueness of solutions of (2.1) for arbitrary γ0.

Additionally one might want the flow to be geometric, i.e. only depend on
the shape of the curve. For this it should be invariant with respect to

§ Euclidean motions,3

§ reparametrization of the curve.

The flow is then well defined on the corresponding equivalence classes of parametrized
curves.

Example 2.1 (planar geometric flow). For planar curves these two conditions
can be realized by the ansatz:

v “ vpκ, κ1, κ2, . . . q “ αpκ, κ1, κ2, . . . qT ` βpκ, κ1, κ2, . . . qN. (2.2)

3Or more general, invariant with respect to the action of some other Lie group.
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2.1.2 Arc length preserving flows

Now we restrict our attention to flows that preserve the arc length parametriza-
tion, i.e.

Bt
›

›γ1
›

› “ 0. (2.3)

If we think of the curve as a one-dimensional distribution of mass, (2.3) means
that the density along the curve does not change under the action of the flow.
In particular the length of the curve is preserved.

Example 2.2 (planar geometric flow preserving arc length). Using the ansatz
(2.2) for a planar geometric flow and starting out with an arc length parametriza-
tion we obtain

Btγ
1 “ α1T ` αT 1 ` β1N ` βN 1 “ pα1 ´ κβqT ` pκα` β1qN,

where we used T 1 “ κN and N 1 “ ´κT . Under this condition (2.3) becomes

0 “
1

2
Btxγ

1, γ1y “ xBtγ
1, γ1y “ α1 ´ κβ.

The solution α “ 1, β “ 0 leads to the tangent flow

Btγ “ T,

while α “ 1
2κ

2, β “ κ1 leads to the modified Korteweg-deVries flow (mKdV flow)

Btγ “
1

2
κ2T ` κ1N.

The curvature κ of curves evolving under the mKdV flow changes as

Btκ “ BtxT
1, Ny “ xBtT

1, Ny “ pκα` β1q1

“
3

2
κ2κ1 ` κ3,

which is the mKdV equation.

Example 2.3 (arc length preserving tangent flow). Consider a curve flow on
curves in RN in tangent direction

Btγ “ αT.

Closed curves and infinite curves are invariant with respect to such a flow. In
general the flow just induces a reparametrization of the curve. It is arc length
preserving if and only if α is constant along the curve at any time, i.e. α “ αptq.
The normalized version α “ 1 acts as

Φtγpsq “ γpt, sq “ γp0, s` tq “ γps` tq.

Example 2.4 (Heisenberg flow). For arc length parametrized curves in R3

consider the Heisenberg flow4

Btγ “ γ2 ˆ γ1. (2.4)

4The Heisenberg flow is also known as the smoke ring flow or Hashimoto flow.
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Using a Frenet frame T,N,B we obtain

Btγ “ T 1 ˆ T “ κN ˆ T “ ´κB.

So the Heisenberg flow is always acting in binormal direction and is therefore
arc length preserving.
The tangent vector evolves under the Heisenberg flow as

BtT “ pγ
2 ˆ γ1q1 “ γ3 ˆ γ1 “ T 2 ˆ T.

2.2 Flows on discrete arc length parametrized curves

For I – r0, . . . , ns Ă Z finite interval, I “ Zn – Z{nZ and I “ Z we define the
space

CI – tγ : I Ñ RNu

of finite, finite closed and infinite curves respectively. Note that in the finite
case CI – pRN qn. By Creg

I and Carc
I we denote the corresponding submanifolds

of regular and arc length parametrized curves.
A flow of discrete curves is given by a vector field

v : CI Ñ TCI , γ ÞÑ vrγs P TγCI ,

or on some submanifold U Ă CI . In the finite case we have TγCI “ pRN qn. So v
gives a direction in RN at every vertex k which possibly depends on the whole
curve γ. We state this relation as

vkrγs P RN .

For a given initial curve γ : I Ñ RN the vector field v on CI becomes a
one-parameter family of vector fields along the parametrization of the curve

v : I ˆ J Ñ RN ,

where J Ă R is an open interval. The action of the flow leads to a continuous
deformation of the curve γk “ γkp0q

γ : I ˆ J Ñ RN

satisfying
Btγkptq “ vkptq.

In the following we restrict our attention to inner vertices only. The advan-
tage is that we have to define vector fields only on inner vertices. This restriction
is realized by examining closed and infinite curves, i.e. I “ Zn or I “ Z.
As in the smooth case we focus on local geometric flows on Carc

I . In the discrete
case we interpret these conditions as follows.

arc length preserving To preserve arc length parametrization, i.e. make γ
stay in Carc

I the flow must satisfy5

0 “ Bt }∆γk}

ô 0 “ xBt∆γk, Tky “ xBtγk`1 ´ Btγk, Tky “ xvk`1 ´ vk, Tky.
(2.5)

5This means we want the vector field v to be defined on the submanifold Carc
I of CI , i.e.

make sure that vrγs P TγCarc
I Ă TγCI .
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Decomposing the vector field at the vertex k into its parts along the tangent
plane spantTk, Tk´1u and its orthogonal complement we see that this only
imposes constraints on the former.

local flow By a local flow we mean a flow which at every vertex k only depends
on the curve at the adjacent vertices6, i.e. γk´1, γk, γk`1:

vkrγs “ vpγk´1, γk, γk`1q.

geometric Since we do not consider reparametrizations in the discrete case
a geometric flow is a flow which is just invariant with respect to Euclidean
transformations, i.e. translations and rotations.
On the level of the vector field this means that for R P SOpNq, a P RN

vkrRγ ` as “ Rvkrγs.

Let us break down these conditions a little bit further in the case of local
flows on Carc

I .

translation invariance For a local flow given by the vector field v transla-
tion invariance means that for any a P RN

vpγk´1 ` a, γk ` a, γk`1 ` aq “ vpγk´1, γk, γk`1q,

which can also be expressed the following way: For any given direction
b P SN´1

d

dε

ˇ

ˇ

ˇ

ˇ

ε“0

vpγk´1 ` εb, γk ` εb, γk`1 ` εbq “ 0.

For a flow on Carc
I we can rewrite a local vector field to be a function of the

form vk “ vkpγk, Tk, Tk´1q. For this we get

0 “
d

dε

ˇ

ˇ

ˇ

ˇ

ε“0

vpγk ` εb, Tk, Tk´1q “
Bvk
Bγk

¨ b

for all b P SN´1, i.e. v must not explicitly depend on γk and therefore be of
the form

vk “ vpTk, Tk´1q. (2.6)

rotation invariance For a local translation invariant vector field (2.6) on
Carc
I this means that for any rotation R P SOpNq

vpRTk, RTk´1q “ RvpTk, Tk´1q.

We consider this further in the three dimensional case. At every ver-
tex7 k we can take Tk, Tk´1, Tk ˆ Tk´1 as a rotation invariant basis.8

6By this we mean in particular that v depends on the adjacent vertices “equally” at every
vertex.

7At least at regular, non-straight vertices.
8In this context Tk, Tk´1 have to be interpreted as vector fields on CI . The cross product

of two rotation invariant vector fields is rotation invariant. So we get three rotation invariant
vector fields which define a basis of TγCI “ pR3qn for any curve γ, i.e. a basis of R3 at every
vertex k.
Note that this in general is not an orthonormal basis. Such a basis could be obtained by

taking
Tk`Tk´1

}Tk`Tk´1}
,
Tk´Tk´1

}Tk´Tk´1}
,
TkˆTk´1

}TkˆTk´1}
.
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Expressing v in this basis we get

vkpTk, Tk´1q “ α1pTk, Tk´1qTk`α2pTk, Tk´1qTk´1`α3pTk, Tk´1qTkˆTk´1,
(2.7)

and see that rotation invariance is equivalent to the invariance of the scalar
components αi:

αipRTk, RTk´1q “ αipTk, Tk´1q. (2.8)

2.2.1 Tangent flow

Since tangent vectors of a discrete arc length parametrized curve γ live on edges
it is not instantly clear what the tangent direction at a vertex k should be. If we
want it to depend only on the neighboring tangent vectors an obvious symmetric
choice would be9

Tk ` Tk´1.

If we set a local flow on Carc
I to be parallel to Tk ` Tk`1 it is already uniquely

determined –up to a constant– and turns out to be geometric.

γk

Tk γk`1

v ‖ γk`1 ´ γk´1 “ Tk ` Tk´1

Tk´1

γk´1

Figure 2.1. Tangent flow on a discrete arc length parametrized curve.

Proposition 2.1 (discrete tangent flow). The discrete tangent flow10

Bxγk “ vk –
Tk ` Tk´1

1` xTk, Tk´1y

is up to a multiplicative constant the only discrete local curve flow in tangent
direction Tk ` Tk´1 which preserves arc length parametrization.
It is geometric.

Proof. Let us start with a general flow in tangent direction

vk “ αkpTk ` Tk´1q,

where αk “ αkrγs might depend on the curve in any way.
Now we impose arc length preservation. From (2.5) we know that

0 “ Bt }∆γk}

ô 0 “ xvk`1 ´ vk, Tky

“ xαk`1pTk`1 ` Tkq ´ αkpTk ` Tk´1q, Tky

“ αk`1pxTk`1, Tky ` 1q ´ αkpxTk, Tk´1y ` 1q
looooooooooomooooooooooon

—ck

ô ck`1 “ ck

9Note that this is only a well-defined direction on regular vertices.
10Note that x is the flow parameter of the tangent flow here.
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for all k P I. So ck “ ckrγs— crγs is constant in k and therefore

αkrγs “
crγs

1` xTk, Tk´1y
,

where this constant might still depend on γ.
Now the locality of the flow ensures that c is the same for any curve γ.11

The flow is geometric since it is of the translation invariant form

vkrγs “ αpTk, Tk´1qpTk ` Tk´1q,

where αpTk, Tk´1q “
1

1`xTk,Tk´1y
is rotation invariant.

Remark 2.1.

§ Since 1 ` xTk, Tk´1y Ñ 8 as Tk Ñ ´Tk´1 it is only well-defined at regular
vertices.

§ Comparing with the smooth tangent flow on arc length parametrized curves
which is Bxγ “ γ1 gives rise to the definition of the vertex tangent vector at
the vertex k of an arc length parametrized curve12 to be

Tk ` Tk´1

1` xTk, Tk´1y
.

Note that

1` xTk, Tk´1y “
1

2
}Tk ` Tk´1}

2
.

So the vertex tangent vectors are not of constant length
›

›

›

›

Tk ` Tk´1

1` xTk, Tk´1y

›

›

›

›

“
2

}Tk ` Tk´1}
.

§ For the discrete tangent-flow v

vrγs is a translation ô γ is a straight zig-zag curve

vrγs is a rotation ô γ is a circular zig-zag curve.

Note that the first case includes straight lines and the second regular poly-
gons as special cases.

Figure 2.2. Discrete tangent flow. Straight zig-zag curves evolve by a transla-
tion. Circular zig-zag curves evolve by a rotation.

11Bx local ñ crγs “ cpγk´1, γk, γk`1q with the same value for every k.
12This can be generalized to general discrete curves as can be seen in [Hof08].
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§ We investigate the smooth limit where we refine the lattice εZÑ R as εÑ 0
as discussed in Section 1.2. We set }∆γk} “ ε and therefore Tk “

∆γk
ε .

Replacing k P Z by x “ εk P R we have

Tk ` Tk´1 “ 2γ1pxq ` op1q

and

1` xTk, Tk´1y “
1

2
}Tk ` Tk´1}

2
“ 2

›

›γ1pxq
›

›` op1q “ 2` op1q

since the smooth limit is arc length parametrized, i.e. }γ1pxq} “ 1. So

Tk ` Tk`1

1` xTk, Tk´1y
“

2γ1pxq ` op1q

2` op1q
Ñ γ1pxq,

which is the smooth tangent flow of an arc length parametrized curve as
introduced in Section 2.1.

2.2.2 Heisenberg flow

We now consider curves in R3 and a flow in binormal direction Tk ˆ Tk´1. Any
flow in binormal direction is arc length preserving.13 So this property does not
distinguish any of these flows as for the flows in tangent direction. But there is
only one that commutes with the tangent flow.

Proposition 2.2 (discrete Heisenberg flow). The discrete Heisenberg flow

Btγk “ wk –
Tk ˆ Tk´1

1` xTk, Tk´1y
(2.9)

is up to a multiplicative constant the only discrete local curve flow in binormal
direction Tk ˆ Tk´1 which commutes with the tangent flow.
It is geometric and preserves arc length parametrization.

Remark 2.2.

§ Commuting flows (infinitely many) is a characteristic feature of integrable
systems.

§ Two flows given by v and w commute if they can be integrated simultane-
ously. This means for some initial curve γ there is some local two-parameter
variation

γ : p´ε, εq ˆ p´ε, εq Ñ Carc
I

px, tq ÞÑ γpx, tq

satisfying
#

Bxγk “ vk

Btγk “ wk.

A necessary and sufficient condition for this is

BxBtγk “ BtBxγk,

13See for example (2.5).
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formally meaning that the derivatives Bx, Bt P TγCarc
I on Carc

I identified with
the vector fields v, w at the point γ commute, i.e.

0 “ rBx, Bts P TγCarc
I .

Proof. We start with a general flow in binormal direction

Btγ “ wk “ βkpTk ˆ Tk´1q,

where βk “ βkrγs.

(ñ) We have to show that, if w commutes with the tangent flow

Bxγ “ vk “
Tk ` Tk´1

1` xTk, Tk´1y
,

it has to be the Heisenberg flow, where x is the flow parameter of the tangent
flow and t is the flow parameter of our ansatz.

BxBtγ “ Bxwk

“ Bx pβkTk ˆ Tk´1q

“ βk pBxTk ˆ Tk´1 ` Tk ˆ BxTk´1q

` pBxβkqTk ˆ Tk´1

“ βk rpvk`1 ´ vkq ˆ Tk´1 ` Tk ˆ pvk ´ vk´1qs

` pBxβkqTk ˆ Tk´1

“ βk

„ˆ

Tk`1 ` Tk
1` xTk`1, Tky

´
Tk ` Tk´1

1` xTk, Tk´1y

˙

ˆ Tk´1

` Tk ˆ

ˆ

Tk ` Tk´1

1` xTk, Tk´1y
´

Tk´1 ` Tk´2

1` xTk´1, Tk´2y

˙

` pBxβkqTk ˆ Tk´1.

So in particular

xBxBtγ, Tky “ βk
xTk`1 ˆ Tk´1, Tky

1` xTk`1, Tky
. (2.10)
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On the other hand

BtBxγ “ Btvk

“ Bt

ˆ

Tk ` Tk´1

1` xTk, Tk´1y

˙

“
1

1` xTk, Tk´1y
Bt pTk ` Tk`1q ` Bt

ˆ

1

1` xTk, Tk´1y

˙

pTk ` Tk`1q

“
1

1` xTk, Tk´1y
pwk`1 ´ wk´1q

´
1

p1` xTk, Tk´1yq
2

ˆ

xwk`1 ´ wk, Tk´1y ` xTk, wk ´ wk´1y

˙

pTk ` Tk´1q

“
1

1` xTk, Tk´1y

ˆ

βk`1Tk`1 ˆ Tk ´ βk´1Tk´1 ˆ Tk´2

˙

´
1

p1` xTk, Tk´1yq
2

ˆ

βk`1xTk`1 ˆ Tk, Tk´1y

´ βk´1xTk, Tk´1 ˆ Tk´2y

˙

pTk ` Tk´1q.

In particular

xBtBxγ, Tky “ ´βk`1
xTk`1 ˆ Tk, Tk´1y

1` xTk, Tk´1y
. (2.11)

Comparing (2.10) and (2.11) we get

βk
1` xTk`1, Tky

“
βk`1

1` xTk, Tk´1y

ô βkp1` xTk, Tk´1yq “ βk`1p1` xTk`1, Tkyq

for all k P I which is equivalent to

βkrγs “
crγs

1` xTk, Tk´1y
,

where c is some constant depending on the curve γ. Imposing the locality
of w eliminates this dependence.

(ð) A similar –but even longer– calculation shows that the obtained Heisenberg
flow actually does commute with the tangent flow. After calculating BxBtγ
and BtBxγ one can compare the scalar products with Tk, Tk´1 and TkˆTk´1

respectively.

We still have to show that the Heisenberg flow is geometric and arc length
preserving.
Similar to the tangent flow it is of the translation invariant form

wkrγs “ βpTk, Tk´1qTk ˆ Tk´1,

where β is rotation invariant. Since TkˆTk´1 is a rotation invariant vector field
the Heisenberg flow is geometric.
It always lies in the orthogonal complement of spantTk, Tk´1u and therefore is
arc length preserving.
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Remark 2.3. We investigate the smooth limit using the method described in
Section 1.2. Setting x “ εk we have14

Tk ˆ Tk´1 “ T pxq ˆ T px´ εq

“ T pxq ˆ pT pxq ´ εT 1pxq ` opεqq

“ εT 1pxq ˆ T pxq ` opεq

and
1` xTk, Tk´1y “ 2` op1q.

Rescaling the time by replacing tÑ εt
2 we obtain the smooth limit

Bτγ “ T 1 ˆ T. (2.12)

This results in the following equation of motion for T

BtT pxq “ T 2 ˆ T, (2.13)

which is the continuous Heisenberg magnetic chain as described in Section A.
This is an integrable system as is the discretization obtained from (2.9) which
yields

BtTk “
Tk`1 ˆ Tk

1` xTk`1, Tky
´

Tk ˆ Tk´1

1` xTk, Tk´1y

“

ˆ

Tk`1

1` xTk`1, Tky
`

Tk´1

1` xTk, Tk´1y

˙

ˆ Tk.

(2.14)

14Which might be seen immediately from Tk ˆ Tk´1 “ pTk ´ Tk´1q ˆ Tk´1.
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3 Elastica

3.1 Smooth elastic curves

We consider variations of curves γ in R3 with fixed endpoints, fixed end direc-
tions and fixed length.

