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Abstract. This work is about introducing generalized isoradial circle pat-
terns. These are circle patterns for which the centers of the circles are the

points of intersection of a circle pattern themselves. This generalizes the class

of isoradial circle patterns. We thereby restrict ourselves to the case of circle
patterns with square grid combinatorics and describe our circle patterns by

their points of intersection, i.e. maps of the form f : Z2 Ñ R2 which we call

nets.
On the way we introduce discrete systems and their multi-dimensional con-

sistency and study various characterizations of circular and conical nets in

higher dimensions which can be immediately transferred to generalized isora-
dial nets.

We prove the statement that a net is generalized isoradial if and only if its
edges are parallel to the corresponding edges of an isoradial net.

The net of the centers of a generalized isoradial circle pattern is generalized

isoradial itself which gives rise to an iteration process. Studying generalized
isoradial nets on the torus is a case suited for simulating this process on a

whole net while only dealing with finitely many points. The initial conditions

used in the simulations always led to nets which converged to an isoradial
net. We prove the convergence for rectangular nets on the torus for which the

process reduces to a one-dimensional process of averaging points on a circle.

It is shown by counter-example that the iteration process does not have an
averaging character in general though.

Date: 2013/11/15.



German Abstract. Diese Arbeit führt eine mögliche Verallgemeinerung der

Kreismuster mit konstantem Radius ein (generalized isoradial circle patterns).

Als charakterisierende Eigenschaft wird hierbei gewählt, dass die Zentren der
Kreise erneut ein Kreismuster definieren. Wir beschränken uns auf den Fall von

Kreismustern mit Z2-Kombinatorik und beschreiben diese vornehmlich durch

die Schnittpunkte ihrer Kreise, also Abbildungen der Form f : Z2 Ñ R2, die
wir als Netze bezeichnen.

Einleitend führen wir den Begriff des diskreten Systems und dessen multi-

dimensionaler Kosistenz ein und untersuchen verschiedene Kriterien zur Charak-
terisierung von zirkulären und konischen Netzen in höheren Dimensionen,

die wir daraufhin auf unsere verallgemeinerten isoradialen Netze anwenden

können.
Weiterhin beweisen wir, dass ein Netz genau dann verallgemeinert isoradial

ist, wenn seine Kanten parallel zu den Kanten eines isoradialen Netzes sind.

Das Netz der Kreiszentren eines verallgemeinerten isoradialen Netzes ist
verallgemeinert isoradial, so dass wir diesen Prozess weiter iterieren können.

Verallgemeinerte isoradiale Netze auf dem Torus lassen sich durch eine endliche
Anzahl von Punkten komplett beschreiben und dienen damit als geeignete

Grundlage für die Simulation dieses Prozesses. Mit allen verwendeten An-

fangsbedingungen in den durchgeführten Simulationen war die Konvergenz
gegen ein isoradiales Netz festzustellen. Wir beweisen die Konvergenz für den

Fall von rechteckigen Netzen auf dem Torus, für die sich der Iterationsprozess

auf das eindimensionale Problem der Mittelung von endlich vielen Punkten
auf einem Kreis zurückführen lässt. Dass der Iterationsprozess jedoch im All-

gemeinen keinen Mittelungsprozess darstellt, zeigen wir an Hand eines Gegen-

beispiels.
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1. Introduction

We introduce circle patterns, give the definition for generalized isoradial circle
patterns and outline the path taken before coming back their study.

1.1. Circle Patterns. Let G be a graph which is a strongly regular polytopal
cell-decomposition of a surface. Let G˚ be its dual graph generated by choosing
one point for each face of the original cell-decomposition G. Connect each pair of
vertices of G˚ by an edge if and only if the corresponding faces in G are adjacent,
i.e. separated by an edge. The vertices of G become the faces of G˚ in such a way
that the map which identifies the elements of G with the elements of G˚ preserves
adjacency. We also have G˚˚ “ G.

Figure 1.1. Part of a graph G (black) and its dual graph G˚ (red).

Although the graph G actually consists of vertices, edges and faces, we write
V P G in the sense of V being a vertex of the graph G. We also identify the faces
of G with the vertices of G˚ so that we can write F P G˚ to determine F to mean
a face of G.

A planar circle pattern is a map C : G˚ Ñ tcircles in R2u mapping faces of G to
circles in the Euclidean plane such that each set of circles corresponding to faces
adjacent to one vertex V P G intersect in one point.

Figure 1.2. Part of a circle pattern (red circles) with correspond-
ing circular net (black intersection points).

We will describe circle patterns by these intersection points as a map f : G Ñ
R2 which we call a circular net since each set of points corresponding to vertices
adjacent to one face have to lie on a circle.
These two descriptions are dual to each other in the sense that they are equivalent
and live on graphs which are dual to each other.

Let

(1.1) CN pGq– tf : G Ñ R2 | f circular netu

denote the set of all circular nets.
Given a circular net f P CN pGq the centers of its circles are naturally assigned to G˚
like the circles themselves. So we get a map cpfq : G˚ Ñ R2 which we call the central
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net of f . This makes c a map on CN pGq into the set NpG˚q– tf : G˚ Ñ R2 | f mapu
of nets on G˚

(1.2) c : CN pGq Ñ NpG˚q

1.2. Generalized Isoradial Circle Patterns. A circular net is called isoradial
if all circles of its circle pattern have the same radius. For an isoradial net f we
immediately see that its central net cpfq defines an isoradial net itself.

Figure 1.3. Vertex of an isoradial net. The distances (blue lines)
of the centers of the adjacent circles to the vertex are equal.

Proposition 1.1 (centers of an isoradial circle pattern). The central net c : G˚ Ñ
R2 of an isoradial net f : G Ñ R2 is an isoradial net with same radius and central
net f .

Proof. Consider a vertex V P G and the centers of the circles intersecting in fpV q.
Then they all have the same distance to fpV q since f is isoradial. See Figure 1.3. �

In particular, the central net of an isoradial net is a circular net itself which we
will make our defining property for generalized isoradial circle patterns.

Definition 1.1 (generalized isoradial circle pattern). Let f : G Ñ R2 be a circular
net. Then f is called generalized isoradial if its central net c : G˚ Ñ R2 is circular.
Let GI pGq denote the set of all generalized isoradial nets on G.

So the set of generalized isoradial nets is the preimage of the set of circular nets
on the dual graph with respect to the map c, i.e.

(1.3) GI pGq “ c´1
`

CN pG˚q
˘

We will see that the central net of a generalized isoradial net is itself generalized
isoradial, i.e. its central map is again circular. This central net of the central net
is again defined on the original graph G making the composition of the map c with
itself a map on GI pGq
(1.4) c2 : GI pGq Ñ GI pGq
which we can iterate further on. The isoradial nets are exactly the elements of
GI pGq which are invariant with respect to c2.
We will see that one is tempted to state the conjecture that iteration of this map
for suitable initial generalized isoradial nets f P GI pGq makes the radii of the circle
pattern become equally distributed, i.e. the sequence

`

c2npfq
˘

nPN0
converges to an

isoradial net.
Giving emphasis to the vertices and edges of the map f : G Ñ R2 rather than the

circles by defining its edges in R2 to be the line-segments connecting neighboring
points we end up with a polytopal cell-decomposition in R2 which is a (not neces-
sarily embedded) realization of the graph G where each polygon has a circumcircle.
We mainly restrict ourselves to circular patterns with square grid combinatorics,
i.e. G “ Z2 making all the polytopes quadrilaterals. The conditions of circularity of
the points and circularity of the centers can be imposed in the form of conditions
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on the angles between the introduced edges of the map f : Z2 Ñ R2. We will also
see that the generalized isoradial nets GI

`

Z2
˘

are exactly the circle patterns which

are parallel to an isoradial net.1

Viewing circular nets with square grid combinatorics f : Z2 Ñ R2 as a special
case of circular nets f : Zm Ñ RN (where each four points adjacent to the same
face are circular) we will explore the condition of circularity in the form of the
symmetry with respect to certain reflections in this general setting.
In addition we will introduce conical nets in R3 which possess the same kind of
symmetry as circular nets before eventually returning to the study of the main
subject of generalized isoradial nets in the plane which we will see to incorporate
properties of both these classes of nets.

Since this line of investigation belongs to the setting of discrete differential geom-
etry we will first introduce the notion of a discrete system and its multi-dimensional
consistency in the preliminaries.

1In the sense of parallel edges.
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2. Preliminaries

The main part of this work deals with circle patterns in the plane with square
grid combinatorics, which we describe by their points of intersection, i.e. maps of
the form f : Z2 Ñ R2 which we call nets. Generalized isoradial nets have common
properties with circular nets and conical nets which we will introduce in a more
general multi-dimensional setting making them special cases of Q-nets and Q˚-nets
respectively.
Regarding the question of what kind of initial data is needed in the different settings
and dimensions to describe one of these nets uniquely it is suitable to introduce
the notion of discrete systems and their consistency which is done loosely following
[BS09].

Notation 2.1. Let m P N, f : Zm Ñ X a map to some set X.
For i “ 1, . . . ,m we define translation operators

(2.1) pτifqpuq :“ fpu` eiq for u P Zm

where ei P Zm denotes the i-th canonical basis vector. If X has a group structure
we also define difference operators

(2.2) pδifqpuq :“ pτifqpuq ´ fpuq for u P Zm.

We often write fi :“ τif , fij :“ τiτjf and use the symbols f , fi, fij for the maps
Zm Ñ X as well as for a specific point fpuq, fipuq, fijpuq for u P Zm if the meaning
follows from the context.
We denote the coordinate d-planes and elementary d-dimensional cells of Zm by

(2.3)
Bi1...id :“ tu P Zm | ui “ 0 for i ‰ i1, . . . , idu

Ci1...idpuq :“ tu` ε1ei1 ` ¨ ¨ ¨ ` εdeid | ε1, . . . εd P t0, 1uu for u P Zm

The m-dimensional cells C1,...,m can be identified with elements of the dual2 lattice
pZmq˚ which can be seen as Zm translated by 1

2 in all coordinate directions and
therefore is isomorphic to Zm itself.

(2.4) pZmq˚ “ tu`
m
ÿ

i“1

1
2ei | u P Z

mu – Zm

2.1. Discrete Systems. Let m P N, X some set, called the phase space.
By a discrete system with X-valued fields on the vertices of Zm we understand

a set of admissible initial values f0 : U Ñ X, U Ă Zm and a set of rules which
determine how to propagate these values throughout Zm, such that for any admis-
sible initial values f0 the values of all other fields are uniquely determined by these
rules, i.e. there exists a unique map

(2.5) f : Zm Ñ X

such that f |U “ f0 and the values of f comply with the rules. f is then called the
solution of the discrete system for the initial data f0.

Remark 2.1. The notion of a discrete system can also be introduced on more general
cell-decompositions and with fields on any elementary sub-cells (e.g. fields on edges
instead of vertices).

Instead we will specialize the notion even more for our purposes and generate
the global behavior of a discrete system by imposing rules locally on the elementary
cells.

2Dual in the sense of dual cell decomposition.
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Definition 2.1 (discrete mD-system). A discrete mD-system3 is a set of rules
such that there is one rule4 regarding all 2m fields adjacent to each elementary
m-dimensional cell C P pZmq˚ such that for any given 2m´1 values the 2m-th value
is uniquely determined.