γp0q

T p0q

T pLq
γpLq

Figure 3.1. Curve with fixed endpoints and fixed end tangent vectors.

We represent each curve by its arc length parametrization γ : r0, Ls Ñ R3 with
T – γ1 : r0, Ls Ñ S2. Then admissible variations have to

§ fix γp0q, γpLq P R3,

§ fix T p0q, T pLq P S2,

§ preserve the arc length parametrization, i.e. }T psq} “ 1,
in particular this implies that the length of γ is preserved.

We define the bending energy of γ to be

Erγs–
ż L

0

κpsq2ds “

ż L

0

xT 1, T 1yds “ ErT s,

where κ “ }γ2}
2
“ }T 1}

2
is the curvature of γ.

Remark 3.1. Note that the bending energy is invariant w.r.t. Euclidean motions.

Definition 3.1 (Bernoulli’s elastica). An elastic curve is a critical point γ of
the bending energy E under the described admissible variations.

The tangent vector T : r0, Ls Ñ S2 uniquely determines the curve γ up to
translations. We note that fixed γp0q, γpLq P R3 implies

ż L

0

T psqds “ γpLq ´ γp0q.

So if we reformulate the problem of finding critical points of the bending en-
ergy ErT s only in terms of T : r0, Ls Ñ S2, we have to impose this additional
constraint. Admissible variations of T have to

§ fix T p0q, T pLq P S2,

§ satisfy
şL

0
T psqds “ const. P R3,

§ preserve }T psq} “ 1 for all s P r0, Ls.
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Basic fact from the calculus of variations: Lagrange-multipliers. The
critical points of the functional

Srqs “
ż L

0

Lpqpsq, q1psqqds

on the space of smooth functions q : r0, Ls Ñ R3 under the variations preserving
the constraints

Fi “

ż L

0

fipq, q
1qds “ ci P R, i “ 1, . . . , N

are the critical points of the functional

Sλ – S `
N
ÿ

i“1

λiFi

with some constants λi ( Lagrange-Multipliers).
These constants are determined from the conditions Fi “ ci, i “ 1, . . . , N .

Basic fact from Lagrangian mechanics: Hamilton’s principle of least
action. The trajectory qptq of a mechanical system with potential energy U and
kinetic energy T is critical for the action functional

Srqs–
ż t2

t1

Lpqptq, q1ptqqdt

with the Lagrangian L – T ´ U .

Implementing the constraint
şL

0
T psqds “ const. P R3 into the functional via

Lagrange-multiplicators, we obtain the following physical interpretation.

Theorem 3.1 (Kirchhoff analogy for elastic curves). An arc length parametrized
curve γ : r0, Ls Ñ R3 is an elastic curve if and only if its tangent vector T – γ1 : r0, Ls Ñ S2

describes the evolution of the axis of a spherical pendulum.
The arc length parameter of the curve coincides with the time parameter of the
pendulum.

Ta

Figure 3.2. Spherical pendulum T with gravitational vector a.

Proof. The extrema of the functional

EarT s–
ż L

0

`

xT 1, T 1y ` 2xa, T y
˘

ds,

where a P R3 and T : r0, Ls Ñ S2 can be interpreted in two different ways:
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(1) Extrema of the bending energy

E “
ż L

0

κ2ds “

ż L

0

xT 1, T 1yds

for variations with fixed endpoints under the constraint
şL

0
Tds “ const. P

R3. Here a “ pa1, a2, a3q are treated as Lagrange-multipliers

3
ÿ

i“1

λiFi “
3
ÿ

i“1

ai

ż L

0

Tipsqds “

ż L

0

xa, T yds.

(2) Extrema of the action functional with Lagrangian L “ T ´ U where T “
xT 1, T 1y, U “ ´xa, T y are the kinetic and potential energy of the spherical
pendulum.
Here a P R3 is the gravitational vector.

Remark 3.2.

§ Planar elastica were first classified by Euler.
The tangent vector describes the motion of a planar pendulum. The only
closed elastica in the plane are the circle and Euler’s elastic eight.

Figure 3.3. Some planar elastic curves.

§ Elastica in RN are reduced to elastica in R3.
They always lie in the 3-dimensional space

spantγpLq ´ γp0q, T p0q, T pLqu.

Similarly the spherical pendulum in SN´1 always lies in the 2-dimensional
space

SN´1 X spanta, T p0q, T 1p0qu.

Basic fact from calculus of variations: Euler-Lagrange equations.

q : r0, Ls Ñ R3 is a critical point of the functional Srqs “
şL

0
Lpqpsq, q1psqqds

under variations with fixed endpoints qp0q, qpLq if and only if

d

ds
∇q1L´∇qL “ 0.

We can implement the remaining constraint }T } “ 1 into the functional
using a “continuous Lagrange-multiplier”:

Epa,cqrT s–
ż L

0

`

xT 1, T 1y ` cpsqpxT, T y ´ 1q ` 2xa, T y
˘

ds.

From this we obtain the Euler-Lagrange equations for elastic curves.
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Theorem 3.2 (Euler-Lagrange equations for elastic curves). An arc length
parametrized curve γ : r0, Ls Ñ R3 is an elastic curve if and only if

γ2 ˆ γ1 “ aˆ γ ` b

for some a, b P R3,
or equivalently if and only if its tangent vector T : r0, Ls Ñ S2 satisfies

T 2 ˆ T “ aˆ T

for some a P R3.

Proof. The equation for γ can be obtained from the equation for T by integra-
tion, using pγ2 ˆ γ1q1 “ T 2 ˆ T .
With

LpT, T 1q– 1

2
xT 1, T 1y `

1

2
cpsqpxT, T y ´ 1q ` xa, T y

we obtain

d

ds
∇T 1L “ ∇TL ô T 2 “ cpsqT ` a

ô T 2 ˆ T “ aˆ T,

where we applied the cross-product with T .

Remark 3.3. We recognize the left-hand side of the Euler-Lagrange equations as
the Heisenberg flow (2.4) (acting on γ and T respectively) while the right-hand
side describes an infinitesimal Euclidean motion.

Corollary 3.3. A curve γ is an elastic curve if and only if the Heisenberg flow
preserves its form, i.e. under the action of the Heisenberg flow the curve evolves
by an Euclidean motion.

Proof. That v ÞÑ aˆ v` b is the infinitesimal generator of an Euclidean motion
is best be seen using the quaternionic description of Euclidean motions, which
is described in the following section.

3.2 Quaternions and Euclidean Motions

The quaternionic algebra H is a 4-dimensional generalization of the complex
numbers. It can be constructed the following way.

Let H be a real 4-dimensional vector space R4 where we denote the standard
basis by t1, i, j,ku. So a general quaternion q P H can be written as

q “ q01` q1i` q2j` q3k

with qi P R.
We define a multiplication on H by prescribing it on the basis vectors. By

distributivity it uniquely extends to all quaternions. For this the following
relations are sufficient:

i2 “ j2 “ k2 “ ijk “ ´1. (3.1)
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Associativity then fixes the multiplication for all combinations of basis vectors.

ij “ ´ji “ k

jk “ ´kj “ i

ki “ ´ik “ j

This also implies skew symmetry and therefore non-commutativity of the quater-
nionic multiplication. On the other hand we see that 1 commutes with every-
thing, which is why we can identify the first component of the quaternions with
the real numbers where 1 “ 1. Eventually we write

q “ q0 ` q1i` q2j` q3k

with qi P R.
The quaternionic multiplication extends the scalar multiplication of the vector
space.

We denote the real and imaginary part15 of q P H by

Req – q0 “ q01 “ q01

Imq – q1i` q2j` q3k

and the conjugated quaternion by

q – Req ´ Imq.

Like in the complex case we define the absolute value of an quaternion q P H
by

|q|
2
– qq “ qq “ q2

0 ` q
2
1 ` q

2
2 ` q

2
3

which turns out to be the same as the Euclidean distance in R4.
Quaternionic conjugation and absolute value give us means to define an

inverse16 for q P H, q ‰ 0:

q´1 –
q

|q|
2 .

We see that the quaternionic multiplication induces a group structure on the
following subsets of H:

H˚ – Hzt0u
H1 – tq P H | |q| “ 1u unitary quaternions

3.2.1 Euclidean motions in R3

The set
ImH – tq P H | Req “ 0u

of imaginary quaternions is a 3-dimensional vector space which we identify
with R3:

v1i` v2j` v3k P ImHô pv1, v2, v3q P R3

This leads to the following geometric interpretation of multiplication of two
imaginary quaternions.

15Note that the imaginary part includes the basis vectors unlike in the complex case.
16It is meaningful to write this as a fraction, since |q|2 is real and therefore real invertible

while commuting with every quaternion.
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Lemma 3.4. Let v, w P ImH. Then

vw “ ´ xv, wy
loomoon

PR

` v ˆ w
loomoon

PImH

P H.

Proof.

pv1i` v2j` v3kqpw1i` w2j` w3kq

“ ´v1w1 ´ v2w2 ´ v3w3 ` pv2w3 ´ v3w2qi` pv3w1 ´ v1w3qj` pv1w2 ´ v2w1qk.

So we get the cross product and the scalar product of v, w P ImH in terms
of commutator and anti-commutator.

v ˆ w “
1

2
pvw ´ wvq—

1

2
rv, ws

xv, wy “ ´
1

2
pvw ` wvq

In particular, two imaginary non-vanishing quaternions v, w ‰ 0 are parallel
if and only if they commute, and they are perpendicular if and only if they
anti-commute:

vw ´ wv “ 0 ô v ˆ w “ 0 ô v ‖ w
vw ` wv “ 0 ô xv, wy “ 0 ô v K w

Lemma 3.5. Unitary quaternions q P H1 can be parametrized as

q “ cosα` psinαqn,

where n P ImH with |n| “ 1 and α P r0, πs.

Proof. For q P H1 we can write Req “ q0 P R and Imq “ cn with c ě 0, n P ImH,
|n| “ 1. Then

1 “ |q|
2
“ pq0 ` cnqpq0 ´ cnq “ q2

0 ` c
2

which can be parametrized as

q0 “ cosα

c “ sinα

with α P r0, πs.

Remark 3.4. This parametrization is a double covering since

qp´α,´nq “ qpα, nq.

Proposition 3.6 (quaternionic rotation in R3). For q P H1, q “ cosα` psinαqn,
n P ImH, |n| “ 1, α P r0, πs the map Rq : R3 Ñ R3 given by

Rqpvq– qvq´1

is a rotation about the axis n by the angle 2α.17

17Instead of q P H1 one can take q P H˚, since the absolute value of q cancels in qvq´1.
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v‖ 2α

vK

v

w ˆ vK

w

Rqpvq “ qvq´1

Figure 3.4. Decomposition of a vector v into its part along the rotation axis
and along the orthogonal complement.

Proof. Decompose v P ImH into the part parallel and the part perpendicular
to n, i.e.

v “ v‖ ` vK,

where v‖w “ wv‖ and vKw “ ´wvK. Then

qv‖q
´1 “ v‖

qvKq
´1 “ pcosα` psinαqnqvKpcosα´ psinαqnq

“ pcos2 α´ sin2 α2pcosα sinαqnqvK

“ pcos 2αqvK ` psin 2αqw ˆ vK.

Remark 3.5. The map H1 Ñ SOp3q, q ÞÑ Rq is a double covering of SOp3q
since

R´q “ Rq.

Multiplication of unitary quaternions corresponds to the composition of rota-
tions

Rq2q1 “ Rq2 ˝Rq1 ,

i.e. multiplication in SOp3q.

An Euclidean motion is a composition of rotation and translation:

v ÞÑ qvq´1 ` p, v P ImH,

where q P H1, p P ImH. Consider an Euclidean flow

Φtpvq “ qptqvqptq´1 ` pptq, t P R.

The infinitesimal generator of this flow

ϕtpΦtpvqq–
d

dt
Φtpvq

gives a time-dependent vector field which is called an infinitesimal Euclidean
motion.
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Corollary 3.7 (Infinitesimal Euclidean motions). Infinitesimal Euclidean mo-
tions are vector fields of the form

v ÞÑ
1

2
ra, vs ` b “ aˆ v ` b, v P ImH,

where a, b P ImH are called the angular and translational velocity.

Proof. We have to compute the time derivative of an Euclidean flow

d

dt
Φtpvq “ pqptqvqptq

´1q1 ` p1ptq

“ q1vq´1 ´ qvpq´1q1 ` p1

“ q1vq´1 ´ qvq´1q1q´1 ` p1

“ rq1q´1,Φtpvqs ` p
1 ´ rq1q´1, ps

“
1

2
raptq,Φtpvqs ` bptq,

where we set aptq – 2q1ptqq´1ptq P ImH and bptq – p1ptq ´ 1
2 raptq, pptqs P

ImH.

Conversely, given a one-parameter family of infinitesimal Euclidean motions

ϕtpvq “ aptq ˆ v ` bptq,

there exists an essentially unique corresponding one-parameter family of Eu-
clidean motions Φtpvq which is the flow generated by ϕtpvq.
It can be obtained by integrating the quaternionic linear differential equations

q1 “
1

2
aq

p1 “ b`
1

2
ra, ps.

This completes the proof of Corollary 3.3.

3.3 Discrete elastic curves

We consider discrete arc length parametrized curves

γ : I Ñ R3, Tk “ γk`1 ´ γk, |Tk| “ 1.

What is the proper bending energy for discrete elastica?

ψ

F pψq

ϕ

Figure 3.5. Bending energy as the integral of the bending force.



3 ELASTICA 33

Assume that the bending force at an inner vertex k P I (depending on the
bending angle ϕk) is proportional to the curvature

κk “ 2 tan
ϕk
2

we defined for discrete arc length parametrized curves.
Then we obtain the corresponding local energy at vertex k

ż ϕk

0

κpψqdψ “ 2

ż ϕk

0

tan
ψ

2
dψ “ ´4 log cos

ψ

2

ˇ

ˇ

ˇ

ˇ

ϕk

0

“ ´4 log cos
ϕk
2

“ ´2 log cos2 ϕk
2
“ 2 log

´

1` tan2 ϕk
2

¯

“ 2 log

ˆ

1`
κ2
k

4

˙

.

We define the local bending energy

Ek – log

ˆ

1`
κ2
k

4

˙

.

With
1

2
}Tk ` Tk´1}

2
“ 1` xTk, Tk´1y “ 1` cosϕk “ 2 cos2 ϕk

2

we find alternate expressions

Ek “ ´ log p1` xTk, Tk´1yq ` log 2 “ ´log }Tk ` Tk´1}
2
` log 4.

Remark 3.6.

§ The discrete local bending energy is invariant under Euclidean transforma-
tions.

§ In the smooth limit we have ϕk Ñ 0 and therefore κk Ñ 0. We find that

Ek “ log

ˆ

1`
κ2
k

4

˙

“
κ2
k

4
` opκ2q

is quadratic in the curvature.

§ At singular vertices we have ϕk Ñ π and therefore κk Ñ8. We obtain

Ek “ log

ˆ

1`
κ2
k

4

˙

Ñ8.

So discrete elastic curves are regular.

For finite curves with I “ r0, ns we consider variations of the total energy on
Carc
I

n´1
ÿ

k“1

Ek,

where the sum goes over all “inner vertices” of I.
Admissible variations should fix end points and end tangent vectors and preserve
the arc length.
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Definition 3.2 (Discrete elastic curve). A discrete arc length parametrized
curve γ : I Ñ R3, I “ r0, ns Ă Z with tangent vector T : I Ñ R3, Tk “ γk`1´γk
is called discrete elastic curve if it is a critical point of the functional

Erγs–
n´1
ÿ

k“1

log

ˆ

1`
κ2
k

4

˙

„

n´1
ÿ

k“1

log p1` xTk, Tk´1yq „

n´1
ÿ

k“1

log }Tk ` Tk´1}

under variations on Carc
I with fixed γ0, γn, T0, Tn´1, where κk “ 2 tan ϕk

2 is the
discrete curvature. The „ denotes equivalent functionals, i.e. functionals which
have the same critical points.

Remark 3.7.

§ Closed arc length parametrized curves I “ Zn´1 can be treated as a special
case of I “ r0, ns with γ0 “ γn´1, γ1 “ γn and therefore Tn´1 “ T0.

γn “ γ1

γn´1 “ γ0

Tn´1 “ T0

Figure 3.6. Closed elastic curves as a special case.

We note that factorizing by Euclidean motions we can get rid of any fixed
points and directions in this case.

§ Factorizing by translations we reformulate the variational problem in terms
of T : I Ñ R3 only. Admissible variations of T have to

‚ fix T0, Tn´1 P S2,

‚ satisfy
řn´1
k“0 Tk “ γn ´ γ0 P R3,

‚ preserve }Tk} “ 1 for i “ 0, . . . , n´ 1.

§ Functionals are functions of many variables in the discrete case. Applying
that T0, Tn´1 P S2 are fixed,

ErT s “ EpT0, . . . , Tn´1q “ EpT1, . . . , Tn´2q

is a function of 3pn´2q variables which has to be varied under the constraints

‚
řn´2
k“1 Tk “ const. P R3,

‚ }Tk} “ 1 for i “ 1, . . . , n´ 2.

Theorem 3.8 (Euler-Lagrange equations for discrete elastic curve). A discrete
arc length parametrized curve γ : I Ñ R3, I “ r0, ns Ă Z is a discrete elastic
curve if and only if there exists a, b P R3 such that

Tk ˆ Tk´1

1` xTk, Tk`1y
“ aˆ γk ` b, k “ 1, . . . , n´ 1,

where Tk “ γk`1 ´ γk.
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Proof. We want to derive equations for the critical points of

EpT1, . . . , Tn´2q “

n´1
ÿ

k“1

log p1` xTk, Tk´1yq

under the constraints

§
řn´2
k“1 Tk “ const. P R3,

§ }Tk} “ 1 for k “ 1, . . . , n´ 2.