So on each cell C the set of rules determines 2m maps of propagation

(2.6) ϕC
˘1,...,˘m : X2m´1 Ñ X.

and for any suitable ”pm ´ 1q-dimensional” subset B Ă Zm (such as the union of
the coordinate hyperplanes Bi1...̂ık...im or any translate of them5) any admissible
initial values can be propagated through the whole lattice of Zm using those maps.

x x1

x2
x12 “ ϕpx, x1, x2q

x11

x22
x112 “ ϕpx1, x11, x12q

x122 “ ϕpx2, x12, x22q

Figure 2.1. Propagation of some initial values of a discrete sys-
tem on the coordinate lines of Z2 through the first quadrant with
the same propagation map ϕ “ ϕ12 on all faces.

Remark 2.2 (compatibility conditions). The local solvability condition can also be
stated in the following way. Any two sets of 2m values adjacent to one elementary
cell which agree in 2m´ 1 values and satisfy the rule also agree in the 2m-th value.
This locally insures the uniqueness of the solution in a way that does not depend on
where we choose our initial 2m´1 values. When using the maps of propagation (2.6)
this implies certain compatibility conditions for those maps (see also Example 2.1).
On the global scale6 this means that two solutions f1 and f2 satisfying the same set
of local rules but coming from initial values on different subsets B1 and B2 of Zm are
identical if they agree on B1 or B2 or any other suitable ”pm´1q-dimensional” subset
of Zm.7 Since it does not matter where we take the initial values we excluded them
from Definition 2.1 and implicitly understand them to be values on any suitable
”pm´ 1q-dimensional” subset of Zm.8

In the following we restrict ourselves to the case of one and the same rule for
each pm´ 1q-dimensional elementary cell of the lattice Zm.

Remark 2.3. We additionally get translational invariance of the solutions in this
case, i.e. any initial data which are translates of each other give us solutions which
are translates of each other.

Example 2.1 (quad equation). Consider an equation

(2.7) Qpx, x1, x2, x12q “ 0

over some field X which can be solved for any of its four variables. Imposing this
quad-equation onto all elementary quadrilaterals of Z2 induces a 2D-system in the
sense of Definition 2.1.

3A more precise terminology would be ”a local discrete m-dimensional system on Zm”.
4Rule in the sense of a condition.
5Where ı̂k means that the index ik is to be omitted.
6The transition from local to global is possible since we are dealing with the topology of Zm.
7Of course, if we want to get the same solution from initial values given at different positions,

the values at these positions have to be different in general.
8Where suitable means that it ensures the existence and uniqueness of a solution.
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x12

x x1

x2

Q

Figure 2.2. Elementary quadrilateral of Z2 with fields
x, x1, x2, x12 on the vertices and equation Qpx, x1, x2, x12q “ 0 on
the face.

It gives rise to four maps ϕ12, ϕ´12, ϕ1´2, ϕ´1´2 : X3 Ñ X such that for four
values x, x1, x2, x12 P X (2.7) is equivalent to satisfying one of the following equa-
tions

(2.8)

x “ ϕ´1´2px12, x2, x1q

x1 “ ϕ1´2px2, x12, xq

x2 “ ϕ´12px1, x, x12q

x12 “ ϕ12px, x1, x2q.

So given any initial values f |B1 P X
B1 , f |B2 P X

B2 on the coordinate axis we can
use the map ϕ12 to propagate them through the first quadrant, ϕ´12 to propagate

them through the second quadrant and so on until we get values f P XpZ
2
q for all

fields throughout the whole lattice satisfying

(2.9) Qpfpuq, τ1fpuq, τ2fpuq, τ12fpuqq “ 0 for u P Z2.

The solvability for each variable, i.e. uniqueness of the solutions automatically
imposes the compatibility conditions on our maps mentioned in Remark 2.2. E.g.
for any x, x1, x2, x12 P X we have

(2.10) x12 “ ϕ12px, x1, x2q ô x “ ϕ´1´2px12, x2, x1q,

so

(2.11) ϕ´1´2pϕ12px, x1, x2q, x2, x1q “ x for x, x1, x2 P X.

If we additionally assume our equation to be symmetric with respect to any
permutation of the variables the propagation in any direction becomes the same,
i.e. we only have one map ϕ “ ϕ12 “ ϕ´12 “ ϕ1´2 “ ϕ´1´2 and end up with the
situation depicted in Figure 2.1.

Since we have only one equation for all faces of Z2 we can easily add one dimen-
sion and impose this equation onto all faces of the 3-dimensional lattice Z3.

To answer the question whether this induces a 3D-system consider an elemen-

x x1

x2 x12

x3 x13

x23 x123

Figure 2.3. 3D-consistency of a 2D-system. The value for x123
has to be uniquely determined by the seven initial values.
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tary cube C123puq of Z3. If we now start with four initial values x, x1, x2, x3
as in Figure 2.3 we can calculate in a first step the values x12 “ ϕpx, x1, x2q,
x23 “ ϕpx, x2, x3q, x13 “ ϕpx, x1, x3q using the 2D-system and end up with 7 ad-
missible initial values for our local 3D-system.
In a second step we now have 3 possibilities using our 2D-system to calculate the
value of x123, namely ϕpx1, x12, x13q, ϕpx2, x12, x23q, ϕpx3, x13, x23q. To get a well-
defined 3D-system these values should coincide and we end up with a 3D-consistency
condition for our 2D-system:

ϕpx1,ϕpx, x1, x2q, ϕpx, x1, x3qq

“ ϕpx2, ϕpx, x1, x2q, ϕpx, x2, x3qq

“ ϕpx3, ϕpx, x1, x3q, ϕpx, x2, x3qq

(2.12)

We don’t have to stop here but rather go on asking the question about 4D-
consistency of our new attained 3D-system as well. But this is automatically fulfilled
as Theorem 2.1 states.

Definition 2.2 (consistency). Impose an mD-system onto the m-dimensional cells
of Zm`1. If this induces an pm` 1qD-system for any admissible initial values9 the
mD-system is called pm` 1qD-consistent.

Remark 2.4. As stated in Example 2.1 the pm`1qD-consistency can be checked by
verifying that using any admissible initial data of the mD-system on an pm ` 1q-
dimensional elementary cell produces the same values independent of along which
path of m-dimensional elementary cells we propagate these values using the mD-
system.

Theorem 2.1 (multi-dimensional consistency). An mD-system which is pm`1qD-
consistent is also nD-consistent for all n ě m.

Proof. Proof by induction, see [BS09]. The proof there is given for m “ 3. �

If an mD-system is multi-dimensional consistent it induces an nD-system for
n ą m where the admissible initial data on the pn ´ 1q-dimensional hyperplanes
can be any solutions of the pn´ 1qD-system induced by the original mD-system.
Alternatively one can always use admissible values for the original mD-system on
the m-dimensional coordinate planes as initial values for the nD-system since the
consistency allows us to propagate them first to all pn´ 1q-dimensional coordinate
planes.

Remark 2.5. The multi-dimensional consistency of an mD-system leads to per-
mutability claims about its discrete transformations governed by the induced pm`
1qD-system on Zm ˆ t0, 1u Ă Zm`1. See [BS09].

2.2. Q-nets. We now introduce Q-nets as an example of how geometric constraints
on a discrete net f : Zm Ñ RN give rise to a discrete system. The notion of Q-nets
actually belongs to projective geometry so we formulate it for RPN .

Definition 2.3 (Q-net). Let m ě 2, N ě 3, f : Zm Ñ RPN .
Then f is called an m-dimensional Q-net (discrete conjugate net) in RPN if for
each u P Zm its elementary quadrilaterals pf, fi, fj , fijq, i, j “ 1, . . . ,m, i ‰ j are
coplanar.

92m`1´1 initial values on an pm`1q-dimensional elementary cell are called admissible in this
context if each 2m or 2m´ 1 values adjacent to an m-dimensional sub-cell are either a solution of
the mD-system or admissible initial values for it.
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In affine coordinates10 this means fij P f ` spantfi, fju or equivalently11

(2.13) δiδjf P spantδif, δjfu,

i.e.

(2.14) δiδjf “ cjiδif ` cijδjf

for some cij , cji P R.

2.2.1. Q-surfaces. For m “ 2 the Q-net condition by itself does not induce a 2D-
system for initial data f |B1

, f |B2
on the vertices of the coordinate lines. Given

three points of a face there are still two degrees of freedom to determine a fourth
point on the plane spanned by them.
So, for example, additionally prescribing c12 and c21 in (2.14) on all faces of Z2

determines the whole Q-surface f : Z2 Ñ RN uniquely.

Remark 2.6. Consider a parametrized continuous surface f : R2 Ñ R3, px, yq ÞÑ
fpx, yq with Gauss-map N : R2 Ñ S2. Then12

f conjugate line parametrization ô 〈fx,dNpfyq〉 “ 0

i.e. the second fundamental form is diagonal

ô 〈fxy, N〉 “ 0

ô fxy P spantfx, fyu

So condition (2.14) resembles the condition for conjugate line parametrizations in
the case of discrete surfaces.

2.2.2. Q˚-nets.

Definition 2.4 (Q˚-net). A net f : Zm Ñ tplanes in RP3u is called Q˚-net if each
four planes adjacent to one face intersect in one point.

Example 2.2. The planes of a Q-surface f : Z2 Ñ RP3 can be assigned to the
faces of Z2 or equivalently to the vertices of the dual lattice pZ2q˚. This gives rise
to a map f˚ : pZ2q˚ Ñ pRP3q˚ where planes of RP3 are identified with points in
the dual space pRP3q˚. The statement of four planes in RP3 meeting in one point
is dual to the statement of four points in pRP3q˚ lying on a plane. So the Q˚-net
f˚ is a Q-net in pRP3q˚.

2.2.3. Basic 3D-system and consistency.

Theorem 2.2. The system governing Q-nets is a discrete 3D-system.13

Proof. Consider an elementary cube of Z3 with seven admissible initial values
f, fi, fij . The Q-net condition implies that f123 has to lie on the three planes
τiΠjk :“ fi ` spantδjfi, δkfiu. Since three planes in RP3 always intersect in one
point, f123 is uniquely determined. �

Remark 2.7. We silently assumed the data to be in general position to avoid de-
generate cases where some of the planes coincide. We always assume this kind of
generic data in the following without mentioning it explicitly.

10We denote the affine coordinates g P RN such that pg, 1q are some homogeneous coordinates

for f by the same symbol f here.
11Note that δiδj “ fij ´ fi ´ fj ´ f ‰ fij ´ f .
12Where fx “

Bf
Bx

denotes the partial derivative of f with respect to x and dN the differential

of N .
13i.e. admissible initial data on the coordinate planes determines a whole Q-net uniquely.
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Remark 2.8. The case ofN “ 2 where everything lies in one plane has been excluded
from our definition of Q-nets since it obviously does not lead to a 3D-system.
Studying properties of projections of Q-nets in higher dimensions to the plane allows
to find alternative characterizing properties of Q-nets which are also applicable to
the plane, see [BS09].

Theorem 2.3. The 3D-system governing Q-nets is 4D-consistent.

Proof. See [BS09]. �

So from Theorem 2.1 follows that it is also mD-consistent for m ě 4.

Remark 2.9. 3-dimensional Q-nets f : Z3 Ñ RN can be viewed as a family of Q-
surfaces where each two consecutive surfaces are connected by an F-transform, i.e.
a transformation for which each two neighboring points and its images are coplanar.
In this interpretation the statement that Q-nets build a 3D-system is a statement
about the uniqueness of such transformations and the 4D-consistency a statement
about their permutability.
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3. Circular nets

The introduction of circular nets follows [BS09] until we introduce our concept
of defining the angles of a quadrilateral.

Definition 3.1 (Circular nets). Let m ě 2, N ě 2, f : Zm Ñ RN .
Then f is called an m-dimensional discrete circular net in RN if all its elementary
quadrilaterals pf, fi, fij , fjq, i, j “ 1, . . . ,m, i ‰ j are circular.