We implement these constraints using Lagrange-multipliers ck P R, k “ 1, . . . , n´
2 and a “ pa1, a2, a3q P R3, and obtain

Eλ –

n´1
ÿ

k“1

log p1` xTk, Tk´1yq ´

n´2
ÿ

k“1

pckxTk, Tky ` xa, Tkyq .

The corresponding Euler-Lagrange equations are

∇TkEλ “ 0, k “ 1 . . . , n´ 2.

Using ∇TkxTk, ay “ b and ∇TkxTk, Tky “ 2Tk, we find for k “ 1, . . . , n´ 2

∇TkEλ “
Tk´1

1` xTk, Tk´1y
`

Tk`1

1` xTk`1, Tky
´ 2ckTk ´ a “ 0. (3.2)

Taking the cross-product with Tk, we obtain

Tk`1 ˆ Tk
1` xTk`1, Tky

´
Tk´1 ˆ Tk

1` xTk, Tk´1y
“ aˆ Tk “ aˆ pγk`1 ´ γkq , (3.3)

which is equivalent to

Tk ˆ Tk´1

1` xTk, Tk`1y
´ aˆ γk “ b “ const. P R3.

Noting that (3.2) and (3.3) are equivalent, we obtain the claim.

Remark 3.8.

§ If we identify the left-hand side of the Euler-Lagrange equations as the dis-
crete Heisenberg flow, which we denote by Bt, we have shown

γ discrete elastica ô Btγk “ aˆ γk ` b

ô BtTk “ aˆ Tk,

where the second line are the equivalent equations in terms of the tangent
vector which are written down explicitly in (3.3).

§ Recalling the smooth limit of the Heisenberg flow (2.12) and (2.13), we obtain
for the smooth limit of the Euler-Lagrange equations

T 1 ˆ T “ aˆ γ ` b ô γ2 ˆ γ1 “ aˆ γ ` b

ô T 2 ˆ T “ aˆ T,

which are the Euler-Lagrange equations for smooth elastic curves as stated
in Theorem 3.2.
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Corollary 3.9. A discrete arc length parametrized curve is a discrete elastic
curve if and only if the Heisenberg flow preserves its form, i.e. under the action
of the Heisenberg flow the curve evolves by an Euclidean motion.

Proof. Same as in the smooth case.

Definition 3.3 (discrete spherical pendulum). A discrete spherical pendulum
is a mechanical system on S2 with discrete time and Lagrangian

Lk – log p1` xTk, Tk´1yq ´ xa, Tky

with some a P R3. This means that the trajectories T : I Ñ S2 are critical points
of the action functional S “

ř

k Lk.

Remark 3.9. The terms Tk – log p1` xTk, Tk´1yq and Uk – xa, Tky are inter-
preted as kinetic and potential energies of the pendulum with gravitation vector
a. In the smooth limit

Uk Ñ xa, T y,

Tk „ log
´

1`
κk
4

¯

“
κ2
k

4
` opκ2

kq,

where κk Ñ }T 1}. So in the smooth limit the kinetic energy is quadratic in the
velocity.

From this definition we immediately obtain a discrete analog of Theorem 3.1.

Theorem 3.10 (Kirchhoff analogy for discrete elastic curves). A discrete arc
length parametrized curve γ : I Ñ R3 is a discrete elastic curve if and only if
its tangent vector Tk “ γk`1 ´ γk describes the evolution of a discrete spherical
pendulum.

Proof. Analogous to the proof of Theorem 3.1.

3.4 Moving frames and framed curves

Let T,N,B : I Ñ R3 be three smooth maps such that T psq, Npsq, Bpsq is an
orthonormal basis for any s P I, i.e. the matrix Rpsq – pT psq, Npsq, Bpsqq P
SOp3q. We can think of it as a coordinate frame fixed inside a rigid body which
rotates around some fixed point. In this interpretation we call pT,N,Bq the
body frame.

Definition 3.4 (moving frame). Let I Ă R be an interval. A moving frame is
a differentiable map

R : I Ñ SOp3q.

This is a special case of an Euclidean motion where the rotation R describes
the movement of the frame with respect to the stationary coordinate system
pe1, e2, e3q:

T “ Re1, N “ Re2, B “ Re3.
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On the other hand R is the coordinate transformation mapping points

X “ X1e1 `X2e2 `X3e3

in the rotating body frame to points

xpsq “ X1T psq `X2Npsq `X3Bpsq “ x1psqe1 ` x2psqe2 ` x3psqe3

in the stationary coordinate system by

x “ RX.

We usually suppose the frame to be aligned with the fixed coordinate system
for s “ 0, i.e. Rp0q “ idR3 .

e3

e2

e1

X

B

N

T

e3

e2

e1

γ

x =    X

x =    X+γ
B

N

T

Figure 3.7. R describes the rotation of a moving frame. It is the coordinate
transformations from the rotating coordinate system to a stationary coordinate
system. The translational part along the corresponding framed curve can be
obtained by integration.

Curvatures κ1, κ2 and torsion τ of a frame R “ pT,N,Bq are defined as

κ1 – xT 1, Ny

κ2 – xT 1, By

τ – xN 1, By.

Remark 3.10. A moving frame can be recovered from the differentiable data
κ1, κ2, τ : r0, Ls Ñ R up to rotation using the frame equations

¨

˝

T
N
B

˛

‚

1

“

¨

˝

0 κ1 κ2

´κ1 0 τ
´κ2 ´τ 0

˛

‚

loooooooooomoooooooooon

—A

¨

˝

T
N
B

˛

‚. (3.4)
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Definition 3.5 (framed curve). A framed curve is given by an arc length
parametrized curve γ : I Ñ R3, T – γ1 together with a unit normal fieldN : I Ñ S2,
i.e. xN,T y “ 0.

A framed curve is carrying a moving frame R : I Ñ SOp3q, R – pT,N,Bq,
where B – T ˆN . Vice versa, given an orthonormal frame we can recover the
curve γ (up to translation) by integration of T .
So framed curves and moving frames are in one-to-one correspondence.
The curvature κ– }γ2} “ }T 1} of the curve γ satisfies

κ2 “ κ2
1 ` κ

2
2.

for any frame.

Remark 3.11. The transformation x “ RX captures only the rotation of the
frame, not the translation along the curve. The coordinates in the moving frame
–as it moves along the curve– are given by

xpsq “ RpsqX ` γpsq,

where γ “
ş

T .

Using H1 as a double covering of SOp3q we apply the quaternionic description
for Euclidean motions. We identify R : I Ñ SOp3q with18

Φ : I Ñ H1,

i.e.

R P SOp3q acts on X P R3 by x “ RX

becomes

Φ P H1 acts on X P ImH by x “ ΦXΦ´1.

Then the movement of some static point X “ X1i `X2j `X3k P ImH in the
rotating frame as it is seen in the stationary frame is described by the differential
equation

x1 “ Φ1XΦ´1 ´ ΦXΦ´1Φ1Φ´1

“ rΦ1Φ´1, xs “
1

2
rω, xs “ ω ˆ x,

where ω – 2Φ1Φ´1, i.e.

Φ1 “
1

2
ωΦ. (3.5)

Here, ω is called the angular velocity in the stationary frame. In the rotating
frame the angular velocity is seen as Ω where ω “ ΦΩΦ´1, i.e. Ω “ 2Φ´1Φ1.
The movement of the frame in terms of Ω can be expressed as

Φ1 “
1

2
ΦΩ. (3.6)

18Note that Φ is not the Euclidean flow as before, but the quaternion –denoted by q before–
corresponding to the rotation of the flow.
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Remark 3.12. In this form it corresponds directly to (3.4). Indeed,

p3.4q ô pT,N,Bq1T “ ApT,N,BqT

ô R1T “ ART

ô R1 “ RAT .

The components κ1, κ2, τ of A P sop3q correspond to the components of Ω P ImH
as we will see below.

For the basis vectors of the frame

T,N,B : I Ñ ImH

we have
T “ ΦiΦ´1, N “ ΦjΦ´1, B “ ΦkΦ´1,

which becomes

T 1 “
1

2
rω, T s “ ω ˆ T

N 1 “
1

2
rω,N s “ ω ˆN

B1 “
1

2
rω,Bs “ ω ˆB

(3.7)

upon differentiation. From here we obtain

κ1 “ xT
1, Ny “ xω ˆ T,Ny “ xT ˆN,ωy “ xB,ωy “ xe3,Ωy

κ2 “ xT
1, By “ xω ˆ T,By “ xT ˆB,ωy “ ´xN,ωy “ ´xe2,Ωy

τ “ xN 1, By “ xω ˆN,By “ xN ˆB,ωy “ xT, ωy “ xe1,Ωy.

Remark 3.13. (3.4), (3.5), (3.6), (3.7) are equivalent versions of the frame equa-
tions using different choices within the identifications

SOp3q Ø H1, R3 Ø sop3q Ø ImH

or different coordinate systems to express the angular velocity. They describe
the relation between the rotating motion and its angular velocity as the in-
finitesimal generator.

3.4.1 The Lagrange top

The Lagrange top is a rigid body with a symmetry axis that rotates around
a fixed point on its symmetry axis in a homogeneous gravitational field. Let
Φ – pT,N,Bq : I Ñ SOp3q be the rotating frame fixed within the body such
that T is aligned with the axis of symmetry. In this body frame the tensor of
inertia is diagonal and looks like

J “

¨

˝

α 0 0
0 1 0
0 0 1

˛

‚

with some α ą 0. The kinetic energy of the Lagrange-top is

T “ xΩ, JΩy “ αxe1,Ωy
2 ` xe2,Ωy

2 ` xe3,Ωy
2

“ αxT, ωy2 ` xN,ωy2 ` xB,ωy2

“ ατ2 ` κ2.

(3.8)
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Alternatively, in terms of T and ω only:

xΩ, JΩy “ xΩ,Ωy ´ xΩ, pJ ´ idqΩy

“ xω, ωy ` pα´ 1qxT, ωy2.
(3.9)

For symmetry reasons the Lagrange top has its barycenter on the axis of
symmetry, which goes through T . So its potential energy is given by

U “ ´2xa, T y

with some a P R3.
We obtain the action functional for the Lagrange top

SrΦs “
ż L

0

`

xω, ωy ` pα´ 1qxω, T y2 ` 2xa, T y
˘

ds. (3.10)

Remark 3.14. Note that the functional SrΦs originally depends on Φ : I Ñ H1.
In particular it depends on its derivative ϕpsq “ Φ1psq P TΦpsqH1, or equiva-
lently19 on ωpsq “ 2Φ1psqΦ´1psq P ImH.
If we want to treat pΦ, ϕq as independent variables,20 we have to impose an
additional constraint characterizing the relation Φ1 “ ϕ. In terms of pΦ, ωq this
is Φ1 “ 1

2ωΦ. This leads to the phase space H1 ˆ ImH. Since Φ enters S only
in terms of T we can of course reduce this further, replacing H1 by S2.
Finally we end up with a functional SrT, ωs on the phase space S2ˆR3 and the
additional condition T 1 “ ω ˆ T .

Remark 3.15. From now on we will not distinguish between R P SOp3q and
Φ P H1 anymore.

3.5 Smooth elastic rods

Elastic rods are described by framed curves

T

B

NN

B

T

Figure 3.8. Elastic rods as framed curves

We extend variations of the curve γ : r0, Ls Ñ R3 with fixed endpoints and
fixed length to the frame Φ : r0, Ls Ñ SOp3q,

19By identifying all tangent spaces of H1 with ImH by right translation.
20This means replacing the configuration space SOp3q by the phase space TSOp3q which is

the tangent bundle.
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Φp0q

ΦpLq

γp0q

γpLq

Figure 3.9. Curve with fixed end-frames.

which leads to admissible variations that

§ fix γp0q, γpLq P R3,

§ fix Φp0q, ΦpLq P SOp3q,

§ preserve orthonormality, i.e. Φpsq P SOp3q for all s P r0, Ls,
in particular preserve the arc length parametrization and therefore the length
of the curve.

We complement the bending energy of γ by an adjustable torsion energy

ErΦs–
ż L

0

`

κpsq2 ` ατpsq2
˘

ds

with some torsion coefficient α ‰ 0.

Definition 3.6 (Elastic rod). An (isotropic) elastic rod is a framed curve pγ,Φq
which is a critical point of the energy functional E under the described admissible
variations.

If we want to formulate the variational problem solely in terms of the moving
frame Φ : r0, Ls Ñ SOp3q, we have to impose the additional constraint

§
şL

0
T psqds “ γpLq ´ γpLq P R3

again, to take the fixed endpoints of the curve into account.
We use

κ2 ` ατ2 “ xω, ωy ` pα´ 1qxω, T y2

as follows from (3.8) and (3.9) to express the energy in terms of the angular
velocity ω and T only, where T 1 “ ω ˆ T . Implementing the constraint for the

fixed endpoints of the curve
şL

0
T psqds “ const. via Lagrange-multiplicators, we

finally obtain

EarT, ωs “
ż L

0

`

xω, ωy ` pα´ 1qxω, T y2 ` 2xa, T y
˘

ds.

Recognizing the action functional (3.10) of the Lagrange top we formulate the
Kirchhoff analogy for elastic rods.

Theorem 3.11 (Kirchhoff analogy for elastic rods). A arc length parametrized
curve γ : r0, Ls Ñ R3 with frame Φ : r0, Ls Ñ SOp3q is an elastic rod if and only
if its tangent vector T – γ1 : r0, Ls Ñ S2 describes the evolution of the symmetry
axis of the Lagrange top with angular velocity ω : r0, Ls Ñ R3 of the frame Φ.
The arc length parameter of the framed curve coincides with the time parameter
of the top.
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To derive the Euler-Lagrange equations for elastic rods, we investigate how
admissible variations of Φ look in terms of ω and T where T 1 “ ω ˆ Φ.
Since H1 is a multiplicative (differentiable) group we can express all variations

Φ̃ : r0, Ls ˆ p´ε, εq Ñ H1

as
Φ̃ps, tq “ Hps, tqΦpsq,

where
H : r0, Ls ˆ p´ε, εq Ñ H1

with Hps, 0q “ 1, Hp0, tq “ HpL, tq “ 0.

Φp0q

ΦpLq

Φ̃ps, tq “ Hps, tq ¨ Φpsq

Figure 3.10. Variations of the frame Φ in terms of multiplication by a quater-
nion.

The variational vector fields along the curve are described by

ηpsq– 9ηps, 0q “
BH

Bt
ps, 0q P ImH

`

ñ ηp0q “ ηpLq “ 0
˘

,

which build a vector space.21

So admissible variations of ωpsq “ 2Φ1psqΦ´1psq become

ω̃ps, tq– 2Φ̃1ps, tqΦ̃´1ps, tq “ 2pHΦq1pHΦq´1

“ 2pH 1Φ`HΦ1qΦ´1H´1 “ 2pH 1Φ`
1

2
HωΦqΦ´1H´1

“ 2H 1H´1 `HωH´1,

and the corresponding variational vector fields

9̃ωps, 0q “
`

2η1H´1 ´ 2H 1H´1ηH´1 ` ηωH´1 ´HωH´1ηH´1
˘
ˇ

ˇ

t“0

“ 2η1 ` ηω ´ ωη “ 2η1 ` rη, ωs “ 2pη1 ` η ˆ ωq.

With T p0q “ i the integral version of T 1 “ ω ˆ T “ 1
2 rω, T s is T “ ΦiΦ´1. So

admissible variations of T are

T̃ ps, tq– Φ̃iΦ̃´1 “ HΦiΦ´1H´1 “ HTH´1,

and the corresponding variational vector fields

9̃T ps, 0q “
`

ηTH´1 ´HTH´1ηH´1
˘
ˇ

ˇ

t“0

“ ηT ´ Tη “ rη, T s “ 2η ˆ T.

This describes admissible variations of pT, ωq : r0, Ls Ñ S2 ˆ R3.

21We denote partial derivatives w.r.t. s by 1 and w.r.t. t by 9
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For the variation of the energy we obtain

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

EarT̃, ω̃s “
ż L

0

B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

´

xω̃, ω̃y ` pα´ 1qxω̃, T̃ y2 ` 2xa, T̃ y
¯

ds

“ 4

ż L

0

`

xη1 ` η ˆ ω, ωy ` pα´ 1qxω, T ypxη1 ` η ˆ ω, T y ` xω, η ˆ T yq

` xa, η ˆ T y
˘

ds

“ 4

ż L

0

`

xη1, ωy ` pα´ 1qxω, T yxη1, T y ` xa, η ˆ T y
˘

ds

“ 4

ż L

0

`

xη1,´ω ` p1´ αqτT y ` xη, T ˆ ay
˘

ds

“ 4

ż L

0

xη,´ω1 ` p1´ αqpτ 1T ` τT 1q ` T ˆ ayds,

where we used partial integration with vanishing boundary terms due to ηp0q “
ηpLq “ 0. So the Euler-Lagrange equations are given by

#

T 1 “ ω ˆ T

ω1 “ p1´ αqpτ 1T ` τT 1q ` T ˆ a.

Further simplification is still possible by the following Lemma.

Lemma 3.12. The torsion τ of an elastic rod is constant.

Proof. We have τ “ xω, T y. So

τ 1 “ xω1, T y ` xω, T 1y “ p1´ αqτ 1,

where we plugged in the Euler-Lagrange equations for T 1 and ω1. So we get
τ 1 “ 0 since α ‰ 0 for elastic rods.

Eventually we arrive at the final version of the Euler-Lagrange equations for
elastic rods.

Theorem 3.13 (Euler-Lagrange equations for elastic rods). An arc length
parametrized curve γ : r0, Ls Ñ R3 with frame Φ : r0, Ls Ñ R3 is an elastic rod
with torsion coefficient α if and only if its torsion τ is constant (τ 1 “ 0) and
one of the following conditions is satisfied:

(i) There is a P R3 such that

#

T 1 “ ω ˆ T

ω1 “ p1´ αqτT 1 ` T ˆ a,

where T “ γ1 is the tangent vector and ω “ 2Φ1Φ´1 the angular velocity
of the frame.

(ii) There is a, b P R3 such that

γ2 ˆ γ1 ` cγ1 “ aˆ γ ` b.
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(iii) There is a P R3 such that

T 2 ˆ T ` cT “ aˆ T,

where c– ´ατ .

Proof. We are left to show the equivalence of these three equations.

(ii)ô(iii) By integration/differentiation.

(i)ñ(ii) Integrating ω1 “ p1´ αqτT 1 ` T ˆ a, we obtain

ω ` b “ p1´ αqτT ` γ ˆ a.

From this and T 1 “ ω ˆ T we get

T 1 ˆ T “ pω ˆ T q ˆ T “ xω, T yT ´ ω

“ τT ´ ω “ ατT ` aˆ γ ` b.

(iii)ñ(i) Define ω by T 1 “ ω ˆ T and xω, T y “ τ .22

Then T 2 “ ω1 ˆ T ` ω ˆ T 1. So

T 2 ˆ T “ xω1, T yT ´ ω1 ` xω, T yT 1 “ τT 1 ´ ω1.

On the other hand we have

T 2 ˆ T “ ταT 1 ` aˆ T.

Together this implies

ω1 “ p1´ αqτT 1 ` T ˆ a.

We identify the left hand sides of (ii) and (iii) as a linear combination of the
Heisenberg flow Bt and the tangent flow Bx, i.e.

pBt ` cBxqγ “ aˆ γ ` b

and
pBt ` cBxqT “ aˆ T.

Corollary 3.14. A framed curve is an elastic rod if and only if a linear com-
bination of the Heisenberg flow and the tangent flow with non-zero coefficients
preserves its form, i.e. under the action of this combined flow the curve evolves
by an Euclidean motion.

22In quaternions this is ω – pT 1 ´ τqT´1.
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Remark 3.16 (anisotropic elastic rods). The theory can be generalized to anisotropic
elastic rods by using an anisotropic bending energy

E “
ż

`

α1κ
2
1 ` α2κ

2
2 ` α3τ

2
˘

ds.

Figure 3.11. Anisotropic rod. The bending energy depends on the cross section.

3.6 Discrete elastic rods

We use the characterization in terms of Heisenberg flow and tangent flow to
obtain a definition for discrete elastic rods.

Definition 3.7 (Discrete elastic rods). A discrete arc length parametrized curve
γ : I Ñ R3 is called discrete elastic rod if it evolves under a linear combination
pBt` cBxq, c ‰ 0 of the discrete Heisenberg flow Bt and the discrete tangent flow
Bx by an Euclidean motion, i.e.

§ there is a, b P R3 and c ‰ 0 such that

Tk ˆ Tk´1

1` xTk, Tk´1y
` c

Tk ` Tk´1

1` xTk, Tk´1y
“ aˆ γk ` b,

or equivalently

§ there is a P R3 and c ‰ 0 such that
ˆ

Tk`1

1` xTk`1, Tky
´

Tk´1

1` xTk, Tk´1y

˙

ˆ Tk

` c

ˆ

Tk`1 ` Tk
1` xTk`1, Tky

`
Tk ` Tk´1

1` xTk, Tk´1y

˙

“ aˆ Tk.

Remark 3.17. These equations go to the Euler-Lagrange equations for smooth
elastic rods since the discrete Heisenberg flow and discrete tangent flow go to
their corresponding smooth counterparts, which we have seen already.
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Part II

Discrete Surfaces
We consider discrete surfaces consisting of vertices, edges and faces from the
point of view of topology (abstract discrete surfaces), metric geometry (piecewise
flat surfaces) and Euclidean geometry (polyhedral surfaces).

4 Abstract discrete surfaces

4.1 Cell decompositions of surfaces

From the topological point of view a discrete surface is a decomposition of a
two-dimensional manifold into vertices, edges and faces. This is what we call
the combinatorics of a discrete surface.

First some preliminary definitions

Definition 4.1 (surface). A surface is a real two-dimensional connected man-
ifold, possibly with boundary.

Remark 4.1. We mainly focus on compact surfaces and compact closed surfaces.

Definition 4.2 (n-cell). We denote the open disk in Rn by

Dn – tx P Rn | }x} ă 1u

and its boundary by
BDn – DnzDn,

where the bar denotes the topological closure.
An n-dimensional cell or n-cell is a topological space homeomorphic to Dn.

Remark 4.2. Note that D0 “ t0u is a point and its boundary BD0 “ H.

Definition 4.3 (cell decomposition). Let M be a surface and T “ tUiu
N
i“1 a

covering of M by pairwise disjoint 0-, 1- and 2-cells.
T is called a finite cell decomposition of M if for any n-cell Ui P T there is a
continuous map

ϕi : Dn ÑM

which maps Dn homeomorphic to Ui and BDn to a union of cells of dimension
at most n´ 1, i.e. 1-cells are bounded by 0-cells and 2-cells by 1- and 0-cells.
0-cells are called vertices, 1-cells edges and 2-cells faces.

Figure 4.1. This is not a cell decomposition.
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Remark 4.3.

§ More requirements are needed to define infinite cell decompositions.

§ The existence of a finite cell decomposition makes a surface necessarily com-
pact.

§ Cell decompositions of surfaces are a special case of cell complexes.
E.g. a 1-dimensional cell complex is a graph.

Example 4.1. A convex polyhedron induces a cell decomposition of S2.

We introduce some additional properties coming from polyhedra theory but
mostly deal with general cell decompositions.

Definition 4.4 (regular and strongly regular). A cell decomposition T “

tUiu
N
i“1 of a surface M is called regular if the maps ϕi : Dn ÑM are home-

omorphisms.
A regular cell decomposition is called strongly regular if for any two cells Ui and
Uj the intersection of their closures UiXUj is either empty or the closure of one
cell.

Figure 4.2. Examples of non-regular cell decompositions. Cells with boundary
identifications –i.e. self-touching cells– are not allowed. E.g. no loops.

Figure 4.3. Examples of non-strongly regular cell decompositions. Cells with
multiple common boundary components are not allowed. E.g. no double edges.

Example 4.2.

(1) The cell decompositions of S2 induced by convex polyhedra are strongly
regular.
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(2) Cube with a hole:

not a 2-cell a cell but

not regular

regular but not

strongly reglar

strongly regular

This is not a cell-decomposition of the cube with a hole.

Figure 4.4. Cube with a hole. From ”not a cell decomposition” to a strongly
regular cell decomposition by adding edges.

Definition 4.5 (abstract discrete surface). Let T be a cell decomposition of a
surface M . Then we call the combinatorial data S – pM,T q an abstract discrete
surface and a homeomorphism f : M Ñ Rn its geometric realization. We write
this as f : S Ñ Rn.

Remark 4.4.

§ Abstract discrete surfaces are compact.

§ We use the terms vertices, edges and faces for the combinatorial cells Ui P T
as well as for the images under the geometric realization fpUiq Ă fpMq Ă Rn.

Example 4.3 (quad-graph). A quad-graph is an abstract discrete surface with
all faces being quadrilaterals. A geometric realization with planar faces is called
a Q-net.

4.2 Topological classification of compact surfaces

We outline the topological classification of compact surfaces. This means that
we are interested in topological invariants which uniquely identify a compact
surface up to homeomorphisms. A cell decomposition of a surface induces the
following topological invariant.

Definition 4.6 (Euler characteristic). Let V , E, F be the sets of vertices,
edges and faces of an abstract discrete surface S – pM,T q and |V |, |E|, |F |
their cardinalities. Then

χpMq– |V | ´ |E| ` |F |

is called the Euler characteristic of M .
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Remark 4.5. Since the Euler characteristic is independent of the cell decompo-
sition T of M and every compact surface has a cell decomposition23, this indeed
defines a topological invariant of the surface M .

Example 4.4.

disc triangle cube tetrahedron
χ=1 χ=2

torus χ = 0 double torus χ = -2

Figure 4.5. Cell decompositions of a disk, sphere, torus and double torus. With
Euler characteristic χ “ |V | ´ |E| ` |F |.

We describe the construction of closed surfaces by combining some elemen-
tary compact closed surfaces of high Euler characteristic using the connected
sum. The classification theorem then states that this already yields all possible
compact closed surfaces up to homeomorphisms.

RP2S2 T2 K2

Figure 4.6. Elementary closed surfaces from identifying edges of bigons and
quadrilaterals.

There are two essentially different ways of orienting the two edges of a bigon.
Identifying the two edges along these orientations yields the sphere S2 and the
real projective plane RP2 respectively. The first of which is orientable while the
second is not. Counting vertices, edges and faces of the cell decompositions
induced by the original bigon we obtain the Euler characteristics

χpS2q “ 2´ 1` 1 “ 2, χpRP2q “ 1´ 1` 1 “ 1.

Pairwise identifying the four edges of a quadrilateral gives us two additional

23Even stronger: Every compact surface has a triangulation.
Note that abstract discrete surfaces –which is our case of interest– are compact and always
come with a cell decomposition.
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surfaces which are the torus T2 and the Klein bottle K2 with

χpT2q “ 1´ 2` 1 “ 0, χpK2q “ 1´ 2` 1 “ 0.

We notice that the torus and the Klein bottle can not be distinguished by their
Euler characteristic alone. But the torus is orientable while the Klein bottle is
not.

For two surfaces M and N their connected sum M#N is obtained by re-
moving an open disk from each and gluing the resulting surfaces together along
the circular boundary components of the missing disks.
This operation is associative, commutative and the sphere is the identity ele-
ment, i.e.

M#S2 “ S2#M “M

Let us determine the Euler characteristic of the connected sum M#N . Con-
sider a cell decomposition of M and N respectively. A cell decomposition of M˝

which is the surface M with an open disk removed can be obtained by adding
one edge as a loop at one vertex of the cell decomposition of M , so

χpM˝q “ χpMq ´ 1.

Same for N˝. Gluing along the circular boundaries is then equivalent to the
identification of these new edges and the adjacent vertex. So we have one edge
less and one vertex less in the connected sum which cancel out in the Euler
characteristic

χpM#Nq “ χpM˝q ` χpN˝q ´ 1` 1 “ χpMq ` χpNq ´ 2.

Starting with a sphere as the identity element we construct surfaces of lower
Euler characteristic by connecting tori, projective planes and Klein bottles to
it. Connecting g tori to the sphere24 yields an orientable surface with g holes,
i.e.

χppT2q#gq “ χpT2# . . .#T2q “ 2´ 2g, g ě 0,

where we define M#0 – S2 by the identity element. g is called the genus of the
resulting surface.

Building the connected sum of h projective planes we obtain surfaces of odd
and even Euler characteristic all of them non-orientable.25

χppRP2q#hq “ χpRP2# . . .#RP2q “ 2´ h, h ě 1.

Any other combination of connected sums of our elementary surfaces S2, T2,
RP2 and K2 does not yield new surfaces. Indeed building the connected sum of
two projective planes already gives us a Klein bottle

RP2#RP2 “ K.

Figure 4.7. The connected sum of two projective planes is a Klein bottle.

24Or equivalently to each other.
25Any connected sum containing at least one projective plane is non-orientable.
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Attaching another projective plane to the Klein bottle is the same as attach-
ing it to a torus26

K#RP2 “ T2#RP2.

So any mixed combinations of tori and projective planes are already included.27

T2 and RP2 together with the connected sum # generate a monoid of which
the classification theorem states that it already includes all compact closed
surfaces.

Theorem 4.1 (classification by connected sums). Any compact closed surface
M is either homeomorphic to the connected sum of g ě 0 tori

M “ pT2q#g

or to the connected sum of h ě 1 real projective planes

M “ pRP2q#h.

In the first case M is orientable and in the second non-orientable.

And as an immediate consequence of our considerations about the Euler
characteristics

Corollary 4.2 (classification by orientability and Euler characteristic). Any
compact closed surface is uniquely determined by its orientability and Euler
characteristic up to homeomorphisms.

Remark 4.6.

§ A compact closed orientable surface can be classified by its Euler character-
istic only, or equivalently by its genus g since

χpMq “ 2´ 2g.

§ The classification theorem can be generalized to compact surfaces with bound-
ary by adding another topological invariant which is the number of connected
boundary components k. In this case the Euler characteristic for orientable
surfaces becomes

χpMq “ 2´ 2g ´ k.

§ The easiest and most recent proof of the classification theorem is Conway’s
ZIP proof which can be found in [FW99].

§ The procedure of identifying edges of bigons and quadrilaterals to obtain
compact closed surfaces can be generalized to the pairwise identification of
edges of even-sided polygons. This leads to other possible ways of classifica-
tion.

26We see that the connected sum has no inverse operation.
27This can be restated more general in the following way. On any non-orientable surface

there is no way to distinguish a handle from an attached Klein-bottle.
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5 Polyhedral surfaces and piecewise flat surfaces

We start with a short presentation of curvature in the classical smooth theory.

5.1 Curvature of smooth surfaces

Extrinsic curvatures of a smooth surface immersed in R3 are defined as follows.
Consider the one parameter family of tangent spheres Spκq with signed curvature
κ touching the surface at a point p. κ is positive if the sphere lies at the same
side of the tangent plane as the normal vector and negative otherwise. Let M
be the set of tangent spheres intersecting any neighborhood U of p in more than
one point. The values

κ1 – inf
SPM

κpSq, κ2 – sup
SPM

κpSq

are called the principal curvatures of the surface at p.

N

p

κ1 ă 0

κ2 ą 0

Figure 5.1. The curvature spheres touching the surface in p.

The spheres Spκ1q and Spκ2q are called principal curvature spheres and are in
second order contact with the surface. The contact directions are called principal
directions and are orthogonal.

The Gaussian curvature and mean curvature are defined as

K – κ1κ2, H –
1

2
pκ1 ` κ2q .

The Gaussian curvature of a surface at a point p is also the quotient of
oriented areas Ap¨q:

Kppq “ lim
εÑ0

A pN pUεppqqq

A pUεppqq
,

where Uεppq is an ε-neighborhood of p on the surface, and NpUεppqq Ă S2 is its
image under the Gauss map.
The following classical theorems hold.

Theorem 5.1 (Gauss’ Theorema Egregium). The Gaussian curvature of a sur-
face is preserved by isometries.

Theorem 5.2 (Gauss-Bonnet). The total Gaussian curvature of a compact
closed surface S is given by

ż

S

KdA “ 2πχpSq.
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5.1.1 Steiner’s formula

The normal shift of a smooth surface S with normal map N is defined as

Sρ :“ S ` ρN.

For sufficiently small ρ the surface Sρ is also smooth. Interpreting S as an
enveloping surface of the principal sphere congruences one can show that the
centers of the principal curvature spheres of S and Sρ coincide. The signed radii
are reduced by ρ so the principal curvatures change as

1

κ1ρ
“

1

κ1
´ ρ,

1

κ2ρ
“

1

κ2
´ ρ.

S

Sρ

N

Theorem 5.3 (Steiner’s formula). Let S be a smooth surface and Sρ its smooth
normal shift for sufficiently small ρ. Then the area of Sρ is a quadratic polyno-
mial in ρ,

ApSρq “ ApSq ´ 2HpSqρ`KpSqρ2,

where KpSq “
ş

S
KdA and HpSq “

ş

S
HdA are the total Gaussian and total

mean curvature of S.

Proof. Let dA and dAρ be the area forms of S and Sρ. The normal shift
preserves the Gauss map, therefore one has

KdA “ KρdAρ,

where K and Kρ are the corresponding Gaussian curvatures. For the area this
implies

ApSρq “

ż

Sρ

dAρ “

ż

S

K

Kρ
dA

“

ż

S

κ1κ2p
1

κ1
´ ρqp

1

κ2
´ ρqdA

“

ż

S

`

1´ pκ1 ` κ2qρ` κ1κ2ρ
2
˘

dA

“ ApSq ´ 2HpSqρ`KpSqρ2.

(5.1)

Remark 5.1. Equation (5.1) also holds true without integration. We can state
Steiner’s formula in the differential version

dAρ “ p1´ 2Hppqρ`Kppqρ2qdA,

where Kppq and Hppq are the (local) Gaussian and mean curvature at p.
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5.2 Curvature of polyhedral surfaces

Definition 5.1 (polyhedral surface). A polyhedral surface in Rn is a geometric
realization f : S Ñ Rn of an abstract discrete surface S “ pM,T q such that the
edges are intervals of straight lines and the faces are planar.
A simplicial surface is a polyhedral surface with all faces being triangles.

5.2.1 Discrete Gaussian curvature

For a polyhedral surface the Gaussian curvature is concentrated at vertices in
the following sense: The area of NpUεppqq vanishes for all internal points on faces
and edges. For a vertex it is equal to the oriented area of the corresponding
spherical polygon.

P Ni

αi

αi

Figure 5.2. The angle αi at vertex p is the external angle of the spherical
polygon at vertex Ni.

Let Ni be the normal vectors of the faces adjacent to the vertex p. Each two
neighboring normals define a geodesic line on S2, which all together constitute a
spherical polygon. The angle αi at vertex p of the face on the polyhedral surface
with normal vector Ni is equal to the external angle of the spherical polygon
at the vertex Ni. So the angle defect 2π ´

ř

αi at the vertex p is the area of
the spherical polygon where

ř

αi is the total angle on the polyhedral surface
around the vertex p.28

Definition 5.2 (discrete Gaussian curvature). For a closed polyhedral surface
S the angle defect

Kppq :“ 2π ´
ÿ

i

αi (5.2)

at a vertex p is called the Gaussian curvature of S at p.
The total Gaussian curvature is defined as the sum

KpSq :“
ÿ

pPV

Kppq.

The points with Kppq ą 0, Kppq “ 0 and Kppq ă 0 are called elliptic, flat and
hyperbolic respectively.

28 This is an oriented area since the “external angle” depends on the orientation of the
polygon.
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Remark 5.2. The angle defect at a vertex p is bounded from above by 2π but
unbounded from below.

Figure 5.3. The discrete Gaussian curvature at a vertex p can be made arbi-
trarily low by “folding” a vertex star.