Notation 3.1. Denote by C : pZ2q˚ Ñ tcircles in RNu the circumcircles of f and by
c : pZ2q˚ Ñ RN their midpoints, where each circle and midpoint is associated to an
elementary quad of Zm, i.e. a point of pZmq˚. We call c the central net of f or its
circular centers.

c

f

fi

fj
fij

Figure 3.1. Elementary quadrilateral of a circular net with circumcircle.

Remark 3.1. Four points lying on a circle are planar. So in the case N ě 3 circular
nets are special Q-nets. The case of N “ 2 is the case of circle patterns in the
plane.

Remark 3.2. This definition belongs to Möbius geometry. So one can use RNYt8u
instead of RN .
Using the projective model of Möbius geometry, i.e. the quadric PpLN`1q which is
the projectivized light cone in the projectivized Lorentz-space PpRN`1,1q, one can
treat circular nets as Q-nets restricted to a quadric. See [BS09].

3.1. Circular surfaces. For m “ 2 consider three points of an elementary quad of
a circular net. Then there is one degree of freedom when choosing the fourth point
on the circle passing through the three points. So the circularity condition reduces
the degrees of freedom in comparison to the planarity condition of Q-nets by one.
For initial values f |B1

, f |B2
on the coordinate lines one can, for example, prescribe

real values for the cross-ratio on each face using Proposition 3.1 for determining a
whole net.
The cross-ratio of four points z1, z2, z3, z4 in the complex plane which is identified
with the affine 2-dimensional subspace of the quad in RN is understood to be

(3.1) crpz1, z2, z3, z4q–
z1 ´ z2
z2 ´ z3

z3 ´ z4
z4 ´ z1

Proposition 3.1. Let z1, z2, z3, z4 P C – R2 be four distinct points in the plane.
Then

pz1, z2, z3, z4q circular ô q – crpz1, z2, z3, z4q P Rzt0, 1u
Moreover if pz1, z2, z3, z4q is circular, then

pz1, z2, z3, z4q embedded14ô q ă 0

14Meaning that z1, z2, z3, z4 are in cyclic order on the circle or equivalently that z1 and z3 are

separated by z2 and z4.
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Proof. Map z2, z3, z4 by the Möbius transformation m– crp‚, z2, z3, z4q to 0, 1,8.
So q “ mpz1q. Since z1 lies on the circle through z2, z3 and z4, q “ mpz1q lies on
the line through 0, 1,8, i.e. q P R.
The rest follows from comparing the order of the points on the circle to its images
on the real line. �

Consider the case N “ 3 of a discrete circular surface in R3. For each circle there
is a unique line through its center orthogonal to the plane of the circle. Denote
those lines by l : pZ2q˚ Ñ tlines in R3u. They can be interpreted as the normal
field of our discrete surface and possess the following property.

Proposition 3.2. l is a line congruence, i.e. any two neighboring lines intersect.

Proof. For any u P pZ2q˚ and direction i “ 1, 2 consider the two neighboring lines
l and li. The corresponding circles C and Ci intersect in two points and therefore
lie on a 2-dimensional sphere. So l and li both pass through the center of the
sphere. �

l li

N Ni

c ci

C Ci

Figure 3.2. Two adjacent circles of a circular net. The normal
lines intersect in a focal point.

Remark 3.3. These lines also exist for N ą 3. In this case they are characterized
by going through the center of the 2-sphere and the center of the circle, rather than
the orthogonality condition.

Denoting by N : pZ2q˚ Ñ S2 some chosen normal vectors on l we can reformulate
Proposition 3.2 as

(3.2) δiN P spantN, δicu.

Remark 3.4. Consider a conjugate line parametrization of a continuous surface
f : R2 Ñ R3, with Gauss-map N : R2 Ñ R3. Then

f curvature line parametrization ô 〈fx, fy〉 “ 0

i.e. the first fundamental form is diagonal

Since fx and fy are conjugated, i.e. 〈Nx, fy〉 “ 〈Ny, fx〉 “ 0 we even get

〈fx, fy〉 “ 0 ô Nx P spantN, fxu

ô Ny P spantN, fyu

So while the planarity condition of a Q-net resembles the property of a conjugate
line parametrization, the circularity condition resembles the additional property of
a curvature line parametrization, i.e. being orthogonal.

Going along a strip of a circular net from face to face crossing opposite edges
corresponds to going along a curvature line. The radius r of the sphere containing
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two adjacent circles can be interpreted as the discrete principal curvature 1
r in that

direction which is naturally assigned to the edges one crosses along the strip.
The centers of the spheres can be interpreted as discrete focal points of that direc-
tion. Joining all focal points for one direction into a new net gives rise to a discrete
focal net (as described in [PW08]) which can easily seen to be a Q-net.

3.2. Basic 3D-system and consistency. Circular nets are Q-nets and we already
know that for any seven points f, fi, fij on an elementary cube of Z3 which fulfill
the Q-net condition, the eighth point f123 is uniquely determined as the intersection
of three planes. Now the question is whether the circularity condition is compatible
with this.

Theorem 3.3. The system governing circular nets is a discrete 3D-system.

Proof. Suppose N ě 3 at first.
Let f, fi, fij , i, j “ 1, 2, 3, i ‰ j be seven points in RN such that each of the three
elementary quadrilaterals pf, fi, fij , fjq is circular. We have to show that the three
circles τiCjk through fi, fij , fik intersect.
The four points f, fi lie on a 2-dimensional sphere. This sphere contains the circles
through each three of those points so in particular the three points fij . So all con-
sidered points and circles lie on a sphere which can be stereographically projected
to a plane.
For N “ 2 we start at this point.
Now mapping the point f to 8 by a Möbius-transformation15 makes the claim
equivalent to Miquel’s theorem.
See, for example, [BS09]. �

f ÞÑ 8

f

Figure 3.3. Elementary cube of a circular net. Map f to 8 and
use Miquel’s theorem to see that circular nets build a 3D-system.

For N ě 3 and generic data the eighth point of an elementary cell determined in
the proof is in particular the intersection point of the three planes the circles τiCjk
lie in, i.e. the point determined by the 3D-system governing Q-nets.
So having circular initial data f |Bij

on the 2-dimensional coordinate planes of Zm
we can use the system governing Q-nets to propagate it through the whole lattice,
while Theorem 3.4 assures that the circularity condition is preserved.
So the multidimensional consistency of Q-nets implies the multidimensional consis-
tency of circular nets for N ě 3.
In the case of N “ 2 the plane can be stereographically projected to a 2-sphere
lying in R3. The circles in the plane become circles on the sphere. So in particular
the net becomes a Q-net in R3 and the consistency follows from the consistency for
N “ 3.

Theorem 3.4. The 3D-system governing circular nets is multi-dimensional con-
sistent.

15In the case of N ě 3 this is equivalent to directly projecting stereographically with f as
north-pole.
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3.3. Concerning angles. For any of the following sections involving angles one
has to be careful which angles to take, especially when dealing with non-embedded
and clockwise oriented quads.

For three points z1, z2, z3 P C in the plane we define an angle

(3.3) ?pz1, z2, z3q– arccos
〈z1 ´ z2, z3 ´ z2〉
|z1 ´ z2||z3 ´ z2|

P p0, πq

Now for two distinct lines l1, l2 in the plane intersecting at a point we have to
decide between two possible choices. We denote by ?pl1, l2q the following angle:
Take any point on l1 and go to the left around the point of intersection until you
first meet l2.

l1

l2

?pl1, l2q

?pl2, l1q
z1z2

p

Figure 3.4. Convention for angles between two lines.

We state this in the following formal way.

Definition 3.2 (angle between lines). Let l1, l2 be two distinct lines in the plane
intersecting at p P C. Let z1 P l1 and z2 P l2 such that Im z2

z1
ą 0. Then

(3.4) ?pl1, l2q– ?pz1, p, z2q

It immediately follows that ?pl1, l2q P p0, πq and for any lines b1 and b2 perpen-
dicular to l1 and l2 respectively we get

?pl1, l2q “ ?pb1, b2q(3.5)

?pl1, l2q `?pb2, b1q “ π(3.6)

In fact rotating l1 and l2 by any common angle will yield these results.

Remark 3.5. For line segments rz1, z2s Ă C we define the angles by the lines con-
taining the segments. Especially for two adjacent edges rz1, z2s and rz2, z3s this
means that in general ? prz1, z2s , rz2, z3sq ‰ ?pz1, z2, z3q but they are either equal
or supplementary.

We now introduce a convention on how we want to label angles in quadrilaterals
and planar vertex stars.
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Notation 3.2 (quad-angles). For a quadrilateral with vertices z1, z2, z3, z4 P C we
denote its four quad-angles by α, β, γ, δ and define them to be the angles between
the lines li – pzizi`1q through its edges, i.e.

(3.7)
α “ ?pl1, l4q β “ ?pl2, l1q

γ “ ?pl3, l2q δ “ ?pl4, l3q

z1

z2

z4
z3

z1

z2

z4

z3

α
β

δ γ

α
β

δ

γ

z1

z2

z4z3

α
β

δ

γ

Figure 3.5. Convention for measuring angles in a quadrilateral
as the angles between the lines containing their edges. For an
embedded quad of positive and negative orientation on the left
and a non-embedded quad on the right.

Note that enumerating the vertices induces an orientation for the quad. The two
possible orientations carry supplementary angles. We call an embedded quad with
a clockwise orientation flipped.

Notation 3.3 (vertex-angles). Let w,w1, w2, w3, w4 P C be a planar vertex star
consisting of the edges rw,wis which are contained in the lines bi – pwwiq. Then
we denote its vertex-angles by α, β, γ, δ and define them to be the angles between
the lines bi – pwwiq, i.e.

(3.8)
α “ ?pb2, b3q β “ ?pb3, b4q

γ “ ?pb4, b1q δ “ ?pb1, b2q

w1

w2

w3

w4

αβ

γ δ

Figure 3.6. Convention for labeling angles around a vertex star.

We will later adapt this convention for labeling all angles in a discrete net f :
Z2 Ñ R2 by indexing α, β, γ, δ by the quadrilaterals u P pZ2q˚ or vertices v P Z2.

If dealing with a vertex star inside a quadrilateral as in the next chapter we will
equip the angles of the vertex star with tildes.
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3.4. Reflection and angle criteria. Beside the cross-ratio criterion of Proposi-
tion 3.1 we now state two additional criteria for the circularity of planar quadrilat-
erals which can be used to characterize circular nets.

Proposition 3.5 (Reflection criterion for circular quads). Let z1, z2, z3, z4 P C be
four points in the plane.
Then z1, z2, z3, z4 lie on a circle if and only if there are four lines bi intersecting in
one point,

(3.9) tcu–
4
č

i“1

bi ‰ H,

such that for the reflections Ri in the lines bi

(3.10) zi “ Ri´1pzi´1q for i “ 1, . . . , 4.16

In this case bi is the bisector of the segment rzi, zi`1s, c the center of the circle and

(3.11) R4 ˝R3 ˝R2 ˝R1 “ id

z1

z2

z4
z3

b2

b1

b3

b4
δ̃

β̃

δ

β

Figure 3.7. The vertices of a circular quad are symmetric with
respect to reflections in the bisectors of its edges.

Proof. ”ñ” Choose bi to be the bisectors of rzi, zi`1s for i “ 1, . . . , 4 respectively.
Then they all go through the center c of the circle and the corresponding reflections
Ri fulfill (3.10).
”ð” A reflection Ri leaves the distance to all points on the line bi invariant. Since
all the lines intersect in one point c (3.10) implies

}zi ´ c} “ }zj ´ c} for i, j “ 1, . . . , 4

and that bi bisects rzi, zi`1s.
We still have to prove (3.11).