Lemma 5.4. Let p be an inner point of a polyhedral surface. Then

p convex ñ p elliptic

p planar ñ p flat

p saddle ñ p hyperbolic,

where

p convex :ô the spherical polygon of the normal vectors around p is convex

p planar :ô p and its neighbors lie in a plane

p saddle :ô p lies in the convex hull of its neighbors (and p not planar).

Remark 5.3. In general, none of the implications in Lemma 5.4 is reversible.

Since the discrete Gaussian curvature is defined intrinsically29 we immedi-
ately obtain a discrete version of Gauss’ Theorema Egregium.

Theorem 5.5 (polyhedral Gauss’ Theorema Egregium). The Gaussian cur-
vature of a polyhedral surface is preserved by isometries, i.e. depends on the
polyhedral metric only.

There also holds a discrete version of the Gauss-Bonnet theorem.

Theorem 5.6 (polyhedral Gauss-Bonnet). The total Gaussian curvature of a
closed polyhedral surface S is given by

KpSq “ 2πχpSq.

Proof. We have

KpSq “
ÿ

pPV

Kppq “ 2π |V | ´
ÿ

all angles of S

αi.

The angles π´αi are the (oriented) external angles of a polygon. Their sum is

ÿ

all angles of
one polygon

pπ ´ αiq “ 2π.

29The cone angle
ř

αi is invariant under isometries. We discuss this and polyhedral metrics
in more detail in Section 5.3.
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The sum over all faces gives

2π |F | “
ÿ

all angles of S

pπ ´ αiq “ 2π|E| ´
ÿ

all angles of S

αi,

where we used that the number of angles is equal to 2|E| (each edge is associated
with 4 attached angles but each angle comes with two edges).
Finally

KpSq “ 2πp|V | ´ |E| ` |F |q “ 2πχpSq.

αi

π ´ αi ą 0
π ´ αj ă 0

αj

Figure 5.4. Oriented external angles of a polygon.

Example 5.1 (Gaussian curvature of a cube). Consider a standard cube with
all vertex angles equal to π

2 . Then the Gaussian curvature at every vertex p is

Kppq “ 2π ´ 3
π

2
“
π

2
.

So the sum over all eight vertices yields KpSq “ 4π.
On the other hand χpSq “ χpS2q “ 2.

Remark 5.4. The polyhedral Gauss-Bonnet theorem can be extended to poly-
hedral surfaces with boundary. Since the boundary components of a polyhedral
surface are piecewise geodesic we only have to add the turning angle of the
boundary curve

ϕppq– π ´
ÿ

i

αi

at each boundary vertex p to the total discrete Gaussian curvature.30

5.2.2 Discrete mean curvature

Definition 5.3 (discrete mean curvature). The discrete mean curvature of a
closed polyhedral surface S at the edge e P E is defined by

Hpeq :“
1

2
θpeqlpeq,

where lpeq is the length of e, and θpeq is the oriented angle between the normals
of the adjacent faces sharing the edge e (the angle is considered to be positive
in the convex case and negative otherwise).
The total mean curvature is defined as the sum over all edges

HpSq :“
ÿ

ePE

Hpeq “
1

2

ÿ

ePE

θpeqlpeq.

30Or alternatively define the discrete Gaussian curvature at boundary vertices by the turning
angle.
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e n2

n1

θ
n2

n1

Figure 5.5. Discrete mean curvature for polyhedral surfaces.

With this definition the following discrete version of Steiner’s formula holds
true.

Theorem 5.7 (Steiner’s formula for convex polyhedra). Let P be a convex
polyhedron with boundary surface S “ BP. Let Pρ be the parallel body at the
distance ρ

Pρ :“
 

p P R3 | dpp,Pq ď ρ
(

.

Then the area of the boundary surface Sρ – BPρ is given by

ApSρq “ ApSq ` 2HpSqρ` 4πρ2. (5.3)

BPρ

BP

Figure 5.6. Boundary surface S of a convex polyhedron and Sρ of its parallel
body at distance ρ.

Proof. The parallel surface Sρ consists of three parts:

§ Plane pieces congruent to the faces of S.
Their areas sum up to ApSq.

§ Cylindrical pieces of radius ρ, angle θpeq and length lpeq along the edges e
of S with area θpeqlpeqρ “ 2Hpeqρ.

§ Spherical pieces at the vertices p of S with area Kppqρ2. Since a convex poly-
hedron is a topological sphere the Gaussian curvature sums up toKpSq “ 4π,
i.e. merged together by parallel translation the spherical pieces comprise a
round sphere of radius ρ.
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Remark 5.5 (Steiner’s formula for polyhedral surfaces). At non-convex edges
and vertices we can define the parallel surface as depicted in Figure 5.7

Sρ

θ < 0

ρρ S

Figure 5.7. On the definition of the parallel surface Sρ in the non-convex case.

and take the area of the corresponding cylindrical and spherical pieces as nega-
tive. Then Steiner’s formula for an arbitrary closed polyhedral surface S reads
as follows:

ApSρq “ ApSq ` 2HpSqρ`KpSqρ2,

where KpSq “ 2πχpSq is the total Gaussian curvature.

5.3 Polyhedral Metrics

We want to investigate the intrinsic geometry induced by polyhedral surfaces.

Definition 5.4. A metric on a set M is a map

d : M ˆM Ñ R

such that for any x, y, z PM

(i) dpx, yq ě 0

(ii) dpx, yq “ 0 ô x “ y

(iii) dpx, yq “ dpy, xq

(iv) dpx, yq ` dpy, zq ě dpx, zq

The pair pM,dq is called a metric space.
Let pM,dq and pM̃, d̃q be two metric spaces. Then a map f : M Ñ M̃ such that
for any x, y PM

d̃pfpxq, fpyqq “ dpx, yq

is called an isometry.
pM,dq and pM̃, d̃q are called isometric if there exists a bijective isometry f : M Ñ M̃
called a global isometry.
pM,dq is called locally isometric to pM̃, d̃q at a point x P M if there exists a
neighborhood U of x and a neighborhood Ũ Ă M̃ such that pU, dq is isometric
to pŨ, d̃q.
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Remark 5.6.

§ Every isometry is continuous and every global isometry a homeomorphism.

§ An abstract discrete surface S “ pM,T q equipped with a metric becomes a
metric space pM,dq.

§ For a geometric realization f : S Ñ Rn the Euclidean metric on Rn induces a
metric on fpMq Ă Rn. To study this metric intrinsically on the correspond-
ing abstract discrete surface S we pull it back, i.e. we define the metric on
S such that f is an isometry.

Let f : S Ñ Rn be a polyhedral surface. We examine the metric induced by
the Euclidean metric of Rn. For two points x, y P fpMq we are interested in the
length Lpγq of the shortest curve γ lying on fpMq connecting x and y:

dpx, yq “ inf
γ
tLpγq | γ : r0, 1s Ñ fpMq, γp0q “ x, γp1q “ yu .

Example 5.2 (shortest paths on a polyhedral surface). Isometrically unfolding
a cube to a plane we see that connecting two points by a straight line might not
always constitute a shortest path.

x

y

y
x

Figure 5.8. Straight line on a cube which is not the shortest path connecting x
and y.

Shortest paths are a global property of the metric.

We start by investigating locally shortest paths which are called geodesics.
We look for local isometries to some planar domain where we already know the
geodesics.

��
��
��
��

�
�
�
�

α2
α1

α3

Figure 5.9. Neighborhoods of a point on a face, edge and vertex of a polyhedral
surface.

Consider a point p PM on a face A P F . Then a small enough neighborhood
of fppq on fpMq is entirely contained in the planar face fpAq. So the neighbor-
hood can be mapped isometrically to a disk D2.
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For points on edges a small neighborhood intersects the interior of two planar
faces. Isometrically unfolding those two faces to a plane we find that the neigh-
borhood is also isometric to a disk.
For points on a vertex we could also unfold the adjacent faces to a plane. But
this leaves a cut in the neighborhood. What we can do isometrically is map the
small neighborhood to the tip of a cone characterized by the angle θ which is
the sum of angles αi between the edges adjacent to the vertex. The angle defect

Kppq– 2π ´ θ

is a measure for the non-flatness of the metric at p.
In general θ can be greater than 2π in which case the cone becomes a saddle.
We make the following classification

K ą 0 elliptic point, locally isometric to a cone.

K “ 0 flat point, locally isometric to a disk,
i.e. the vertex and its adjacent edges could be completely removed from the
combinatorics without changing the polyhedral surface.

K ă 0 hyperbolic point, locally isometric to a saddle.

We find that the metric induced on the polyhedral surface fpMq by the Eu-
clidean metric in Rn is locally equivalent to the Euclidean metric of R2 every-
where except for the vertices.

Pulling back the metric with the map f to the abstract discrete surface S we
obtain a metric with the same properties, i.e. a small neighborhood of a point
p PM on a

§ face is isometric to a disk D2.

§ edge is isometric to a disk D2.

§ vertex is isometric to the tip of a cone.

We can now forget about the combinatorics and obtain an abstract surface M
with a polyhedral metric which we call piecewise flat surface.

Definition 5.5 (piecewise flat surface). A metric d on a surface M is called a
polyhedral metric if pM,dq is locally isometric to a cone at finitely many points
V “ tP1, . . . , PNu ĂM (conical singularities of the metric) and locally isometric
to a plane elsewhere.
The pair pM,dq of a surface and a polyhedral metric is called a piecewise flat
surface.

Remark 5.7. A polyhedral metric d on a surface M carries no obvious informa-
tion about edges and faces, only about the vertices.

How to prescribe a polyhedral metric?

We investigate how the information about the metric gets transferred from a
polyhedral surface to its corresponding piecewise flat surface (w.l.o.g. we con-
sider simplicial surfaces).
A simplicial surface induces a piecewise flat surface pM,dq together with a tri-
angulation T such that the vertex set includes the conical singularities and all
edges are geodesics on pM,dq.
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Definition 5.6 (geodesic triangulation). Let pM,dq be a piecewise flat surface
with conical singularities V0.
Then a geodesic triangulation of pM,dq is a triangulation of M such that its
vertex set includes the conical singularities V0 Ă V and all edges are geodesics
on pM,dq.

Remark 5.8. In general a geodesic triangulation on a piecewise flat surface does
not have to come from a polyhedral surface.

The geodesic triangulation fixes the polyhedral metric of the piecewise flat
surface. Its triangles are isometric to Euclidean triangles with straight edges
and the polyhedral metric is determined by the lengths of the edges.
The Euclidean triangles on the other hand are uniquely determined by the
lengths of its edges if and only if these satisfy the triangle-inequality.
We obtain the following general construction on how to prescribe a polyhedral
metric.31

§ Start with an abstract discrete surface S “ pM,T q where T is a triangulation.

§ Define a length function l : E Ñ R` on the edges E of T such that on every
face the triangle-inequality is satisfied.

From this data we can construct unique Euclidean triangles which fit together
along corresponding edges of T . We can always glue the obtained Euclidean
triangles together along the edges around one common vertex –thus obtaining
a polyhedral metric on the abstract surface S– but we cannot be sure that
they will fit together to constitute a whole polyhedral surface. Summing up
the angles at corresponding vertices we obtain the angle defect of the conical
singularities of the polyhedral metric.

We get closer to the answer of the questions:

Is a piecewise flat surface always realizable as a polyhedral surface?
And is the corresponding polyhedral surface uniquely determined?

Isometric deformations of a simplicial surface preserve its polyhedral metric and
therefore the corresponding piecewise flat surface.

Example 5.3 (pushing a vertex in). If all neighbors of a vertex p are coplanar
we can reflect the whole vertex star in this plane without changing any angles.

Figure 5.10. Pushing a vertex in does not change the metric.

We obtain the same piecewise flat surface with the same geodesic triangulation.
So the polyhedral surface generating a piecewise flat surface is in general not
unique.

31Note that choosing a triangulation of M –i.e. gluing M together from triangles– to pre-
scribe the polyhedral metric is still eminent in this construction.
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Example 5.4 (isometric bending of a polyhedral quadrilateral and edge flip-
ping). Consider two planar triangles with a common edge. Isometrically unfold-
ing the two triangles along the common edge we obtain a planar quadrilateral.
If the quadrilateral is convex we can replace the edge by the other diagonal and
fold the quadrilateral along this new edge.

Figure 5.11. Edge flip. Isometrically unfold a quadrilateral to a plane and fold
it along the other diagonal.

The edge flip can be done directly on the polyhedral surface without any folding
by introducing a non-straight edge.
We obtain a different geodesic triangulation on the same piecewise flat surface
which does not necessarily come from a polyhedral surface anymore.

Lemma 5.8 (Possibility of an edge-flip). Let pM,dq be a piecewise flat surface
with a geodesic triangulation T .
Then an edge e of T can be flipped if its two neighboring triangles are distinct
and unfolding them into a plane yields a convex quadrilateral.

Remark 5.9. Since we admit non-regular triangulations we need the condition
of the two triangles to be distinct to make the edge flip combinatorially possible.

Example 5.5 (tetrahedron). Four congruent equilateral triangles can be glued
together to obtain a tetrahedron.

Figure 5.12. Two geodesic triangulations of the piecewise flat surface given by
a tetrahedron.

An edge-flip of one of their edges constitute four triangles which do not fit
together as a whole polyhedral surface with the given combinatorics.

We have seen that not every geodesic triangulation of a piecewise flat surface
is realizable as a polyhedral surface. Nor is the polyhedral surface we seek
uniquely determined even if we know the combinatorics.
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We finish this section by stating two classical theorems.

Theorem 5.9 (Burago-Zalgaller, 1960). Every piecewise flat surface can be
realized as a polyhedral surface embedded in R3.

Remark 5.10.

§ Note that the ambient space can always be taken to be R3.

§ This is a pure existence statement and the proof gives no indication on how
to construct the polyhedral surface.

For convex polyhedral metrics the corresponding polyhedral surface which is
convex is unique and can be obtained via a construction algorithm.

Theorem 5.10 (Alexandrov). Let pM,dq be a piecewise flat sphere with a con-
vex polyhedral metric d. Then there exists a convex polytope P Ă R3 such that
the boundary of P is isometric to pM,dq. Besides, P is unique up to a rigid
motion.

Remark 5.11.

§ A polyhedral metric d with conical singularities P1, . . . , PN is called convex
if all its conical singularities are elliptic, i.e. KpPiq ě 0.

§ The edges of P are a complicated functions of d, since the metric does not
distinguish points on edges from points on faces.

§ For a proof of this theorem with a construction algorithm see [BI08].

§ An implementation of the algorithm can be found at [Sec].
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6 Discrete cotan Laplace operator

We introduce a discrete Laplace operator naturally induced by a simplicial sur-
face (or more general by a geodesic triangulation of a piecewise flat surface).

6.1 Smooth Laplace operator in RN

Let Ω Ă RN be an open set with boundary BΩ. We denote the coordinates
in RN by x “ px1, ..., xN q. The Laplace operator of a function f : Ω Ñ R is
defined by

∆f “
N
ÿ

i“1

B2f

Bx2
i

A function with ∆f “ 0 is called harmonic.
The problem of finding a harmonic function with prescribed boundary data
g : BΩ Ñ R

∆f |Ω “ 0, f |BΩ “ g (DBVP)

is known as the Dirichlet boundary value problem.
The Dirichlet energy is given by

Epfq “
1

2

ż

Ω

|∇f |2 dA,

where ∇f is the gradient of f .
Let ϕ P C1

0pΩq be a continuously differentiable function with compact support
on Ω. Then due to Green’s formula

d

dt
Epf ` tϕq|t“0 “

ż

Ω

x∇f,∇ϕydA “
ż

Ω

ϕp∆fqdA.

This integral vanishes for arbitrary ϕ if and only if f is harmonic. So harmonic
functions are the critical points of the Dirichlet energy.
For sufficient smooth boundary32 one can prove the existence and uniqueness
of solutions of the Dirichlet boundary value problem (DBVP) for arbitrary con-
tinuous g P CpBΩq. This solution minimizes the Dirichlet energy.

Remark 6.1. Sometimes the Laplace operator is defined with minus sign to
obtain a positive definite operator.

32For example of Hölder class BΩ P C1`a, with some a ą 0.
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6.2 Laplace operator on graphs

Definition 6.1 (Laplace operator and Dirichlet energy on graphs). Let G “

pV,Eq be a finite graph with vertices V and edges E. Let ν : E Ñ R be a weight
function defined on the edges of G.
Then the discrete Laplace operator on G with weights ν is defined by

p∆fqpiq “
ÿ

j:pijq“ePE

νpeqpfpiq ´ fpjqq

for all i P V and all functions f : V Ñ R on vertices.
The Dirichlet energy of f is defined by

Epfq “
1

2

ÿ

pijq“ePE

νpeqpfpiq ´ fpjqq2.

A function f : V Ñ R satisfying ∆f “ 0 is called discrete harmonic.

Example 6.1. By setting νpeq “ 1 for all e P E one obtains the combinatorial
Laplace operator

p∆fqpiq “
ÿ

j:pijqPE

pfpiq ´ fpjqq

on any graph G.
In the case G “ Z we obtain

p∆fqpnq “ 2fpnq ´ fpn` 1q ´ fpn´ 1q,

and for G “ Z2

p∆fqpn,mq “ 4fpm,nq´ fpm´ 1, nq´ fpm` 1, nq´ fpm,n´ 1q´ fpm,n` 1q.

Let V0 Ă V (treated as the “boundary” of G).

Figure 6.1. The set V0 of “boundary” vertices on a graph (black vertices in the
figure) is arbitrary.

Given some c : V0 Ñ R consider the space of functions with prescribed values
on the boundary

FV0,c “
 

f : V Ñ R | f |V0
“ c|V0

(

.

This is an affine space over the vector space FV0,0.
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Theorem 6.1. A function f : V Ñ R is a critical point of the Dirichlet energy
Epfq on FV0,c if and only if it is harmonic on V zV0, i.e.

∆fpiq “ 0 @i P V zV0.