The composition of two successive reflections is a rotation around c by the double
angle between the reflection lines. W.l.o.g c “ 0. Let δ̃ – ?pb1, b2q, β̃ – ?pb3, b4q
be the angles between the bisectors. Then

(3.12)
R2 ˝R1 : z ÞÑ e2iδ̃z

R4 ˝R3 : z ÞÑ e2iβ̃z.17

We also know

z1 “ R4 ˝R3 ˝R2 ˝R1pz1q “ e2ipβ̃`δ̃qz1

16Where indices are to be taken modulo 4.
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So

(3.13) e2ipβ̃`δ̃q “ 1

and therefore R4 ˝R3 ˝R2 ˝R1 “ id.
We additionally see that β̃ ` δ̃ “ π since β̃, δ̃ P p0, πq. �

Remark 3.6. The reflection principle can easily be generalized to an arbitrary num-
ber of points on a circle.

Corollary 3.6. Let x1, x2, x3, x4 P RN be four points on a circle. Then the reflec-
tions Ri in the hyperplanes bisecting the edges rzi, zi`1s fulfill

(3.14) R4 ˝R3 ˝R2 ˝R1 “ id

Given a circular net f we assign its bisecting hyperplanes to the edges of Zm.
The corresponding reflections adjacent to one vertex fulfill (3.14). We call this the
symmetry net of f which motivates the following general definition.

Definition 3.3 (symmetry net). Let EpZmq be the set of unoriented edges of Zm.
A map b : EpZmq Ñ thyperplanes in RNu is called a symmetry net if and only
if for each four edges the corresponding hyperplanes b1, b2, b3, b4 intersect in an
pN ´ 2q-dimensional affine subspace and the four reflections Ri in bi fulfill (3.14).

Remark 3.7. Interpreted as a Q˚-net b˚ : EpZ2q Ñ pRPN q˚ the incidence condi-
tion dual to b1, b2, b3, b4 intersecting in a pN ´ 2q-dimensional subspace becomes
b˚1 , b

˚
2 , b

˚
3 , b

˚
4 lying on a line.

Using Definition 3.3 and the higher-dimensional implications of Proposition 3.5
we can now formulate a criterion for circular nets in the following way.

Proposition 3.7 (reflection criterion for circular nets). Let f : Zm Ñ RN be a
net.
Then f is circular if and only if it possesses a reflection net, i.e. there is a reflection
net b : EpZmq Ñ thyperplanes in RNu such that each two adjacent vertices of f are
symmetric with respect to the reflection corresponding to the edge joining them.

(3.15) Rpu,u`eiq pfpuqq “ τifpuq for u P Zm, i “ 1, . . . , 4

A circular net uniquely defines a corresponding reflection net.
Given a reflection net on the other hand, we get an N -parameter family of corre-
sponding circular nets by choosing one point x P RN and successively reflecting it
throughout the lattice Zm. The incidence condition of four adjacent hyperplanes
intersecting in an pN ´ 2q-dimensional subspace assures that the corresponding
reflections can be restricted to the 2-dimensional orthogonal complements of the
intersection while Proposition 3.5 together with (3.14) assures that each four points
adjacent to one face lie on a circle as well as that the construction does not conclude
in any contradictions.

Proposition 3.8 (angle-criterion for the reflection condition). Four hyperplanes
b1, b2, b3, b4 intersecting in an pN ´ 2q-dimensional affine subspace fulfill (3.14) if

and only if the angles δ̃ “ ?pb1, b2q and β̃ “ ?pb3, b4q fulfill

(3.16) β̃ ` δ̃ “ π

Notation 3.4. For two hyperplanes b1 and b2 intersecting in an pN´2q-dimensional
affine subspace U we define their angle ?pb1, b2q to be the angle between the lines
b1 X UK and b2 X UK for some 2-dimensional plane UK orthogonal to U . This
definition is independent of the choice of UK.
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Proof. Reducing the problem to any plane orthogonal to the pN ´ 2q-dimensional
intersection we see that we have already proven this angle-condition in the proof of
Proposition 3.5. �

So Proposition 3.8 immediately gives an angle criterion for symmetry nets and
additionally for circular nets as can be seen in the next proposition.

Proposition 3.9 (angle criterion for circular quads). A quadrilateral with vertices
z1, z2, z3, z4 P C and quad-angles α, β, γ, δ is circular if and only if opposite angles
are supplementary, i.e

(3.17) α` γ “ π

or equivalently

(3.18) β ` δ “ π

Proof. ”ñ” Let z1, z2, z3, z4 lie on a circle. Let δ̃ “ ?pb1, b2q and β̃ “ ?pb3, b4q
denote the angles between the orthogonal bisectors bi as in Proposition 3.5, see
Figure 3.4. So β` δ̃ “ δ` β̃ “ π. From (3.13) we get β̃` δ̃ “ π. and therefore also
for the supplementary angles β ` δ “ π.
”ð” Define b1, b2 to be the orthogonal bisecting lines of rz1, z2s, rz2, z3s respectively.
b1 and b2 meet in some point c. W.l.o.g. c “ 0. Now let b3 and b4 be the lines
through the origin perpendicular to pz3z4q and pz4z1q respectively. So

(3.19)
δ̃ – ?pb1, b2q “ β ´ π

β̃ – ?pb3, b4q “ δ ´ π

Consider the reflections Ri in bi, i “ 1, . . . , 4. Then

(3.20)

β ` δ “ π ñ β̃ ` δ̃ “ π

ñ R4 ˝R3 ˝R2 ˝R1 “ id

ô R3 ˝R1 “ R4 ˝R1

since the Ri are involutions. We get

(3.21)
pz3z4q Q R3pz3q “ R3 ˝R2pz2q

“ R4 ˝R1pz2q “ R4pz1q P pz4z1q.

So R4pz1q “ pz3z4q X pz4z1q “ z4 and therefore zi “ Ri´1pzi´1q for all i “ 1, . . . , 4.
From Proposition 3.5 follows that z1, z2, z3, z4 lie on a circle. �

Remark 3.8. This proof being based on the symmetry criterion makes it imme-
diately obvious which angles to use in the various cases of embedded and non-
embedded quads. The symmetry criterion helps identifying them.
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4. Conical nets

We will now consider another class of nets which possesses the same kind of
symmetry. Indeed given a symmetry net in R3 as defined in Definition 3.3 we can
take a plane and assign it to any vertex of Zm. We then use the reflections to
propagate this plane throughout the whole lattice constructing a Q˚-net. We will
see that this procedure actually yields a conical net as defined below.
If we now take any point in one of the planes and reflect it throughout the lattice
we get a circular net lying on the conical net. Both share the same symmetry net
and together define a contact element net.

The concept of introducing and characterizing conical nets is adapted and put
together from [BS09], [PW08] and [WWL07].

Figure 4.1. Conical vertex. Four planes tangent to a cone.

Definition 4.1 (conical net). A net f : Zm Ñ tplanes in R3u is called conical if
each four planes adjacent to one face of Zm are in contact to a cone of revolution.

Remark 4.1. Four planes in contact to a cone intersect in one point. So conical
nets are a special class of Q˚-nets.

Proposition 4.1. Let P1, P2, P3, P4 be four planes in R3 intersecting in one com-
mon point. Then they are tangent to a common cone if and only if they are tangent
to a common sphere.

Remark 4.2. Unlike the cone the sphere is not unique but one element of a one-
parameter family of spheres with centers on the axis of the cone.

Proof. ”ñ” Each of the planes touches the cone K in a line li – PiXK. Let S be
a sphere with center on the axis of the cone touching the cone in a circle C. Then
the line li is tangent to the sphere S and the plane Pi touches the sphere S in the
point li X C.

”ð” Let S be the sphere with center s tangent to each of the four planes. Let
x be the point of intersection of the four planes and xi the touching point of the
plane Pi and the sphere S. Define the lines li – pxxiq. Since they all go through
the point x and are all tangent to the sphere S, they all lie on the cone of revolution
defined by rotating one of these lines around the axis pxsq. �

So for a Q˚-net the condition of tangency to a cone at each face is equivalent to
the tangency to a sphere.
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4.1. Reflection and angle criteria. Let P1, P2 be two planes tangent to a sphere
S with center s. Then the symmetry plane transforming these two planes into each
other by reflection is the plane going through the line P1XP2 and the center of the
sphere s.

S

P2P1

P1 X P2

s

Figure 4.2. Two planes P1 and P2 tangent to a sphere S and their
symmetry plane. View orthogonal to their line of intersection P1X

P2.

Considering four planes P1, P2, P3, P4 with a common point x and tangent to
S all those symmetry planes contain the points x and s. They therefore share a
common line pxsq which is the axis of the tangent cone.

Proposition 4.2 (reflection criterion for conical nets). Let f : Zm Ñ tplanes in R3u

be some net of planes.
Then f is conical if and only if it possesses a reflection net, i.e. there is a symme-
try net b : EpZmq Ñ tplanes in R3u such that each two adjacent planes of f are
symmetric with respect to the reflection corresponding to the edge joining them.

Proof. We only have to prove this locally. So let P1, P2, P3, P4 be four planes in R3

adjacent to one face of Zm.
”ñ” has already been shown above.
”ð” Let b1, b2, b3, b4 be four planes intersecting in a line a with corresponding

reflections Ri satisfying Pi “ Ri´1pPi´1q.
18. This implies that the four planes have

a common point x lying on a. Prescribing the axis of revolution a and tangency
to the plane P1 uniquely defines a cone K with its tip at x. Reflecting P1 in a
plane containing the axis a preserves tangency to that cone. So all four planes are
tangent to K. �

Let P1, P2, P3, P4 be four planes in contact to a cone K. Intersecting everything
with a plane Π orthogonal to the cone axis results in four lines li – PiXΠ tangent
to a circle C – K XΠ.19

We see that the reflection condition for conical nets can be seen as a 3-dimensional
version of the reflection condition on this 2-dimensional setting which is similar
to Proposition 3.5 but concerning quadrilaterals with an incircle rather than a
circumcircle.

18As we know this already implies the reflection identity (3.11)
19Assuming Π does not contain the tip of the cone.
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b2

b1

b3

b4

l1

l4

l3
l2

c

z1

z2

z3

z4

Figure 4.3. Four lines li tangent to a circle, i.e. a tangential
quadrilateral of a circle. bi are the symmetry lines of the edges, zi
the touching points on the incircle.

Proposition 4.3 (reflection criterion for tangential quadrilateral of a circle). Four
lines l1, l2, l3, l4 in the plane are tangent to a circle if and only if there are four lines
b1, b2, b3, b4 intersecting in one point

(4.1) tcu–
4
č

i“1

bi ‰ H

such that for the reflections Ri in bi

(4.2) li “ Ri´1pli´1q for i “ 1, . . . , 4.

In this case each bi is the angular bisector of the angle ?pli, li`1q or its supplemen-
tary angle ?pli`1, liq, c is the center of the circle and

(4.3) R4 ˝R3 ˝R2 ˝R1 “ id

Remark 4.3. In the 2-dimensional cut of Proposition 4.3 the symmetry lines bi are
angular bisectors of the lines li and li`1. In the 3-dimensional picture of Proposi-
tion 4.2 the symmetry planes bi fulfill the same property of being angular bisectors
of the planes Pi and Pi`1.

Having seen that the reflection planes of a conical net contain the axes of the
cones we immediately deduct that each two neighboring axes intersect. Indeed,
each axis of a pair of neighboring axes belongs to a quadruple of planes where both
quadruples have two planes in common, i.e. they share one symmetry plane. So
both axes are contained in this symmetry plane and therefore generically intersect
in one point.
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Let us first associate the axis of the cones to the faces of the lattice giving rise to
a map a : pZmq˚ Ñ tlines in R3u. Then we can formulate this claim in the following
way.

Figure 4.4. Symmetry planes of conical nets contain the cone
axes. So neighboring axes intersect.

Proposition 4.4. a is a line congruence, cf. Proposition 3.2.

Proof. Beside the consideration above one can see this in the following way. Taking
a circular net lying on the planes of the conical net as described in Section 4.3 one
sees that the lines l from Proposition 3.2 coincide with the lines a and the latter
therefore also build a line congruence. �

Remark 4.4. So for m “ 2 conical nets f : Z2 Ñ tplanes in R3u can also be
interpreted as discrete curvature line parametrizations, cf. Remark 3.4.

P1

P2

P3P4

N2N4N1 N3

α β γ

δ

α

β

γ

δ

P1

P2

P3

P4

Figure 4.5. Four planes P1, P2, P3, P4 of a Q˚-net with vertex-
angles α, β, γ, δ. And view from the top.

Notation 4.1 (vertex-angles of a Q˚-net). Let P1, P2, P3, P4 be four adjacent planes
in R3 of a Q˚-net, i.e. intersecting in one common point. Then we define the
corresponding vertex-angles α, β, γ, δ at this point by

(4.4)
α “ ?pP4 X P1, P1 X P2q β “ ?pP1 X P2, P2 X P3q

γ “ ?pP2 X P3, P3 X P4q δ “ ?pP3 X P4, P4 X P1q

where the angles between the lines are measured according to Notation 3.3 on the
common plane with orientation determined by the Gauss-map, i.e. a normal vector
on each plane.
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Remark 4.5. Note that in general α` β ` γ ` δ ‰ 2π. The difference is one way of
measuring the discrete curvature of the surface.

Imagining a unit sphere S2 centered at a vertex20 of a Q˚-net the vertex-angles
become the lengths of the edges of a spherical quadrilateral with vertices defined
by the lines of intersection of the planes.
Each plane is separated into four regions by the lines of intersection with its two
neighboring planes. Since the defined vertex-angles occur in two of those quadrants
there are actually two spherical quadrilaterals defined which are reflections of each
other in the center of the sphere. We choose one of them arbitrarily21 and call the
corresponding quadrants which contain the edges angle-quadrants, cf. Figure 4.5.

We assume the normals to be chosen consistently, i.e. such that they define an
orientation on the union of the four angle quadrants and only consider the case that
the defined spherical quadrilateral is embedded. We call such Q˚-nets admissible.22

Remark 4.6. Note that the spherical quadrilateral defined by the vertex-angles can
have any possible shape a spherical quadrilateral can have. And due to our defini-
tion of the vertex-angles the shape depends not only on the geometric arrangement
of the planes but also on their enumeration.

Definition 4.2. We call a vertex of a Q˚-net elliptic if the spherical quadrilateral
defined by its vertex-angles is embedded, its vertices are contained in one hemi-
sphere and no vertex is contained in the spherical triangle formed by the other
three vertices.

P1

P2

P3

P4

ϕ12

ϕ12 ϕ23

ϕ34

ϕ41

ϕ41

ϕ34

ϕ23

Figure 4.6. Conical vertex with touching points to a sphere.
Each two angles between a line of intersection and its two neigh-
boring touching points are identical.

Now consider an elliptic vertex which is conical. Then the cone touches the
planes in the angle-quadrants. So we can take a sphere touching each of the planes
in a point contained in the angle-quadrants as depicted in Figure 4.6 from above.
The symmetry plane for each two neighboring planes is going through the center of
the sphere ensuring that each of the two angles ϕij in Figure 4.6 are the same. So

(4.5) α` γ “ ϕ41 ` ϕ12 ` ϕ23 ` ϕ34 “ β ` δ

20A vertex now means the point of intersection of four neighboring planes, which is actually a
point naturally associated to a face of Zm.

21Or such that the edges of the spherical quadrilateral actually lie on the surface defined by
the conical net if possible.

22This is the case in which the Q˚-net locally at each vertex (not necessarily at each quad)
defines an embedded surface.
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For all other types of vertices of an admissible Q˚-net the angle-criterion can be
derived from the elliptic case using the following claim.23

Claim 4.5. Let P1, P2, P3, P4 be four planes of a non-elliptic vertex of an admissible
Q˚-net, i.e. its vertex-angles α, β, γ, δ build an embedded spherical quadrilateral.
Then it can be made elliptic by a renumeration of the planes while preserving the
angle-balance, i.e.

(4.6) α` γ “ β ` δ

holds if and only if it holds for the renumerated planes.

Remark 4.7. This is essentially the claim from Theorem 4 in [WWL07].

We illustrate this by an example.

P1 P2 P3
P4

P2 P1
P4

P3

α π ´ α

Figure 4.7. A non-elliptic vertex of a Q˚-net made elliptic by
renumerating the planes.

Example 4.1. Consider the vertex depicted in Figure 4.7.
Labeling the planes as in the picture results in angle-quadrants as they are depicted
on the left side of the figure and in this case a non-elliptic vertex.24 Taking the
angles contained in the quadrants of the planes depicted on the right side of the
figure leads to an elliptic vertex. The angle α on P1 becomes the supplementary
angle on the neighboring quadrant of P1.

Thus renumerating the planes

(4.7) pP1, P2, P3, P4q Ñ pP2, P1, P4, P3q

leads to the new angles

(4.8) pα, β, γ, δq Ñ pπ ´ β, π ´ α, π ´ δ, π ´ γq

which define an elliptic vertex while the truth-value of (4.6) is invariant under the
renumeration.

Proposition 4.6 (angle criterion for conical nets). Let P1, P2, P3, P4 be four planes
of an admissible Q˚-net with vertex-angles α, β, γ, δ, i.e. the corresponding spherical
quadrilateral is embedded.
Then P1, P2, P3, P4 are in contact to a cone if and only if

(4.9) α` γ “ β ` δ

Proof. The ”ñ”-direction has already been proven above. Nonetheless both direc-
tions can be done by reformulating this into the following fundamental statement
on spherical quadrilaterals which is proven in [WWL07]. �

Proposition 4.7 (incircle of elliptic spherical quadrilaterals). An elliptic spherical
quadrilateral with side-lengths α, β, γ, δ has an incircle if and only if

(4.10) α` γ “ β ` δ

23And in the non-admissible case the angle-criterion actually does not apply!
24The lines of intersection of the planes do not intersect one common hemisphere.
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4.2. On the Gauss-map and spherical duality. Considering the unit normal
vectors of the planes instead of the line congruence a we get a Gauss-map for f
defined on the vertices of Zm for which Proposition 4.2 implies a circular symmetry.

For a Q˚-net f : Z2 Ñ tplanes in R3u we choose its Gauss-map

(4.11) N : Zm Ñ S2, u ÞÑ normal of the plane fpuq

such that it orients neighboring planes consistently. This is at least possible locally
in the admissible case.

P1

P2

P3P4

N2N4N1 N3

a

Figure 4.8. Four planes P1, P2, P3, P4 of a conical vertex. Their
normal vectors N1, N2, N3, N4 lie on a circle.

Proposition 4.8 (conical nets have circular Gauss-map). Let f : Zm Ñ tplanes in R3u

be a Q˚-net and N : Zm Ñ S2 be its Gauss-map.
Then f is conical if and only if N is circular.

Proof. Consider four adjacent planes of the Q˚-net f . They meet in one point.
Imagine the normal vectors to the planes being based in this point.

”ñ” The normal vectors inherit the symmetry of the planes25 and are therefore
circular according to Proposition 3.5.

”ð” The planes inherit the symmetry of the normal vectors and are therefore
conical according to Proposition 4.2. �

Consider the vertex angle β generated by the three planes P1, P2, P3 with normal
vectors N1, N2, N3, lines of intersection l1 – P1 X P2, l2 – P2 X P3 and point of
intersection x – P1 X P2 X P3. Imagine x to be the origin and the normal vectors
based in this point. They build the vertices of a spherical triangle on the unit
sphere S2. The angle β˚ at the vertex N2, i.e. the angle between the two spherical
lines l˚1 – spantN1, N2u X S2 and l˚2 – spantN2, N3u X S2 is supplementary to
the angle β.

(4.12) β ` β˚ “ π

Adding a fourth plane through the point of intersection the corresponding four
normals define a spherical quadrilateral of which the angles are supplementary to
the angles of the Q˚-net vertex.

This is actually the polar spherical quadrilateral to the one defined by the vertex-
angles. So the correspondence between the vertex-angles and the spherical angles of
the normal vectors is just the correspondence between the side lengths of a spherical
quadrilateral and the angles of its polar quadrilateral.

25Due to the their consistent orientation.
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P1

P2

P3

S2

β

β˚

l1 l2

l˚2
l˚1

Figure 4.9. The vertex angle β of a Q˚-net can be converted to
a spherical angle β˚ of the Gauss-map which is supplementary.

For a conical net we have just seen that these normal vectors form circular
quads. The angle-criterion is invariant with respect to substituting all angles by
their supplementary angles. So instead of proving the angle-criterion for conical
vertices by the spherical incircle criterion we can just as well use its polar version
on circumcircles of spherical quadrilaterals which is nothing but the statement
about the normal vectors being circular.

Proposition 4.9 (Angle criterion for circular quadrilaterals in spherical geometry).
A spherical quadrilateral with vertices N1, N2, N3, N4 P S2 and quad-angles α, β, γ, δ
on S2 is circular if and only if

(4.13) α` γ “ β ` δ

4.3. The connection to circular nets.

Proposition 4.10. For any circular net f : Zm Ñ R3 there is a two-parameter
family of conical nets P : Zm Ñ tplanes in R3u such that fpuq P P puq for all
u P Zm.
Conversely, for any conical net there is a two-parameter family of circular nets
lying on it.

Proof. Given a circular net f choose one normal vector N P S2 at some vertex u P
Zm which defines a plane through the point fpuq. Propagate this plane throughout
Zm using the symmetry net of the circular net.

Given a conical net P choose one point x P P at some vertex u P Zm and
propagate it throughout Zm using the symmetry net of the conical net. �

Remark 4.8. A point and a plane through the point define a contact element con-
taining the family of all spheres through this point and tangent to the plane. This
makes a pair of a circular and appropriate conical net a contact element net and
subject to Lie-geometry. See [BS09].

From this connection between conical and circular nets we can transfer the con-
sistency of circular nets to conical nets.

Proposition 4.11 (basic 3D-system and 4D-consistency). The system governing
conical nets is a discrete 3D-system which is 4D-consistent.

Proof. m “ 3: Any admissible initial data for a conical net P : Zm Ñ tplanes in R3u

on the coordinate planes can be replaced by a set of initial data for a circular net by
choosing one point in one plane and applying the reflections of the conical sub-nets
on the coordinate planes. Circular nets build a 3D-system. So the initial data for
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the circular net can be consistently propagated throughout Z3. The corresponding
conical net is uniquely determined by one plane of the original initial data due
to the symmetry net of the circular net. The planes of the original initial data
obviously coincide with the planes of the constructed conical net.

The same principle can be applied to proof the 4D-consistency. �

4.4. Conical nets in the plane. Ideas to get similar classes of nets in other
dimensions than N “ 3 could include the following.

‚ Changing the dimension of the ambient space but keep using 2-planes, i.e.
f : Zm Ñ t2-planes in RNu where each four neighboring planes intersect in
one point and are in contact to a 2-sphere.

‚ Using Q˚-nets in higher dimensions and adapting the dimensions of the
incidence conditions accordingly i.e. f : Zm Ñ thyper-planes in RNu where
each four neighboring hyper-planes intersect in a pN´3q-dimensional affine
subspace and are in contact to a hyper-sphere.