Proof. Consider a variation f ` tϕ P FV0,c of f P FV0,c, i.e. ϕ P FV0,0. We have

Epf ` tϕq “ Epfq ` t2Epϕq ` t
ÿ

pijqPE

νpijqpfpiq ´ fpjqqpϕpiq ´ ϕpjqq

“ Epfq ` t2Epϕq ` t
ÿ

iPV

ϕpiq
ÿ

j:pijqPE

νpijqpfpiq ´ fpjqq

“ Epfq ` t2Epϕq ` t
ÿ

iPV

ϕpiqp∆fqpiq.

So
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Epf ` tϕq “
ÿ

iPV

ϕpiqp∆fqpiq

vanishes for all ϕ P FV0,0 if and only if ∆fpiq “ 0 for all i P V zV0.

If all the weights are positive ν : E Ñ R` then the discrete harmonic func-
tions have properties familiar from the smooth case.

Theorem 6.2 (maximum principle). Let G “ pV,Eq be a connected graph and
V0 Ă V . Let ∆ be a discrete Laplace operator on G with positive weights. Then
a function f : V Ñ R which is harmonic on V zV0 can not attain its maximum
(and minimum) on V zV0.

Proof. At a local maximum i P V Ă V0 of f one has ∆fpiq “
ř

j:pijqPE νpijqpfpiq´

fpjqq ą 0, therefore f cannot be harmonic.

For V0 “ H this implies:

Corollary 6.3 (discrete Liouville theorem). A harmonic function on a con-
nected graph is constant.

and for V0 ‰ H:

Corollary 6.4 (dDBVP, uniqueness). The solution of the discrete Dirichlet
boundary value problem

∆f |V zV0
“ 0, f |V0

“ c (dDBVP)

is unique.

Proof. Let f, f̃ be two solutions of (dDBVP). Then ϕ– f̃´f P FV0,0 for which
the maximum principle implies ϕ|V “ 0.
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Theorem 6.5. Let G “ pE, V q be a finite connected graph with positive weights
ν : E Ñ R` and H ‰ V0 Ă V . Given some c : V0 Ñ R there exists a unique
minimum f : V Ñ R of the Dirichlet energy on FV0,c.
This minimum is the unique solution of the discrete Dirichlet boundary value
problem (dDBVP).

Proof. The Dirichlet energy is a function on FV0,c – R|V zV0|. We investigate its

behavior for
›

›

›
f |V zV0

›

›

›
Ñ8. Define

ν0 :“ min
E
tνpequ, c0 :“ max

iPV0

tcpiqu.

For R ą c0 let fpkq ą R at some vertex k P V zV0. Let γk Ă E be a path
connecting k to some vertex in V0. It has at most |E| edges. For the Dirichlet
energy this gives the following rough estimate:33

Epfq ě
1

2
ν0

ÿ

pijqPγk

pfpiq ´ fpjqq
2

ě
1

2
ν0
pR´ c0q

|E|
Ñ 8 pRÑ8q.

Thus the minimum of the Dirichlet energy is attained on a compact set
tf P FV0,c | |fpiq| ă R @iu with some R P R.
The uniqueness has already been shown in Corollary 6.4.

Summarizing we have the following equivalent statements:

§ f P FV0,c harmonic, i.e. ∆f |V zV0
“ 0, f |V0

“ c.

§ f is a critical point of the Dirichlet energy on FV0,c, i.e. ∇fE “ 0.

§ f is the unique minimum of the Dirichlet energy E on FV0,c.

33Where we use
řn
i“1 a

2
i ě

1
n

`
řn
i“1 ai

˘2
.
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6.3 Dirichlet energy of piecewise affine functions

We compute the Dirichlet energy of an affine function on a triangle.
Denote by 1, 2, 3 the vertices of a triangle F and by ϕ1, ϕ2, ϕ3 the basis of affine
functions on F given by

ϕjpiq “ δij , i, j “ 1, 2, 3.

Then ϕ1 ` ϕ2 ` ϕ3 “ 1 and an affine function f : F Ñ R on the triangle F is
determined by its values fi “ fpiq at the vertices:

f “
3
ÿ

i“1

fiϕi.

ai

i

ai`1

αi´1

ai´1

αi`1

hi

Figure 6.2. Triangle F with vertices i, sides ai, angles αi and heights hi.

For gradient of f we get

|∇f |2 “

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

i“1

f2
i ∇ϕi

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

3
ÿ

i“1

fi |∇ϕi|2 ` 2
3
ÿ

i“1

fifi`1x∇ϕi,∇ϕi`1y, (6.1)

where the indices are considered modulo 3.
For the gradient ∇ϕi we calculate further

|∇ϕi|2 “
1

h2
i

“
1

2ApF q

|ai|

hi
“

1

2ApF q
pcotαi´1 ` cotαi`1q,

x∇ϕi,∇ϕi`1y “
xai, ai`1y

4ApF q2
“
|ai| |ai`1| cosαi´1

4ApF q2
“ ´

cotαi´1

2ApF q
,

where ai P R2 is the side opposite i and hi the height at the vertex i. The area
of the triangle is ApF q “ 1

2hi |ai|.
For the gradient (6.1) of f this implies

|∇f |2 “ 1

2ApF q

3
ÿ

i“1

pfi`1 ´ fi´1q
2 cotαi.

Multiplying by 1
2ApF q we obtain the Dirichlet energy of f on F :

Epfq “
1

2

ż

F

|∇f |2 dA “
1

4

3
ÿ

i“1

pfi`1 ´ fi´1q
2 cotαi.
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Theorem 6.6. Let S be a simplicial surface and f : S Ñ R a continuous and
piecewise affine function (affine on each face of S).
Then its Dirichlet energy is

Epfq “
1

2

ÿ

pijqPE

νpijqpfpiq ´ fpjqq2,

with weights

νpijq “

#

1
2 pcotαij ` cotαjiq for internal edges
1
2 cotαij for external edges

(6.2)

called cotan-weights.

αij

j

i

αji

Figure 6.3. αij and αji are the angles opposite the edge pijq.

A discrete function f : V Ñ R defined at the vertices of a simplicial surface
S uniquely extends to a piecewise affine function f : S Ñ R.
Even more for a discrete function f : V Ñ R defined at the vertices of a geodesic
triangulation of a piecewise flat surface pM,dq we can unfold each triangle to
the Euclidean plane and define its Dirichlet energy by the affine extension to
this triangle in the same way. We define the corresponding discrete Laplace
operator on triangulated piecewise flat surfaces.

Definition 6.2 (discrete cotan Laplace operator). Let pM,dq be a piecewise
flat surface, V ĂM a finite set of points that contains all conical singularities.
Let T P TM,V be a geodesic triangulation of M .
Then we define the discrete cotan Laplace operator of T by

p∆fqpiq–
ÿ

j:pijqPE

νpijqpfpiq ´ fpjqq

for all i P V and all discrete functions f : V Ñ R, with cotan-weights as defined
in (6.2).
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6.4 Simplicial minimal surfaces (I)

The area of simplicial surfaces can be represented as a Dirichlet energy.
The area of the triangle ABC with angles α, β, γ and edge lengths a, b, c is
equal to

1

4
pa2 cotα` b2 cotβ ` c2 cot γq.

α
γ

αO

B

A

c

b
C

a β

Figure 6.4. Subdivide the triangle ABC into three triangles by connecting the
center O of the circumcircle to its vertices. The area of the triangle OBC is
1
4
a2 cotα

Let f : S Ñ RN be a simplicial surface S – fpSq. Then its total area is given
by

ApSq “
1

2

ÿ

pi,jqPE

νpijq}fpiq ´ fpjq}2

with cotan-weights ν as defined in (6.2). The square of the edge lengths is

}fpiq ´ fpjq}2 “
N
ÿ

k“1

|fkpiq ´ fkpjq|
2.

Theorem 6.7. Let f : S Ñ RN , S – fpSq be a simplicial surface. It is com-
pletely determined by its vertices f : V Ñ RN . Its area is given by

ApSq “
N
ÿ

k“1

Epfkq,

where Epfkq is the Dirichlet energy of the k-th coordinate function.
The area gradient at the vertex fpiq is equal to the discrete cotan Laplace oper-
ator of f at i

∇fpiqApSq “ p∆fqpiq “
ÿ

j:pi,jqPE

νpijqpfpiq ´ fpjqq.
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Proof. Consider a variation f ` tϕ of the vertex i P V only, i.e.

ϕpjq “ yδij

for all j P V with some y P RN . Then

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Apf ` tϕq “
N
ÿ

k“1

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Epfk ` tϕkq

“

N
ÿ

k“1

yk∆fkpiq “ xy,∆fpiqy,

which is
∇fpiqApSq “ p∆fqpiq.

Remark 6.2.

§ Note that f is involved in the definition of ∆ since the weights are determined
by the geometry of the simplicial surface.

§ For u : V Ñ RN the equation ∆u “ 0 is to be understood component-wise,
i.e.

∆u “ 0 ô ∆uk “ 0 @k “ 1, . . . , N.

We have

f harmonic (w.r.t. cotan Laplace) ô S critical for the area functional.

So we might define simplicial minimal surfaces as suggested in [PP93] by

S discrete minimal surface :ô ∆f “ 0,

which immediately comes with a computation algorithm.

Data: Simplicial surface f : S Ñ S Ă RN
Result: Simplicial minimal surface (w.r.t. cotan Laplace operator).
while S is not critical for the area functional do

Compute f̃ such that
∆f̃ “ 0

which defines a new simplicial surface S̃;

Replace S by the new surface S̃;

end

Figure 6.5. Simplicial minimal surface algorithm (with cotan Laplace operator).

Remark 6.3. In each step a new simplicial surface is generated which carries a
new cotan Laplace operator.

The weights ν of the discrete cotan Laplace operator can be negative. So it
lacks the following property which is a reformulation of the maximum principle
for RN -valued functions.
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Proposition 6.8 (local maximum principle). Let ∆ be a discrete Laplace op-
erator on a graph G with positive weights. Let u : V Ñ RN be a map which is
harmonic at a vertex i P V .
Then the value upiq at the vertex i lies in the convex hull of the values of its
neighbors.

Proof. With
C –

ÿ

j:pijqPE

νpijq

we have

p∆fqpiq “
ÿ

j:pijqPE

νpijq pfpiq ´ fpjqq “ 0

ô fpiq “
ÿ

j:pijqPE

νpijq

C
fpjq.

Figure 6.6. Simplicial minimal surface violating the maximum principle. One
vertex does not lie in the convex hull of its neighbors.

The maximum principle is a desirable feature analogous to the smooth prop-
erty of all points of a minimal surface being hyperbolic. So we ask the question

When does the cotan Laplace operator have positive weights?

For an edge pijq P E we have

νpijq “
1

2
pcotαij ` cotαjiq

“
1

2

ˆ

cosαij sinαji ` cosαji sinαij
sinαij sinαji

˙

“
sinpαij ` αjiq

sinαij sinαji
ě 0 ô αij ` αji ď π,

(6.3)

which is not satisfied for the long edges in Figure 6.6. We will come back to this
when introducing the discrete Laplace-Beltrami operator.
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7 Delaunay tessellations

We have noted that the polyhedral metric of a piecewise flat surface pM,dq
carries no obvious information about edges and faces. In the following we show
how to use the metric to obtain a distinguished geodesic tessellation of pM,dq.
After recalling the notion of Delaunay tessellations of the plane we demonstrate
how to generalize it to piecewise flat surfaces.

7.1 Delaunay tessellations of the plane

7.1.1 Delaunay tessellations from Voronoi tessellations

Consider n distinct points in the plane V “ tP1, . . . , Pnu Ă R2. For each Pi P V
one defines the Voronoi region

WPi –
 

P P R2 | |PPi| ă |PPj | @j ‰ i
(

.

With Hij –
 

P P R2 | |PPi| ă |PPj |
(

we have WPi “
Ş

j‰iHij . Thus Voronoi
regions are convex polygons.

Pi

Pj

Pk

Figure 7.1. Voronoi tessellation for some given points V “ tP1, . . . , Pnu in the
plane. A vertex Q of the Voronoi tessellation has equal shortest distance to at
least three points of V .

Voronoi regions are the 2-cells of the Voronoi tessellation.34

For P P R2 consider

ΓP,V –

"

Pj P V | |PPj | “ min
PkPV

|PPk|

*

.

We can identify points of 2-cells, 1-cells and 0-cells of the Voronoi tessellation
by counting points in V that have equal shortest distance to P .
The 2-cells of the Voronoi tessellation are the connected components of

 

P P R2 | #ΓP,V “ 1
(

,

the 1-cells are the connected components of

 

P P R2 | #ΓP,V “ 2
(

,

34A tessellation is a cell-decomposition with polygonal 2-cells.
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and the 0-cells are the points in

 

P P R2 | #ΓP,V ě 3
(

.

For P 1 P R2 with #ΓP 1,V “ 2, Pi, Pj P ΓP 1,V , Pi ‰ Pj the corresponding 1-cell
is given by

 

P P R2 | |PPi| “ |PPj | ă |PPk| @k ‰ i, j
(

,

and for P P R2 with #ΓP ě 3, Pi, Pj , Pk P ΓP,V different, the corresponding
0-cell is given by

 

P P R2 | |PPi| “ |PPj | “ |PPk| ď |PPm| @m
(

.

Let Q be a vertex of the Voronoi tessellation, i.e.

Di, j, k @m : rQ – |PPi| “ |PPj | “ |PPk| ď |PPm|.

Define the disk
DQ –

 

P P R2 | |PQ| ă rQ
(

.

It contains no points of V . But its closure D̄Q contains at least three. Thus

HQ – conv tPi P V | |QPi| “ rQu

is a convex circular polygon.

Figure 7.2. Delaunay cells are convex circular polygons. They are triangles in
the generic case.

The HQ are the 2-cells of the Delaunay tessellation.
The vertices of this tessellation are V and the edges pPiPjq where i, j are indices
of neighboring Voronoi cells, i.e. there exists a corresponding Voronoi edge.

Remark 7.1.

§ Voronoi and Delaunay tessellations are dual cell-decompositions.

§ Corresponding edges of the Voronoi and Delaunay tessellation are orthogonal
but do not necessarily intersect (see Figure 7.2). The Voronoi edge bisects
the corresponding Delaunay edge.

§ Voronoi and Delaunay tessellations of the plane are strongly regular.
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§ One can also introduce a Delaunay-Voronoi quad-tessellation as a composi-
tion of both:

Figure 7.3. Voronoi-Delaunay quad tessellation. Faces (dotted lines) are convex
or non-convex kites.

Vertices are the union of Voronoi and Delaunay vertices.
Edges are the intervals connecting the centers of Voronoi cells with their
vertices or alternatively the centers of Delaunay cells with their vertices.
Faces are embedded quads with orthogonal diagonals and the diagonal which
is a Delaunay-edge is bisected into two equal intervals by the line through
the orthogonal Voronoi-edge.

Theorem 7.1. Given a set of distinct points V “ tP1, . . . , Pnu P R2 there exists
a unique Voronoi and Delaunay tessellation.
These tessellations are dual to each other: The Delaunay vertices V are the
generating points of the Voronoi tessellation. The Delaunay faces are convex
circular polygons centered at Voronoi vertices. The corresponding edges of the
Voronoi and Delaunay tessellations are orthogonal.

7.1.2 Delaunay tessellations in terms of the empty disk property

How to define Delaunay tessellations without referring to Voronoi?
We noticed that:

All faces of a Delaunay tessellation are convex circular polygons.
The corresponding Delaunay open disks DQ contain no vertices.

and call this the empty disk property.

Definition 7.1. A tessellation of a planar domain is called Delaunay if it pos-
sesses the empty disk property.
An edge of a tessellation is called Delaunay edge if two faces sharing this edge
do not have any of their vertices in the interior of their disks.

Figure 7.4. Empty disk property of Delaunay tessellations.
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Theorem 7.2. The property of being a Delaunay tessellation is invariant under
Möbius transformations.

Proof. Follows directly from the empty disk property being Möbius invariant.

Remark 7.2. Delaunay tessellations on S2 can be obtained by stereographic
projection.

Lemma 7.3 (angle criterion for circular quadrilaterals). Let P1, P2, P3, P4 P

R2 be four points in the plane cyclically ordered. Let C be the circle through
P1, P2, P3,

α– ?P1P2P3, β – ?P3P4P1.

Then

P4 lies outside C ô α` β ă π

P4 lies on C ô α` β “ π

P4 lies inside C ô α` β ą π.

P1

P2

P3

P4α
β

Figure 7.5. Angle criterion for circular quadrilaterals.

Proposition 7.4 (angle criterion for Delaunay triangulations). A triangulation
of the plane is Delaunay if and only if for each edge the sum of the two angles
opposite to this edge is less than or equal to π.

7.2 Delaunay tessellations of piecewise flat surfaces

7.2.1 Delaunay tessellations from Voronoi tessellations

Let pM,dq be a piecewise flat surface. Let V “ tP1, . . . , Pnu be points on M
such that V Ą tconical singularities of pM,dqu.
On M –in contrast to the planar case– it can happen that the distance between
two points is realized by more than one geodesic. The suitable generalization of
counting points of equal shortest distance to V is counting geodesics that realize
this distance. For P PM we define

ΓP,V – tγ : r0, 1s ÑM geodesic | γp0q “ P, γp1q P V, Lpγq “ dpP, V qu .

The 2-cells of the Voronoi tessellation of M with vertex set V are the connected
components of

tP PM | #ΓP,V “ 1u ,
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the 1-cells are the connected components of

tP PM | #ΓP,V “ 2u ,

and the 0-cells are the points in

tP PM | #ΓP,V ě 3u .

We can try to describe the cells in a similar manner as in the planar case. E.g.
for P 1 P M with #ΓP 1,V “ 2, γ1, γ2 P ΓP 1 , γ1 ‰ γ2, Pi “ γ1p1q, Pj “ γ2p1q P V
(possibly i “ j) the corresponding 1-cell is given by

 

P PM | dpP, Piq “ dpP, Pjq ă dpP, Pkq @k ‰ i, j pand #ΓP,tPi,Pju “ 2q
(

.