Obviously both ideas are not applicable to the plane.
Let us start with a vertex of a conical net in R3 but lay emphasis on the points

of intersection rather than the planes. Consider one intersection point x and the
adjacent intersection points x1, x2, x3, x4. The vertex-angles in this case are the
angles between the edges ωi “ ?prxxis, rxxi`1sq. If we now start to flatten the
vertex by letting the cone angle going to π while keeping its symmetry planes the
angles ωi go to the angles between the reflection planes, satisfying

(4.14) ω1 ` ω3 “ ω2 ` ω4 “ π

We will see that generalized isoradial nets satisfy this condition at every vertex.
This way they can be interpreted as a degenerate case of conical nets with constant
cone opening angle π.

So we have seen that the angle-criterion for conical nets is applicable in the
plane. But it also becomes the same as the angle-criterion for symmetry-nets.

Definition 4.3 (planar conical vertex stars). We call a planar vertex star x, x1,
x2, x3, x4 P R2 conical if opposite angles are supplementary.
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5. Generalized isoradial circle patterns

Coming back to circle patterns in the plane with square grid combinatorics we
let them be represented by its intersection points, i.e. by circular nets f : Z2 Ñ R2

in the plane.

(5.1) CN
`

Z2
˘

“ tf : Z2 Ñ R2 | f circularu

We have defined the map c on CN
`

Z2
˘

(5.2) c : CN
`

Z2
˘

Ñ tf : pZ2q˚ Ñ R2 | f netu

which assigns to each circular net its central net, i.e. the net of circular centers.
The generalized isoradial nets are the circular nets with circular central net.

(5.3) GI
`

Z2
˘

“ c´1
`

CN
`

pZ2q˚
˘˘

5.1. Characterization and angles.

Proposition 5.1. Let f : Z2 Ñ R2 be a circular net. Then

(5.4) cpfq circular net ô f symmetry net

Remark 5.1. f : Z2 Ñ R2 being a symmetry net as defined in Definition 3.3 is to be
understood for the edges of f . Each four edges adjacent to one vertex automatically
intersect in one point. Going once around a vertex the composition of the reflections
in the edges has to be the identity. Equivalently, this means that opposite angles
are supplementary.

x2

x3

x4

x1

c1

c2

c3

c4

α˚ α

β

β˚

Figure 5.1. Vertex-star of a circular net. The edges of the net and
the corresponding edges of its central net are orthogonal. Opposite
angles are therefore supplementary.

Proof. Consider a planar vertex star x, x1, x2, x3, x4. Let Ri be the reflection in
the corresponding edge rx, xis for i “ 1, . . . , 4. Let ci be the center of the circle
through x, xi´1, xi. Then rci, ci`1s is orthogonal to rx, xis. So the angles

(5.5)
α “ ?prx, x1s, rx, x2sq and

α˚ “ ?prc1, c2s, rc2, c3sq

as well as the angles

(5.6)
γ “ ?prx, x3s, rx, x4sq and

γ˚ “ ?prc3, c4s, rc4, c1sq

are supplementary.

(5.7) α` α˚ “ γ ` γ˚ “ π
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So

(5.8) α` γ “ π ô α˚ ` γ˚ “ π

�

So we see that the angle-condition by which we defined conical vertex stars in
Definition 4.3 means that the four circular centers c1, c2, c3 and c4 lie on a circle.

We get the following characterizations of generalized isoradial circle patterns.

Proposition 5.2 (Characterization of generalized isoradial circle patterns). Let
f : Z2 Ñ R2 be some net. Then

(5.9)

f generalized isoradial circle pattern

ô f circular net and cpfq circular net

ô fcircular net and reflection net

ô each quad of f is circular and each vertex is conical

ô opposite angles at each face and at each vertex of f are supplementary

From the angle condition at faces and vertices we see that the angles between
the edges of a generalized isoradial circle pattern recur along the diagonals of the
net.

αpuq “ αpu` p 12 ,
1
2 qq

fpuq

Figure 5.2. Referencing the angles of the net f by vertices u P Z2

or quads
`

u`
`

1
2 ,

1
2

˘˘

P pZ2q˚.

For stating this we use our Notation 3.2 for quad-angles and Notation 3.3 for
vertex-angles from Section 3.
Extending the notion of those angles α, β, γ, δ of a net f : Z2 Ñ R2 to the whole
lattice Z2 we get four maps

(5.10) α, β, γ, δ : Z2 Ñ p0, πq

for the vertex-angles and four maps

(5.11) α, β, γ, δ : pZ2q˚ Ñ p0, πq

for the quad-angles which are connected by

(5.12)

αpuq “ α
`

u`
`

1
2 ,

1
2

˘˘

βpuq “ β
`

u`
`

´ 1
2 ,

1
2

˘˘

γpuq “ γ
`

u`
`

´ 1
2 ,´

1
2

˘˘

δpuq “ δ
`

u`
`

1
2 ,´

1
2

˘˘

for u P Z2.
The combined map Z2 Y pZ2q˚ Ñ p0, πq can be referenced via the vertex or the
quad and we just call it the angles of the net.
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Proposition 5.3 (Angles along the diagonals). Let f : Z2 Ñ R2 be a generalized
isoradial net and α, β its angles.26 Then at every vertex u P Z2

(5.13) τ1τ2α “ α and τ´1τ2β “ β

γ

α̃ “ τ2τ1α

α

Figure 5.3. The quad-angles along the diagonals of the net of a
generalized isoradial circle pattern stay the same. α “ α̃.

Proof. Let u P Z2, α – αpuq, α̃ – τ2τ1αpuq “ αpu ` e1 ` e2q, γ – γpuq. The
circularity of the quad implies

(5.14) α` γ “ π

and the symmetry property of the vertex

(5.15) γ ` α̃ “ π

So α “ α̃.
Same for β. �

5.2. The central extension.

Definition 5.1 (central extension). Let f : Z2 Ñ R2 be a circular net and cpfq :
pZ2q˚ Ñ R2 its central net. Then we define the central extension of f on the double
D – Z2 Y pZ2q˚ by

(5.16) f˛ : D Ñ R2, u ÞÑ

#

fpuq for u P Z2

cpfqpuq for u P pZ2q˚

Making D a graph we define its unoriented edges by

(5.17) EpDq– tpu, vq P Z2 ˆ pZ2q˚ | vertex u and face v are adjacent in Z2u

The resulting faces correspond to the edges of Z2 or its dual

(5.18) F pDq – EpZ2q – EppZ2q˚q

This makes D a bipartite quad-graph.
The corresponding edges and faces of f˛ in R2 are defined by the line segments

and quadrilaterals given by the image points.

Let f : Z2 Ñ R2 be circular. Then the quads of its central extension f˛ are
kites, see Figure 5.4.

26Note that the information about the other angles γ and δ is redundant since they are sup-
plementary to α and β respectively.
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θ̃

λ2

λ1

γ1
γ2

α1

α2
θ2

θ1

Figure 5.4. For the central extension at a conical vertex of cir-
cular net we get θ̃ “ θ – θ1 ` θ2.

Now let f be generalized isoradial and consider one of its conical vertex stars
with angles as depicted in Figure 5.4.

(5.19)
θ1
2
` α1 “

θ2
2
` α2 “

λ1
2
` γ1 “

λ1
2
` γ1

implies

(5.20)
α– α1 ` α2 “ π ´

θ1
2
´
θ2
2

γ – γ1 ` γ2 “ π ´
λ1
2
´
λ2
2

So the conicality of the vertex gives us

(5.21)

α` γ “ π ô

ˆ

θ1
2
`
θ2
2

˙

`

ˆ

λ1
2
`
λ2
2

˙

“ π

ô θ1 ` θ2 ` λ1 ` λ2 “ π

ô θ “ θ̃

with θ – θ1 ` θ2. So the angle

(5.22) θ : pZ2q˚ Ñ p0, 2πq, u ÞÑ ?
`

f
`

u` p 12 ,
1
2 q
˘

, cpfqpuq, f
`

u´ p 12 ,
1
2 q
˘˘

which is the sum of two adjacent quad-angles at a white (circular center) vertex is
constant along the direction p´1, 1q as shown schematically in Figure 5.5.

Since θ “ 2pπ ´ αq “ 2γ this corresponds to the property of α and γ being
constant along the diagonals of the original net f .

θpuq

u P pZ2q˚

u` p´1, 1q

u` p 12 ,
1
2 q

u´ p 12 ,
1
2 q

Figure 5.5. The angle θ schematically drawn on the double D.
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Of course one can define analogously a sum of quad-angles at the white vertices
which is constant along the direction p1, 1q.

Finally we summarize this by stating the following characterization of generalized
isoradial nets in terms of its central extension.

Proposition 5.4 (characterization in terms of the central extension). Let f˛ :
D Ñ R2 be a net on the double D.
Then f˛ is the central extension of a generalized isoradial net if and only if its quads
are kites and θ : pZ2q˚ Ñ p0, 2πq is invariant with respect to translation along the
direction p´1, 1q.

5.3. Initial data. Given initial points along the coordinate lines, where the vertex
at the origin is conical, are not sufficient to determine the whole generalized isoradial
net.
We consider the propagation process locally. Let f, f1, f2 P R2 be three given
points. We try to determine f12. f, f1, f2 determine a circle on which f12 has to lie
but we need further information to determine its position.
Suppose we additionally have the points f11 and f1´2. The angle α˚ between
rf1´2, f1s and rf1, f s determines a direction by using the supplementary angle α “
π ´ α˚ as the angle between rf11, f1s and rf1, f12s. Now f12 can be determined by
the intersection of a line with a circle.

α

α˚f

f2 f12

f11

f1´2

f1

Figure 5.6. Constructing the vertex f12 of the net of a generalized
isoradial circle pattern from f , f1, f2 and neighboring circles, given
direction at f1 or additional vertices f11 and f1´2.

So given initial points on the coordinate lines we need additional access to points
of one row below. This additional row can be given by

(a) prescribing the circumcircles along one strip adjacent to one of the coordinate
lines. Then the additional points are given by the points of intersection.

(b) prescribing the points directly. But then we have to make sure that emerging
quads are circular.

(c) prescribing the angles α along one coordinate line. Then we can successively
build up the rows by taking the circle through three points and intersect it with
the direction given by the angle.

Using the local propagation method described above we can construct a complete
generalized isoradial circle pattern from any of those data without contradiction as
long as the emerging lines and circles always intersect in two points, i.e. any two
neighboring circles intersect in two points, i.e. no two vertices coincide along the
way. We call this the generic case and always assume it to be given.
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Proposition 5.5 (initial data for generalized isoradial nets). Given

(1) f along the coordinate lines B1 and B2 where the vertex at the origin has to be
conical.

and one of the following

(2a) circumcircles along one strip of faces adjacent to a coordinate line
(2b) f along B1 ` e2 such that at each vertex u P B1 the four points f, f1, f2, f12

are circular
(2c) α along B1 where the angle at the origin has to correspond with the angle given

by the points around this vertex

as initial data on Z2, there generically exists a unique generalized isoradial net f
restricting to this data.

(a) (b)

(c)

Figure 5.7. Initial data for constructing a generalized isoradial
net. Points along the coordinate lines where the origin has to be
conical plus (a) one strip of circumcircles or (b) one additional strip
of circular points or (c) one strip of angles.
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5.4. Examples.

Example 5.1 (Rectangular nets). A net f : Z2 Ñ R2 with all rectangular faces
only consists of straight lines, i.e. after a suitable rotation f “ px, yq fulfills

(5.23) τ2x “ x and τ1y “ y

All angles are π
2 , so all faces circular and all vertices conical.

Figure 5.8. Rectangular nets are generalized isoradial.

Example 5.2 (Isoradial nets). Let f : Z2 Ñ R2 be circular with constant circum-
circle radius. As already seen in Proposition 1.1 of the introduction, cpfq is an
isoradial net itself, so f generalized isoradial.

Figure 5.9. Isoradial net. This is actually also a regular circle
pattern from a conical vertex, cf. Example 5.4
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Figure 5.10. Generalized isoradial circle pattern from similarity
transformations of one circular quad.

Example 5.3 (Regular circle pattern from a circular quadrilateral). Let z1, z2, z3, z4 P
C be the vertices of a circular quadrilateral. Consider the two affine transformations

(5.24)

m1pzq “ s1z ` t1, s1 “
z2 ´ z3
z1 ´ z4

, t1 “
z1z3 ´ z2z4
z1 ´ z4

m2pzq “ s2z ` t2, s2 “
z4 ´ z3
z1 ´ z2

, t2 “
z1z3 ´ z4z2
z1 ´ z2

m1 mapping z1 ÞÑ z2, z4 ÞÑ z3 and m2 mapping z1 ÞÑ z4, z2 ÞÑ z3. Such two affine
transformations commute

(5.25)

rm1,m2s “ 0 ô pm1 ˝m2qpzq “ pm2 ˝m1qpzq

ô s1ps2z ` t2q ` t1 “ s2ps1z ` t1q ` t2 for all z P C
ô s1t2 ` t1 “ s2t1 ` t2

since we have
(5.26)

s1t2`t1´ps2t1`t2q “
z1z3 ´ z2z4

pz1 ´ z4qpz1 ´ z2q
pz2 ´ z3 ` z1 ´ z2 ´ pz4 ´ z3 ` z1 ´ z4qq “ 0

So applying these transformations repetitively to the quadrilateral yields a (possibly
not embedded) tiling of the plane with similar quadrilaterals. The commutativity
of m1 and m2 ensures that everything fits together, i.e. no contradictions arise.

Since opposite angles of the original quadrilateral are supplementary so are op-
posite angles of the similar image quads. So all quads are circular. On the other
hand opposite angles at each vertex are the same as opposite angles at each face.
So the arising net is generalized isoradial.
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Figure 5.11. Generalized isoradial circle pattern from one conical
vertex star.

Example 5.4 (Regular circle pattern from conical vertex star). In a similar manner
we can start with a conical vertex star which can be constructed by taking four
circles intersecting in one point with circular centers.

‚ Take a circle C which shall be the circle on which the centers lie.
‚ Choose four points c1, c2, c3, c4 P C which shall be the centers of the circles.
‚ Choose one point z which shall be the central vertex.
‚ Draw four circles C1, C2, C3, C4 with centers c1, c2, c3, c4 each going through
z.

‚ Denote the second intersection points of neighboring circles in a cyclic order
by z1, z2, z3, z4.

Now the planar vertex star z, z1, z2, z3, z4 is conical.

C1

c1
C2

c2

c3

c4

C3

C4

x

C

z

z1

z2

z3

z4

Figure 5.12. How to construct a generalized isoradial vertex.
Start with the circle on which the circular centers lie.
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Define two affine transformations literally as in Example 5.3.27 Applying the
affine transformations to the circles we get a tiling which consists of two quads up
to similarity. The fourth point of each quad is automatically determined by inter-
section of the circles. Since the affine transformations commute no contradiction
occurs and we get a generalized isoradial circle pattern again.

5.5. Parallelism to isoradial nets. Parallel translating any edge of a quadrilat-
eral does not change the quad-angles. It is possible to make an embedded quadrilat-
eral non-embedded and to change its orientation, but the angles measured according
to our convention will not change.

Definition 5.2 (Combescure transform). Let f, f̃ : Zm Ñ RN be any two nets.

Then f and f̃ are called Combescure transforms of each other or parallel if each
two corresponding edges rf, fis and rf̃ , f̃is, i “ 1, . . . ,m are parallel.

Figure 5.13. The lines l : EpZ2q Ñ tlines in R2u through the
edges of a net f : Z2 Ñ R2. Parallel translating one of the lines
does not constitute a net anymore.

Since all angles of a Combescure transform are the same as in the original net a
Combescure transform of an generalized isoradial net f : Z2 Ñ R2 is generalized iso-
radial. So by starting for example with an isoradial circle pattern we can construct
a generalized isoradial circle pattern by Combescure transformation. Whether such
transformations exist will be answered by the following consideration.

We lay emphasis on the lines l : EpZ2q Ñ tlines in R2u going through the edges
of f . If we parallel translate one line of l it does not constitute a net f any more
since each four lines corresponding to four edges which have a vertex in common
have to intersect in one point. By moving the rest of the lines accordingly we can
repair this property getting a Combescure transform of f by only manipulating
”half” of the edges of f .

f, l

pK,Lq pK ` 1, Lq
e

fpK,Lq fpK ` 1, Lq

lpeqa

Figure 5.14. Parallel translation of one line lpeq of the net f with
notations from Lemma 5.6

27Note that the points zi have another meaning as in Example 5.3.
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Lemma 5.6 (Strip-wise manipulation of a net). Let f : Z2 Ñ R2 be a net,
l : EpZ2q Ñ tlines in R2u the lines through its edges. Let pK,Lq P Z2, e –

ppK,Lq, pK ` 1, Lqq P EpZ2q an edge.

Then for any translate a P R2 there is a Combescure transform f̃ of f with lines
l̃ : EpZ2q Ñ tlines in R2u such that

l̃peq “ lpeq ` a(5.27)

f̃puq “ fpuq for all u P tpk, lq P Z2 | k P Z, l ă Lu(5.28)

(a) (b)

(c) (d)

lpeq

τ1τ
´1
2 lpdq

l̃peq l̃peq

τ´1
1 l̃peq

τ1lpeq

lpdq
l̃pdq

τ´1
2 l̃pdq

Figure 5.15. Strip-wise manipulation of parallel translations: (a)
Parallel translate one given line. (b) Adjust the horizontal lines
along this strip. (c) Adjust the vertical lines along this strip. (d)
Result of manipulations along one strip. Go on like this along all
strips above this strip until the intersections of the lines constitute
a Combescure transform of the original net.

Proof. Denote d – ppK,Lq, pK,L` 1qq P EpZ2q. The Combescure transform can
be obtained applying the following procedure of stripwise manipulation. You can
follow this in Figure 5.15

‚ Translate lpeq to l̃peq “ lpeq ` a.

‚ Translate τ1lpeq to go through the intersection point of l̃peq and τ1pτ2q
´1lpdq

and continue in this manner along the strip tpK ` k, Lq | k P Zu.
‚ Translate lpdq to go through the point of intersection of l̃peq, pτ1q

´1 l̃peq

and l̃pdq “ pτ2q
´1lpdq and continue in this manner along the strip tpK `

k, Lq | k P Zu.
Having done this we go up one strip to tpK ` k, L ` 1q | k P Zu substituting
eÑ e` p0, 1q and dÑ d` p0, 1q and start over again. This time the translation a
for lpe` p0, 1qq is not prescribed and can be chosen arbitrary, e.g. zero. So we see
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that this Combescure transform is not unique. Applying the procedure successively
to all strips tpK ` k, L ` lq | k P Zu for l ě 0 each four adjacent new lines of l̃

intersect in one point, therefore defining a new net f̃ : Z2 Ñ R2 which is parallel
to f . �

Remark 5.2. The direction of the edge e (vertical or horizontal) can of course be
chosen arbitrarily. Same whether the top or bottom (left or right respectively) half
space of the edge stays invariant.

Together with the following Lemma we will be prepared to proof the fact that
not only can we construct a generalized isoradial net from an isoradial net by
Combescure transformation but that conversely, also every generalized isoradial
net is parallel to an isoradial net.

C1

c1

C2

c2

c3

c4

C3

C4

R

R

R
?

x

C

Figure 5.16. C2, C3, C4 being of the same radius R implies for
a conical vertex-star that the center of C coincides with x. So the
radius of C1 has to be also R.

Lemma 5.7. Let x, x1, x2, x3, x4 P R2 be a planar conical vertex star. Let Ci be
the circle through x, xi, xi`1 for i “ 1, . . . , 4.
If three of the four circles are of the same radius R ą 0 then so is the fourth.

Proof. For i “ 1, . . . , 4 let ci denote the radius of Ci. W.l.o.g. let C2, C3, C4 be of
radius R. Since the vertex star is conical c1, c2, c3, c4 lie on a circle C. We see that
the distance of c2, c3 and c4 to x coincides Since the radius R of C2, C3, C4. So C
is a circle with radius R and its center coincides with the point x. Since c1 is also
lying on C this means that the distance of x and c1 is R which is also the radius of
C1. �

Theorem 5.8 (Generalized isoradial nets as Combescure transforms of isoradial
nets). Let f : Z2 Ñ R2 be a net.
Then f is a generalized isoradial circle pattern if and only if it is Combescure
transform of an isoradial circle pattern.

Proof. Only one direction remains to show.
”ñ” Let q : pZ2q˚ Ñ tquadrilaterals of fu be the net of quadrilaterals of f . Choose
any u P pZ2q˚. Let R be the radius of the circumcircle of qpuq. Consider the quadri-
lateral to its right τ1qpuq. By translating its right edge we can change the radius
of its circumcircle to any value we like. So apply the corresponding Combescure
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Lemma 5.6

Lemma 5.7

Figure 5.17. Use stripwise Combescure transformations to make
generalized isoradial nets isoradial.

transformation of the kind from Lemma 5.6 such that the radius of its circumcircle
is R and all points to the left stay invariant.
For τ2qpuq we translate its top edge such that the radius of its circumcircle becomes
R and all points below stay invariant.
Analogously for pτ1q

´1qpuq and pτ2q
´1qpuq. Since each of the four Combescure

transformations only act on one half space they do not change any of the other
three quadrilaterals we manipulate. So after applying them each of the four quadri-
laterals τ1qpuq, τ2qpuq, pτ1q

´1qpuq, pτ2q
´1qpuq has radius R as qpuq. Now Lemma 5.7

implies that τ1τ2qpuq, pτ1q
´1τ2qpuq, pτ1q

´1pτ2q
´1qpuq, τ1pτ2q

´1qpuq also have radius
R.
We can go on like this making all the radii equal along the coordinate lines u`B1,
u`B2 of pZ2q˚ using Combescure transformations which each do not interfere with
those parts of the axes which we have already made isoradial. Lemma 5.7 makes
sure that after this all other quads of the net are of the same radius. �

5.6. Iteration of circular centers. Proving Proposition 5.1 we have already seen
the following

Proposition 5.9. Let f : Z2 Ñ R2 be generalized isoradial.
The vertex-angles (quad-angles) of cpfq are supplementary to the opposite lying
quad-angles (vertex-angles) of f .

Proof. Follows from the orthogonality of corresponding edges of f and cpfq. �

From this we immediately see what happens to the angles of the net of a gener-
alized isoradial circle pattern under the map c.

Corollary 5.10. Let f : Z2 Ñ R2 be generalized isoradial.
Then cpfq is generalized isoradial and cpcpfqq is generalized isoradial with the same
angles as f .

So restricting the map c to generalized isoradial circle patterns yields

(5.29) c : GI
`

Z2
˘

Ñ GI
`

pZ2q˚
˘

and

(5.30) c2 : GI
`

Z2
˘

Ñ GI
`

Z2
˘

where c2 preserves all the nets angles.28 So we can iterate c2 to get a sequence of
generalized isoradial nets.