Example 7.1 (Voronoi tessellation of a cube). Let V be the set of vertices of
a cube.

Figure 7.6. Voronoi tessellation of a cube.

Let P be an internal point of a Voronoi edge. Then there is Pi, Pj P V
(possibly i “ j) such that

dpP, Piq “ dpP, Pjq ă dpP, Pkq @k ‰ i, j.

This describes an empty immersed disk centered at P with exactly two elements
of V on the boundary.35

The endpoints of Voronoi edges are Voronoi vertices. Let Q be such a point.
Then there is Pi, Pj , Pk P V such that

dpQ,Piq “ dpQ,Pjq “ dpQ,Pkq ď dpQ,Plq @l.

This describes an empty immersed disk centered at Q with at least three ele-
ments of V on the boundary.36

As in the plane the Delaunay tessellation is defined as dual to the Voronoi
tessellation.

35Or one element but two different geodesics minimizing the distance to P .
36Or less but with at least three different geodesics minimizing the distance to P .
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P

Pi Pj

Q

Pi

Pj

Pj

Figure 7.7. (left) An internal point P of a Voronoi edge. (right) A Voronoi
vertex Q. Both are the center of an empty immersed disk on M with vertices on
the boundary. The Delaunay edges are geodesic arcs connecting the points of V
on the boundary, i.e. the Delaunay faces are flat circular polygons.

Remark 7.3. A geodesic tessellation of a piecewise flat surface pM,dq is a tes-
sellation with flat polygonal 2-cells (compare Definition 5.6).
Delaunay tessellations are geodesic tessellations on M . The edges of Voronoi
tessellations are geodesic arcs but it is not a geodesic tessellation since the faces
are not flat.

Theorem 7.5. Let pM,dq be a piecewise flat surface without boundary, V ĂM
a finite set of points that contains all conical singularities.
Then there exists a unique Delaunay tessellation of M .

Remark 7.4.

§ The proof via construction of the Voronoi tessellation can be found in [MS91].

§ If one triangulates all Delaunay faces by triangulating the corresponding
circular polygons in the corresponding empty immersed disks one can obtain
Delaunay triangulations.37

On the contrary, the unique Delaunay tessellation can be recovered from any
Delaunay triangulation by deleting edges.

§ We will show later how to construct a Delaunay triangulation starting from
an arbitrary triangulation by applying an algorithm of consecutive edge flips.

7.2.2 Delaunay tessellations in terms of the empty disk property

We define Delaunay tessellations on a piecewise flat surface in a selfcontained
way without referring to Voronoi.

Definition 7.2 (empty immersed disk). Let pM,dq be a piecewise flat surface
without boundary, V ĂM a finite set of points that contains all conical singu-
larities.
Then an immersed empty disk is a continuous map ϕ : D̄ ÑM such that ϕ|D
is an isometric immersion38 and ϕpDq X V “ H.

37In contrast to the Delaunay tessellation the Delaunay triangulation is not unique as soon
as one has circular polygons which are not triangles.

38An isometric immersion is a local isometry, i.e. each P P D has a neighborhood which is
mapped to M isometrically.
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Definition 7.3 (Delaunay tessellation). Let pM,dq be a piecewise flat surface
without boundary, V ĂM a finite set of points that contains all conical singu-
larities.
The Delaunay tessellation of M with vertex set V is a cell-decomposition with
the following cells:
C Ă M is a closed cell of the Delaunay tessellation if there exists an immersed
empty disk ϕ : D̄ ÑM such that ϕ´1pDq ‰ H and C “ ϕpconvϕ´1pV qq.
The cell is a 0-, 1-, 2-cell if ϕ´1pV q contains 1, 2, or more points respectively.

Claim 7.6. This is indeed a tessellation.

Remark 7.5. For the proof see [BS07].

Pi є φ
-1(V)

vertex edge

Pi

Pj

faces

Pi
Pj

Pk

Figure 7.8. Delaunay cells and their corresponding empty immersed disks.

We characterize Delaunay triangulations in terms of a local edge property.

Definition 7.4 (Delaunay edge). Let T be a geodesic triangulation of a piece-
wise flat surface pM,dq. Let e be an interior edge of T . We can isometrically
unfold the two triangles of T that are adjacent to e. e is called a Delaunay edge if
the vertices of these unfolded triangles are not contained inside the circumcircles
of the triangles.

Figure 7.9. Unfolded triangles adjacent to a Delaunay edge. The inside of the
circumcircles contain no vertices.

Theorem 7.7 (Characterization of Delaunay triangulations in terms of Delau-
nay edges). Let pM,dq be a piecewise flat surface without boundary, V Ă M a
finite set of points that contains all conical singularities.
A geodesic triangulation T P TM,V of pM,dq is Delaunay if and only if all of its
edges are Delaunay edges.
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Remark 7.6. We first explain the general scheme used in the proof to obtain a
locally isometric model in the Euclidean plane for parts of our surface M . We
do some notably identifications on the way.

§ For any face ∆ P F pT q there is a triangle in the Euclidean plane which can
be isometrically immersed into the piecewise flat surface M (continuous on
the boundary) such that its image corresponds to the face.
Notationally we identify the combinatorial/metrical face on M and the un-
folded Euclidean triangle.

§ We extend the isometric immersion such that it stays an isometric immersion
in the interior and continuous on the boundary.
E.g. by some circular piece or a neighboring triangle.

§ Note that we might not be able to extend it to the circumcircle of the
unfolded triangle in the plane.
That is why it is not obvious whether Delaunay edges imply the existence
of empty immersed disks for their adjacent faces.

§ Only inside the domain of this extended immersion can we be sure to draw
straight lines and obtain geodesics on M and measure lengths and angles as
they are on M , i.e. measure quantities in our planar isometric model that
are well-defined by the piecewise flat surface.

Proof. If T is Delaunay obviously all edges are Delaunay edges.
Assume that all edges are Delaunay but the triangulation is not.

Any face ∆ P F pT q can be isometrically unfolded into the plane. We denote
its circumcircle in the plane by D∆.
For an edge a of ∆ consider the one-parameter family of circles in the plane
through its endpoints. a divides the corresponding open disks into two parts of
which we take the one that does not intersect ∆. We call them disk segments
which fit to ∆ along a.

∆ a
D'

D∆

∆ a

Sα D∆

D∆,α

Figure 7.10. (left) Unfolded face ∆ with circumcircle D∆ and disk segment
D1 fitting to ∆ along a. (right) We extend the isometric immersion of ∆ behind
the edge a to the largest possible disk segment D∆,a. To every p∆, a, Sq P A we
associate an angle α.
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D∆,a – tD1 | disk segment fitting to ∆ along a,

the isometric immersion of ∆ can be extended to D1

(continuously to D̄1q,

D1 X V “ Hu

For any edge a of a face ∆ we denote the largest such disk segment by

D∆,a –
ď

D1PD∆,a

D1.

If D∆,a is bounded, then D∆,a P D∆,a and there has to be a vertex on the
circular arc bounding D∆,a, i.e.

pBD∆,azāq X V ‰ H.

Otherwise we could enlarge D∆,a.
A face ∆ which has no empty immersed disk must have an edge a such that

pD̄∆,azāq Ă D∆. Thus the set

A – tp∆, a, Sq P F ˆ E ˆ V | ∆ has no empty immersed disk,

a is edge of ∆ with pD̄∆,azāq Ă D∆,

S P pBD∆,azāq X V u

is not empty.
We introduce the angle α : AÑ p0, πq,

α p∆, pBCq, Sq– ?BSC.

Let p∆, a, Sq P D such that

αp∆, a, Sq “ max
p∆̃,ã,S̃qPA

αp∆̃, ã, S̃q. (7.1)

∆
a

SB

A

CC

S1a1

∆1 X

γ

α

S

B C

X
S1

γ1

α1

Figure 7.11. (left) For p∆, a, Sq P A we obtain a neighboring element
p∆1, a1, S1 P A. (right) We find αp∆1, a1, S1q ą αp∆, a, Sq since γ1 ă γ in
contradiction to the assumption.
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Let ∆1 be the face sharing the edge a with ∆. We can isometrically unfold it
to the same plane as ∆. Let B,C be the endpoints of a and X the opposite
vertex of ∆1.

a Delaunay edge ñ X R D∆.

Since no triangle may contain any vertices we also have S R ∆1.
Let a1 be the edge of ∆1 closest to S, say a1 “ pBXq. Then there is S1 P V
(possibly S1 “ S) such that

p∆1, a1, S1q P A.

Let us denote the corresponding angles by α– αp∆, a, Sq and α1 – αp∆1, a1, S1q.
Due to Lemma 7.8 the angle γ – π ´ α is the intersection angle of the circular
arc of BD∆,a with a at B. Similarly γ1.
Clearly, γ ą γ1 which implies

α ă α1

in contradiction to (7.1).

Lemma 7.8. Let B,S,C be three points on a circle, α – ?BSC. Then the
intersection angle between the tangent to the circle at B and the secant pBCq
as depicted in Figure 7.12 is equal to α.

B

C

S

α

α

Figure 7.12. Angle in a circular arc.

Proof. While moving S along the circular arc the angle α “ ?BSC stays con-
stant. In the limit S Ñ B the edge pBSq becomes the tangent at B and
pSCq Ñ pBCq.

The characterization of Delaunay triangulations in terms of Delaunay edges
allows us to formulate an angle criterion as in the planar case.

Proposition 7.9 (Angle criterion for Delaunay triangulations). A geodesic tri-
angulation of a piecewise flat surface is Delaunay if and only if for every edge
the sum of the two angles opposite to this edge is less than or equal to π.

This is a practical geometric characterization since angles can be measured
directly on the piecewise flat surface without any need to find empty immersed
disks. Recalling (6.3) we notice at this point

Proposition 7.10. The discrete cotan Laplace operator of a geodesic triangu-
lation T of a piecewise flat surface pM,dq has non-negative weights if and only
if T is Delaunay.
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7.3 The edge-flip algorithm

Let T be a geodesic triangulation of a piecewise flat surface pM,dq.
If we unfold two adjacent triangles of T into the plane, we obtain a quadri-
lateral Q, where one of its diagonals e corresponds to the shared edge of the
triangles and the other one e˚ corresponds to the edge resulting in an edge flip
of e if possible.

Lemma 7.11. Every non-Delaunay edge of T can be flipped and the flipped
edge is then Delaunay.

Proof. Let e be a non-Delaunay edge.
We use Lemma 5.8 to characterize whether e can be flipped. The sum of the
angles opposite to e in the adjacent triangles is greater than π. Therefore the
two triangles have to be different since the sum of all angles in a triangle is
equal to π. The two triangles form a convex quadrilateral as can be seen e.g.
from Figure 7.5. So e can be flipped and the sum of the angles opposite to the
flipped edge e˚ is less than or equal to π.

The following question emerges.

Can any given triangulation be made Delaunay by consecutive edge-
flips?

Definition 7.5. We denote the set of all geodesic triangulations of a given
piecewise flat surface pM,dq with vertex set V by TM,V .

The edge-flip algorithm acts on TM,V in the following way.

Data: Some T P TM,V .
Result: A Delaunay triangulation T P TM,V .
while T is not Delaunay do

Take any non-Delaunay edge e of T ;
Flip e in T ;

end

Figure 7.13. Edge-flip algorithm.

Example 7.2. We make the triangulation of the tetrahedron shown in Fig-
ure 7.14 Delaunay by applying the edge-flip algorithm.

identified edge

unfold

valence 3 vertex valence 2 valence 1

cut here to

unfold
flip flip result

Figure 7.14. Making a given triangulation Delaunay.
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Figure 7.15. Result with colored edges. Green and yellow edges are original
edges. Red and yellow edges are Delaunay edges.

Note that the resulting triangulation is not regular and has a vertex of valence
one.

Theorem 7.12. The edge-flip algorithm terminates for any start triangulation
T P TM,V after a finite number of steps.

Remark 7.7. Removing all edges which would stay Delaunay upon an edge-flip
we obtain the unique Delaunay tessellation. Claiming the existence of some
geodesic triangulation on any piecewise flat surface this implies Theorem 7.5.
In practice having some start triangulation is not an issue since the standard
ways of prescribing a piecewise flat surface already includes a triangulation.

The state of the algorithm is determined by the current triangulation in
TM,V . We address the question of possible loops in the algorithm later by
means of a function f : TM,V Ñ R that decreases on each step.

For a piecewise flat surface –in contrast to triangulations of a finite set of
points in the plane– the set of all triangulations TM,V is an infinite set in general.

Example 7.3 (infinitely many triangulations of the cube with arbitrary long
edges). Consider a standard cube with vertex set V . Unwrapping the cube as
in Figure 5.8 suggests how to create an arbitrary long edge between two vertices
of V . Completing to a triangulation we conclude that there are infinitely many
triangulations of the cube.

So even with the exclusion of loops the algorithm might not terminate.

Definition 7.6 (proper function). We call a function f : TM,V Ñ R proper if
for each c P R the sublevel set tT P TM,V | fpT q ď cu is finite.

Having a proper decreasing function we can ensure termination after a finite
number of steps.

Example 7.4 (edge length function). For an edge e of a triangulation T we
denote its length by lpeq. Consider the function l : TM,V Ñ R which assigns to
each triangulation its maximal edge length

lpT q– max
ePEpT q

lpeq.

As we have seen in Example 7.3 the function l might be unbound on TM,V .
Nonetheless bounding l only leaves a finite number of triangulations.

Claim 7.13. The edge length function l is proper.
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7.3.1 Dirichlet energy and edge-flips

Let T be a geodesic triangulation of a piecewise flat surface pM,dq. We investi-
gate the local change in the Dirichlet energy of a discrete function u : V pT q Ñ R
upon an edge-flip.

The geometry of a convex non-degenerate quadrilateral Q with vertices
1, 2, 3, 4 denoted in counter-clockwise direction is completely determined by the
values of r1, r2, r3, r4 ą 0 and θ P p0, πq as depicted in Figure 7.16. We denote
such a quadrilateral by Qpr1, r2, r3, r4, θq.

2

1
3

4

θ
r1r3

r2

r4

Figure 7.16. A convex non-degenerate quadrilateral Qpr1, r2, r3, r4, θq.

Lemma 7.14 (Rippa’s Lemma). Let u1, u2, u3, u4 be the values of a function
on the vertices of the convex non-degenerate quadrilateral Qpr1, r2, r3, r4, θq. Let
u13 : QÑ R and be the linear interpolation which is affine on the triangles p123q
and p134q whereas u24 : QÑ R is the linear interpolation affine on p234q and
p241q. Let u0 and u˚0 be the values at the intersection point of the diagonals of
u13 and u24 respectively.
Then the difference of the corresponding Dirichlet energies is

Epu13q ´ Epu24q “
1

4

pu0 ´ u
˚
0 q

2

sin θ

pr1 ` r3qpr2 ` r4q

r1r2r3r4
pr1r3 ´ r2r4q. (7.2)

Proof. The diagonals of Q separate the quadrilateral into four triangles ∆1, ∆2,
∆3, ∆4. Both linear interpolations are affine on each of these triangles while the
Dirichlet energy of any affine function u : ∆i Ñ R on the triangle ∆i is given by

E∆ipuq “
1

2

ż

∆i

|∇u|2 dA “
1

2
pu2
x ` u

2
yqAp∆iq.

Consider the triangle ∆1. The interpolation u – u13 is determined by the
values u0, u1, u2 and the geometric data r1, r2, θ of the triangle. Choosing a
coordinate system such that the x-axis is aligned with the edge r1 of ∆1

r1

y

x
θ

Δ1

r2

Figure 7.17. Triangle ∆1 in suitable coordinate system.
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we find

u1 ´ u0 “ uxr1

u2 ´ u0 “ uxr2 cos θ ` uyr2 sin θ,

from which we obtain the partial derivatives ux and uy of u on ∆1

ux “
u1 ´ u0

r1

uy “
1

sin θ

ˆ

u2 ´ u0

r2
´
u1 ´ u0

r1
cos θ

˙

.

For the gradient we get

|∇u|2 “ u2
x`u

2
y “

1

sin2 θ

˜

ˆ

u1 ´ u0

r1

˙2

`

ˆ

u2 ´ u0

r2

˙2

´ 2
pu1 ´ u0qpu2 ´ u0q cos θ

r1r2

¸

.

The gradient of the interpolation u˚ – u24 on ∆1 is obtained by replacing u0

by u˚0 . With Ap∆1q “
1
2r1r2 sin θ the difference of the Dirichlet energies on ∆1

is

E∆1puq ´ E∆1pu
˚q “

1

2

ˆ

|∇u|2 ´ |∇u˚|2
˙

Ap∆1q

“
r1r2

4 sin θ

ˆ

pu2
0 ´ u

˚2
0 q

ˆ

1

r2
1

`
1

r2
2

´
2 cos θ

r1r2

˙

` 2pu0 ´ u
˚
0 q

ˆ

´
u1

r2
1

´
u2

r2
2

`
pu1 ` u2q cos θ

r1r2

˙˙

“
u0 ´ u

˚
0

4 sin θ

ˆ

pu0 ` u
˚
0 q

ˆ

r2

r1
`
r1

r2
´ 2 cos θ

˙

` 2

ˆ

´ u1
r2

r1
´ u2

r1

r2
` pu1 ` u2q cos θ

˙˙

.

For the difference on ∆2 we replace r1 Ñ r2, r2 Ñ r3, θ Ñ π ´ θ and obtain

E∆2
puq ´ E∆2

pu˚q “
u0 ´ u

˚
0

4 sin θ

ˆ

pu0 ` u
˚
0 q

ˆ

r3

r2
`
r2

r3
` 2 cos θ

˙

` 2

ˆ

´ u2
r3

r2
´ u3

r2

r3
´ pu2 ` u3q cos θ

˙˙

.

Similarly for ∆3 and ∆4.
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We sum up over all four triangles obtaining the difference of the Dirichlet ener-
gies on the whole quadrilateral

Epuq ´ Epu˚q “
4
ÿ

i“1

ˆ

E∆i
puq ´ E∆i

pu˚q

˙

“
u0 ´ u

˚
0

4 sin θ

ˆ

pu0 ` u
˚
0 q

ˆ

r1

r2
`
r2

r3
`
r3

r4
`
r4

r1
`
r2

r1
`
r3

r2
`
r4

r3
`
r1

r4

˙

´ 2

ˆ

u1

ˆ

r2

r1
`
r4

r1

˙

` u2

ˆ

r3

r2
`
r1

r2

˙

` u3

ˆ

r4

r3
`
r2

r3

˙

` u4

ˆ

r1

r4
`
r3

r4

˙˙˙

“
u0 ´ u

˚
0

4 sin θ

ˆ

pu0 ` u
˚
0 q

ˆ

pr2 ` r4q

ˆ

1

r1
`

1

r3

˙

` pr1 ` r3q

ˆ

1

r2
`

1

r4

˙˙

´ 2

ˆ

pr2 ` r4q

ˆ

u1

r1
`
u3

r3

˙˙

` pr1 ` r3q

ˆ

u2

r2
`
u4

r4

˙˙

.

The values u0 and u˚0 come from the different linear interpolations along the
diagonals p13q and p24q respectively.

u0 “
r3u1 ` r1u3

r1 ` r3

u˚0 “
r4u2 ` r2u4

r2 ` r4

Using

u1

r1
`
u3

r3
“ u0

r1 ` r3

r1r3

u2

r2
`
u4

r4
“ u0

r2 ` r4

r2r4

we can eliminate all dependence of the vertex values from the difference of the
Dirichlet energies

Epuq ´ Epu˚q “
u0 ´ u

˚
0

4 sin θ
pr1 ` r3qpr2 ` r4q

ˆ

pu0 ` u
˚
0 q

ˆ

1

r1r3
`

1

r2r4

˙

´ 2

ˆ

u0

r1r3
`

u˚0
r2r4

˙˙

“
u0 ´ u

˚
0

4 sin θ
pr1 ` r3qpr2 ` r4q

ˆ

u0

ˆ

1

r2r4
´

1

r1r3

˙

` u˚0

ˆ

1

r1r3
´

1

r2r4

˙˙

“
pu0 ´ u

˚
0 q

2

4 sin θ
pr1 ` r3qpr2 ` r4q

r1r3 ´ r2r4

r1r2r3r4
.

We notice that all factors in (7.2) but the last are positive.39 The sign of
the last factor determines which edge is Delaunay.

39Note that for u0 ´ u
˚
0 ‰ 0 we require that not all of u1, u2, u3, u4 are equal.
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Lemma 7.15 (circular quadrilaterals). The quadrilateral Qpr1, r2, r3, r4, θq is
circular if and only if r1r3 “ r2r4.
Furthermore

r1r3 ą r2r4 ô p24q Delaunay

r1r3 ă r2r4 ô p13q Delaunay.

r1

r3

r2

r4

Figure 7.18. Circularity criterion for a convex quadrilateral in terms of lengths
of diagonal segments.

Corollary 7.16. Suppose that not all of the vertex values u1, u2, u3, u4 are
equal. Then

Epu13q “ Epu24q ô Q circular, i.e. both edges are Delaunay

Epu13q ą Epu24q ô p24q Delaunay

Epu13q ă Epu24q ô p13q Delaunay.

So an edge-flip from a non-Delaunay edge to a Delaunay edge decreases the
Dirichlet energy.

Remark 7.8. Note that the Dirichlet energy depends on the triangulation T
as well as on the function u : V pT q Ñ R. To ensure that the Dirichlet energy
decreases upon an edge-flip u is required to be non-constant close to the edge.

7.3.2 Harmonic index

We introduce a related function that decreases on each step of the edge-flip
algorithm and only depends on the triangulation.

Definition 7.7 (harmonic index). For a triangle ∆ with side-lengths a, b, c we
define its harmonic index to be

hp∆q–
a2 ` b2 ` c2

Ap∆q
,

and for a geodesic triangulation T P TM,V of a piecewise flat surface

hpT q–
ÿ

∆PF pT q

hp∆q.
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Lemma 7.17. Let ∆ be a triangle with angles α, β, γ. Then

hp∆q “ 4pcotα` cotβ ` cot γq.

Proof. Denote by a, b, c the lengths of the sides of ∆ opposite α, β, γ respec-
tively. Consider the height ha on a.

β γ

ha

a

Figure 7.19. Triangle with side lengths a, b, c, corresponding heights ha, hb, hc
and angles α, β, γ.

Then
a “ hapcotβ ` cot γq,

and therefore
a2 “ 2Ap∆qpcotβ ` cot γq.

Adding this up with the corresponding formulas for the remaining edge lengths
we obtain

a2 ` b2 ` c2 “ 4Ap∆qpcotα` cotβ ` cot γq.

What has the harmonic index of a triangulation T to do with the
Dirichlet energy?

Lemma 7.18. Let T be a geodesic triangulation of a piecewise flat surface,
ϕi : V pT q Ñ R, ϕipjq– δij the basis functions on T . Then

hpT q “ 8
ÿ

iPV pT q

Epϕiq.

Proof. The Dirichlet energy of ϕi is given by

Epϕiq “
1

4

ÿ

jPV :pijqPE

pcotαij ` cotαjiq.

Summing along all vertices i P V amounts in counting every angle twice

ÿ

iPV

Epϕiq “
1

2

ÿ

pijqPE

pcotαij ` cotαjiq.

Corollary 7.19. The harmonic index decreases on each step of the edge-flip
algorithm.
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Lemma 7.20. The harmonic index h : TM,V Ñ R is a proper function.

Proof. Denote by A the total area of the surface M . We do a very coarse esti-
mation using the maximal edge length l : TM,V Ñ R introduced in Example 7.4:

hpT q “
ÿ

∆PF pT q

hp∆q ě
lpT q

A
.

So for c P R
hpT q ď c ñ lpT q ď

a

hpT qA “
?
cA,

and we know that l is proper.

We conclude that the edge-flip algorithm terminates after a finite number of
steps. We have therefore proven Theorem 7.12. But even more

Theorem 7.21. Let pM,dq be a piecewise flat surface without boundary, V ĂM
a finite set of points that contains all conical singularities.
Let f : V Ñ R. For each triangulation T P TM,V let fT : M Ñ R be the piecewise
linear interpolation of f which is affine on the faces of T .
Then the minimum of the Dirichlet energy EpfT q “

ş

M
|∇fT |2 dA among all

possible triangulations is attained on a Delaunay triangulation T∆
D P TM,V of

pM,dq:
min

TPTM,V
EpfT q “ EpfT∆

D
q.

7.4 Discrete Laplace-Beltrami operator

Let pM,dq be a piecewise flat surface without boundary, V Ă M a finite set of
points that contains all conical singularities.
Let TD be the Delaunay tessellation of M and T∆

D P TM,V some Delaunay
triangulation of TD. Recalling (6.3) we see that for an edge pijq P E we have

νpijq “ 0 ô αij ` αji “ π,

which is the case for circular quadrilaterals. So the edges in T∆
D coming from tri-

angulating circular polygons of the Delaunay tessellation TD have zero weights.
The weights of edges on the boundary of circular polygons of TD are independent
of the chosen triangulation as can be seen in Figure 7.20.

ν = 0 αij

αij

αji

j

i

Figure 7.20. Cotan-weights of the Delaunay tessellation. (left) An edge coming
from triangulating circular polygons has zero cotan-weight. (right) The cotan-
weight of an edge on the boundary of a circular polygon does not depend on the
triangulation.



7 DELAUNAY TESSELLATIONS 91

So the cotan-weights are well-defined on the edges of the Delaunay tessellation.

Definition 7.8 (discrete Laplace-Beltrami operator). Let pM,dq be a piecewise
flat surface without boundary, V Ă M a finite set of points that contains all
conical singularities.
Let TD be the Delaunay tessellation of M .
Then the discrete Laplace-Beltrami operator of pM,dq is defined by

∆fpiq “
ÿ

e“pijqPEpTDq

νpeq pfpiq ´ fpjqq

for any function f : V Ñ R.
The corresponding Dirichlet energy on pM,dq is defined by

Epfq–
1

2

ÿ

e“pijqPEpTDq

νpeq pfpiq ´ fpjqq
2
,

where ν are the cotan-weights as defined in (6.2) coming from any Delaunay
triangulation T∆

D P TM,V of TD.

Remark 7.9.

§ The sum can be taken over all edges of any Delaunay triangulation as we
have seen above.
The notion of neighboring vertices might differ from the one given by the
“extrinsic triangulation” of a polyhedral surface in RN . Also triangles of a
Delaunay triangulation are not necessarily planar in RN anymore.

Figure 7.21. Simplicial cat. (left) Triangulation coming from the simplicial
surface. (right) Delaunay triangulation (white and red edges).

§ The Laplace-Beltrami operator is a well-defined property of the Delaunay
tessellation TD which is uniquely determined by pM,dq and the vertex set
V . So we have defined a unique discrete Laplace-Beltrami operator of the
piecewise flat surface pM,dq, which is determined by the polyhedral metric
only, i.e. invariant w.r.t. isometries.

§ In Proposition 7.10 we have seen that all weights of the Delaunay triangu-
lation are non-negative. With above considerations we can now conclude
that all weights of the Delaunay tessellation are positive. So for the dis-
crete Laplace-Beltrami operator we can apply the results of the theory of
discrete Laplace operators with positive weights. We are assured to have the
maximum principle and unique minima of the Dirichlet energy.
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7.5 Simplicial minimal surfaces (II)

Having the discrete Laplace-Beltrami operator we can improve the definition of
simplicial minimal surfaces of Section 6.4.

Definition 7.9 (simplicial minimal surface). Let f : S Ñ S Ă RN be a simpli-
cial surface and T its triangulation. Then

S minimal (in the wide sense) :ô ∆f “ 0

S minimal (in the narrow sense) :ô ∆f “ 0 and T is Delaunay,

where in both cases ∆ is the discrete Laplace-Beltrami operator of S.

Remark 7.10.

§ The Laplace-Beltrami operator coincides with the cotan-Laplace operator
only in the narrow definition. So only in this case the surface is actually a
critical point of the area functional.

§ The Laplace-Beltrami operator has all positive weights. If f is harmonic the
maximum principle (Proposition 6.8) implies that any vertex point fpiq lies
in the convex hull of its neighbors:

fpiq P conv tfpjq P Rn | pijq P EpTDqu ,

where neighbors are determined by the Delaunay tessellation TD of S.

Figure 7.22. (left) Simplicial surface which is minimal with respect to the def-
inition of Section 6.4. It violates the maximum principle. (right) Corresponding
minimal surface (in the narrow sense) with respect to Definition 7.9. It satis-
fies the maximum principle. By “corresponding” we mean that it is obtained by
applying Algorithm 7.23 to the left surface.

In the wide definition the neighbors satisfying the maximum principle might
be different from the ones given by the triangulation of S, where in the
narrow definition they coincide.
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This new definition leads to the following algorithm producing minimal sur-
faces in the narrow sense, if it converges.

Data: Simplicial surface f : S Ñ S Ă RN with triangulation T .
Result: Simplicial minimal surface in the narrow sense.
while S is not minimal in the narrow sense do

Compute Delaunay triangulation T̃ of S (use Algorithm 7.13);

Compute f̃ such that
∆
pS,T̃ qf̃ “ 0,

which defines a new simplicial surface S̃;

Replace S by the new surface S̃;

Replace T by T̃ ;

end

Figure 7.23. Simplicial minimal surface algorithm (with intrinsic discrete
Laplace-Beltrami-operator and change of combinatorics).

Remark 7.11. The state of the algorithm is determined by the simplicial surface
S and its triangulation T .
In each step of the while-loop we replace

pS, T q Ð pS̃, T̃ q,

where T̃ is the Delaunay triangulation of S which might not be Delaunay any-
more for S̃.
Besides using the intrinsic Laplace-Beltrami operator the fundamental difference
to Algorithm 6.5 is the change of combinatorics in each step.
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Figure 7.24. Simplicial minimal surface from Algorithm 7.23.

Figure 7.25. Using the intrinsic Laplace-Beltrami operator with and without
change of combinatorics. Starting with a random triangulation the change be-
comes particularly eminent. (left) Random start triangulation. (middle) Result of
Algorithm 7.23 without change of combinatorics. (right) Result of Algorithm 7.23
with change of combinatorics.
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Figure 7.26. Comparing intrinsic and extrinsic Laplace-Beltrami operator. We
start with a triangulation which is not suitable for the resulting minimal surface.
(top) Start triangulation. (bottom left) Result of applying Algorithm 6.5 for some
time. No convergence! (bottom right) Result of Algorithm 7.23.
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Part III

Appendix

A The Heisenberg magnet model

We have seen the Heisenberg flow playing an important role in the characteri-
zation of elastica (in the smooth and in the discrete case, see Section 3).
The Heisenberg flow (2.4) as it acts on the tangent vectors

BtT “ pBtγq
1 “ pγ2 ˆ γ1q1 “ γ3 ˆ γ1 “ T 2 ˆ T (A.1)

is also obtained as the equation of motion in the continuous Heisenberg magnet
model also known as the continuous Heisenberg chain.

Although later seen to be a rather naive discretization the following discrete
model might motivate the continuous Heisenberg chain. Consider a system of
N classical spins Sk “ pS

1
k, S

2
k, S

3
kq P S2 on a (closed) chain, i.e. S : ZN Ñ S2.

We introduce isotropic nearest neighbor interactions by defining the Hamilton
function

HpS1, . . . , SN q “ ´J
N
ÿ

i“1

xSi, Si`1y,

with interaction coefficient J ‰ 0.40 So a configuration with many aligned
neighboring spins has low energy while a configuration with many anti-parallel
next neighbors has high energy. To make each spin behave like a magnetic
momentum we introduce an angular momentum-like Poisson structure by the
following relations:

tSαi , S
β
j u “

ÿ

γ

εαβγδijS
γ
j

for α, β “ 1, 2, 3, i, j “ 1, . . . , N , where εαβγ and δij are the Levi-Civita and
Kronecker symbols.
Let us compute the time flow of this Hamiltonian system.

BtS
α
i “ tS

α
i , Hu “ ´J

ÿ

j,β

tSαi , S
β
j S

β
j`1u.

With

tSαi , S
β
j S

β
j`1u “ tS

α
i , S

β
j uS

β
j`1 ` S

β
j tS

α
i , S

β
j`1u

“
ÿ

γ

pεαβγδijS
γ
i S

β
j`1 ` ε

αβγδi,j`1S
γ
i S

β
j q

we obtain
BtS

α
i “ ´J

ÿ

β,γ

εαβγSγi pS
β
i`1 ` S

β
i´1q,

so for the spin vectors Si

BtSi “ tSi, Hu “ JSi ˆ pSi`1 ` Si´1q. (A.2)

40Notice that we introduced periodic boundary conditions when setting N ` 1 “ 1.
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Uniformly refining the chain on the interval r0, N s while keeping the length
of the spins unit, the smooth limit is a continuous chain of spins S : r0, N s Ñ S2

with periodicity Spx`Nq “ Spxq.
Introducing appropriate scaling the smooth limit of the equations of motion
(A.2) is

BtS “ JS ˆ S2, (A.3)

which is the Heisenberg flow as seen in (A.1) with J “ ´1. A corresponding
Hamilton function is

HrSs “
J

2

ż L

0

›

›S1pxq
›

›

2
dx,

with Poisson structure given by

tSαpxq, Sβpyqu “
ÿ

γ

εαβγδpx´ yqSγpxq,

where δ denotes the delta-distribution.
These all are smooth limits of the discrete equations above.

Indeed, let us start with the Hamilton function. Taking x “ εi we get

xSi, Si`1y “ xSpxq, Spx` εqy

“ xSpxq, Spxq, εS1pxq `
1

2
ε2S2pxq ` opε2qy

“ 1`
1

2
ε2xSpxq, S2pxqy ` opε2q.

From the orthogonality of Spxq and S1pxq we get

0 “
d

dx
xSpxq, S1pxqy “

›

›S1pxq
›

›

2
` xSpxq, S2pxqy.

Altogether while replacing H by H `N we obtain41

H “
J

2
ε2

ÿ

›

›S1pxq
›

›

2
` opε2q

“
J

2
ε

ż

›

›S1pxq
›

›

2
dx` opεq.

So we have to scale the Hamilton function by 1
ε upon taking the limit.

The scaling of the Hamilton function corresponds to replacing the equations of
motion (A.2) by

BtSi “

"

Si,
1

ε
H

*

“
J

ε
Si ˆ pSi`1 ` Si´1q.

So we get

BtSpxq “
J

ε
Spxq ˆ pSpx` εq ` Spx´ εqq

“
J

ε
Spxq ˆ p2Spxq ` ε2S2pxq ` opε2qq

“ JεSpxq ˆ S2pxq ` opεq,

41 Already knowing the result we might get this immediately from observing

1´ xSi, Si`1y “
1

2
xSi`1 ´ Si, Si`1 ´ Siy “

1

2
ε2

›

›S1pxq
›

›

2
` opε2q.
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which still needs rescaling to get a non-trivial limit. Since the Hamilton function
is already fixed this can be achieved by rescaling the time. Replacing t by εt we
obtain (A.3).
The limit of the Poisson structure can be obtained similarly.

Remark A.1. The continuous Heisenberg chain is integrable, see e.g. [FT87].
In Proposition 2.2 we see that the discrete flow (A.2) does not commute with
the tangent flow which indicates that the naive discrete model we used to mo-
tivate the continuous Heisenberg chain might actually not be an appropriate
discretization rather than (2.14) which is discrete integrable.
With the notation from this chapter this is

BtSi “ 2JSi ˆ

ˆ

Sk`1

1` xSk`1, Sky
`

Sk´1

1` xSk, Sk´1y

˙

,

which is associated with the Hamilton function

H “ ´2
ÿ

i

log

ˆ

1` xSi, Si`1y

2

˙

.
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