28Note that this means the angles between edges, not the intersection angles of the circles.
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α

α

α

Figure 5.18. Schematic image of two quads of a generalized iso-
radial net and one quad of its central extension. The three angles
depicted are equal.

Actually the angle α even stays invariant with respect to c if we identify corre-
sponding diagonals of Z2 and pZ2q˚ as shown in Figure 5.18.

In terms of the angle θ of the central extension f˛ defined in Section 5.2 this
looks like depicted in Figure 5.19

θ
θ

θ

Figure 5.19. The angle θ of the central extension upon iteration.

Getting back to the properties of iteration we see that the only nets invariant
with respect to this process are the isoradial nets.

Proposition 5.11. Let f : Z2 Ñ R2 be generalized isoradial. Then

(5.31) c2pfq “ f ô f isoradial

Proof. ”ð” Follows from Proposition 1.1.
”ñ” c2pfq “ f means that the points of f are the centers of the circumcircles of
cpfq. So the radii of four circles of f adjacent to one circle of cpfq equal the radius
of this one circle of cpfq. Each neighboring circles of f are of the same radius and
therefore f isoradial. �

We will now investigate the local behavior of this process. If you construct
a planar vertex star of a generalized isoradial circle pattern as in Example 5.4
in a more or less ”regular” way the radius of the central circle C will be less
than the maximal and greater than the minimal radius of the surrounding circles
C1, C2, C3, C4.
This supports the idea that through this averaging process iterating the sequence
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`

c2npfq
˘

nPN0
will make the radii more and more equal, eventually converging to an

isoradial net.
But in general c does not convey in a local averaging of radii as you can see in the
following example.

Example 5.5 (counter-example against local averaging). In the construction of
Example 5.4 z, c1, c2, c3, c4 can be chosen as in Figure 5.20. The radius of C is
greater than all radii of the Ci and the resulting vertex star is admissible in the
sense that it is suitable to be part of a whole general isoradial net.

c1

c2

c3

c4

z
z1

z2

z3

z4

Figure 5.20. Construction of a generalized isoradial vertex star
with circles all smaller than the circle of the centers.

On the other hand the sequence
`

c2npfq
˘

nPN will also not necessarily converge if
the radii of f are unbounded as the following example shows.

Example 5.6 (non-converging sequence of unbounded radii). Consider the follow-
ing rectangular net.

(5.32) fpuq– pxpk, lq, ypk, lqq–
`

2k, l
˘

for u “ pk, lq P Z2

The center of the circumcircles coincides with the point of intersection of the diag-
onals for each of the rectangular quads. So the y-coordinate stays invariant with
respect to c2, i.e the height of all rectangles stays 1.
Denote the sequence of x-coordinates of

`

c2npfq
˘

nPN0
by pxnqnPN0

. So

(5.33) x0pkq “ xpk, lq “ 2k.

The x-coordinate of midpoints of the quadrilaterals in the vertical strip to the left

of u “ pk, lq is 2k´1
`2k

2 . The x-coordinate of midpoints to right is 2k`2k`1

2 . So

(5.34) x1pkq “
2k´2 ` 2k´1 ` 2k´1 ` 2k

2
“ 9 ¨ 2k´3.

For the next step we get

(5.35) x2pkq “ 92 ¨ 2k´6

and going on like this

(5.36) xnpkq “ 9n ¨ 2k´3n “

ˆ

9

8

˙n

2k
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which can be verified by induction. So the width of the rectangles to the right of
pk, lq is

(5.37) ∆npkq– |xnpk ` 1q ´ xnpkq| “

ˆ

9

8

˙n

p2k`1 ´ 2kq “

ˆ

9

8

˙n

2k

and therefore the radius of its circumcircle

(5.38) rnpkq–

d

ˆ

1

2

˙2

`

ˆ

∆npkq

2

˙2

“
1

2

d

1`

ˆ

9

8

˙n

2k

which diverges for nÑ8.

To ensure convergence the radii should at least be bounded. We will study the
stronger restriction of doubly periodic generalized isoradial nets, i.e. generalized
isoradial nets on the torus.

5.7. On the torus. For simulations this is a natural case to consider since we can
describe the whole net by finitely many points making us able to actually compute
the iteration process for a given initial generalized isoradial net in a simulation.

Definition 5.3 (generalized isoradial net on the torus). Let f : Z2 Ñ R2, M,N P

N, a, b P R2 with detpa, bq ‰ 0.
Then f is called an M ˆN generalized isoradial net with periods a and b if

(5.39) fpm` kM, n` lNq “ fpm,nq ` ka` lb for m,n, k, l P Z

Remark 5.3. Defining

(5.40)
Z2
MN – pZ{MZq ˆ pZ{NZq
R2
ab – R2{tx ÞÑ x` a, x ÞÑ x` bu

the periodic map f : Z2 Ñ R2 induces a map f̃ : Z2
MN Ñ R2

ab from the discrete
torus to the smooth torus. But the information on how two adjacent points are
connected gets lots since there is more than one straight line connecting two points
on R2

ab

Let us address the question of existence. The condition of periodicity is of course
a major restriction to our net. The restriction weighs heaviest if M and N do not
have a common divisor. In this case the periodicity ensures that the number of
possible angles in the net drops to two (and the two supplementary angles).

Proposition 5.12 (angles for incommensurable M and N). Let f be an M ˆ N
generalized isoradial net with periods a and b.
If M and N have no common divisor then the corresponding angles of each two
quads of f are equal, i.e. α, β “ const.

Proof. Let α, β : Z2 Ñ R2 be the angles of f . α stays constant along the diagonals
from bottom-left to top-right. Because of the periodicity the diagonal starting at
p0, 0q P Z2

MN is represented on the torus by

(5.41) D – tpk mod M,k mod Nq | k P Zu

Since M and N have no common divisor each point pm,nq P Z2
MN can be reached

by a suitable choice of k. Indeed, let l P Z such that pm` lMq mod N “ n. Then
for k – m` lM we have pk mod M,k mod Nq “ pm,nq. So

(5.42) D “ Z2
MN

Same for the other diagonal. �
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1

2

3

5

6

4

Figure 5.21. Schematic picture of a net on a 2ˆ 3-torus. Going
from bottom-left to top-right along the diagonals starting at quad
1 we cross all quads of the net, eventually returning to quad 1.

We will only consider the case a K b, so w.l.o.g a ‖ e1 and b ‖ e2. In this case
there always exist periodic generalized isoradial nets in the form of rectangular nets.
But from Proposition 5.12 we see that at least in the embedded case there can exist
more only if M and N have a common divisor.

Proposition 5.13. Let f be an M ˆN generalized isoradial net with periods a K b
for which no two quads overlap.
Then if M and N have no common divisor, all quads of f are rectangular.

a

fpuq τ1fpuq

τ21 fpuqα β αβ
β

β
α α

α β
τM1 fpuq “ fpuq

Figure 5.22. A closed path of edges on the torus along direction 1.

Proof. From Proposition 5.12 we know that all corresponding angles of each two
quads are identical.
For any vertex u P Z2 and any direction i P t1, 2u consider the closed path

(5.43) rf, τif s Y rτif, τ
2
i f s Y ¨ ¨ ¨ Y rτ

Ki´1, f s where K1 “M and K2 “ N

The paths along direction 1 consist of M segments. The angle between two adjacent
segments is α`β. Since the quads do not flip along the way, a necessary condition
for those paths to be closed is

(5.44) Mpπ ´ α´ βq “ 2πm for some m P Z

cf. Figure 5.22.
For the paths along direction 2 we get the analogue statement for the angles α and
δ “ π ´ β

(5.45) N pπ ´ α´ pπ ´ βqq “ Npβ ´ αq “ 2πn for some n P Z
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So possible values for the angles are included in

(5.46)

α “ π

ˆ

´
n

N
´
m

M
`

1

2

˙

β “ π

ˆ

n

N
´
m

M
`

1

2

˙

with m,n P Z.
The condition of no two quads overlapping further implies that the paths have no
self-intersections, i.e. n “ m “ 0 and therefore

(5.47) α “ β “
π

2
�

On the other hand, starting with a path of say one self intersection on the torus,
it is hard to imagine a way to extend it to a closed generalized isoradial net on the
whole torus. This brings us to the following conjecture.

Conjecture 5.14. Any MˆN generalized isoradial net f with periods a K b where
M and N have no common divisor is rectangular.

So the simplest case in which non-rectangular nets can occur is M “ N “ 2.

Example 5.7 (M “ N “ 2). Let a ‖ e1, b ‖ e2 some periods. Choose x P p0, |a|q

and ε P
´

´
|a|´x

2 , x2

¯

. Define the four points of our 2ˆ 2-net to be

(5.48)

fp0, 0q– p0, 0q

fp1, 0q– px, 0q

fp0, 1q–
´

ε, |b|2

¯

fp1, 1q–
´

x´ ε, |b|2

¯

All four trapezoids of this net are symmetric and have the same angles, cf. Fig-
ure 5.23, so it is generalized isoradial.29

ε x

|b|
2

a

b

Figure 5.23. A symmetric trapezoid with height equal to half the
length of the b-period constitutes in a generalized isoradial net on
the 2ˆ 2-torus

Since generating generalized isoradial nets on a 2ˆ 2-torus with the methods of
Section 5.8 did not result in any other nets in our simulations we state the following
conjecture.

29ε P R would also be possible, allowing non-embedded quads.



46 JAN TECHTER

Conjecture 5.15. Any 2 ˆ 2-generalized isoradial net f with periods a K b is of
the trapez-form described in Example 5.7 or rectangular.30

To generate more examples on larger tori one can use variational methods min-
imizing a suitable energy as described in Section 5.8.

5.8. Circular and conical energies. Let f : Z2 Ñ R2 be a net (not necessarily
periodic) and let α, β, γ, δ : Z2 Y pZ2q˚ Ñ R2 be its angles.
For any quad u P pZ2q˚ its ”circularity” can be measured by the term

(5.49) pαpuq ` γpuq ´ πq
2

It is non-negative and 0 if and only if the quad is circular. It is also smooth in the
coordinates of the vertices of the quad as long as the angles stay in p0, πq. Due to
the definition of the quad-angles in Notation 3.2 the angles jump from 0 to π and
from π to 0 when rotating one edge while holding the other as seen in Figure 5.24.

?pl1, l2q
l2œl1
ÝÝÝÑ 0

l2

l1
?pl1, l2q

l2öl1
ÝÝÝÑ π

l1

l2

Figure 5.24. The defined angles are not continuous at the point
where the two lines become identical.

In the same way we can measure the ”conicality” of any vertex v P Z2 by

(5.50) pαpvq ` γpvq ´ πq
2

Definition 5.4 (Circular and conical energy). Let f : Z2 Ñ R2 be a net. Then we
define its circular energy by

(5.51) Ecircpfq–
ÿ

uPpZ2q˚

pαpuq ` γpuq ´ πq
2

and its conical energy by

(5.52) Econpfq–
ÿ

vPZ2

pαpvq ` γpvq ´ πq
2

So we can obtain more generalized isoradial circle pattern on the torus by mini-
mizing

(5.53) Epfq– Ecircpfq ` Econpfq

interpreting this as a function on all the coordinates of all the vertices of f .

Remark 5.4. The introduced energies are smooth functions on the coordinates as
long as all the quadrilaterals stay embedded and non-flipped.
So in order to efficiently minimize E by using its gradient one has to ensure this
condition.

Calculation of the gradient can be found in Section B, some sample results of
minimizing these energies in Section A.

30Up to interchanging the roles of a and b.
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5.9. Convergence of rectangular nets. In our simulations all generalized isora-
dial circle patterns we were able to generate on the torus converged to an isoradial
circle pattern under iteration of the map c2, cf. Section A, which leads us to the
following conjecture.

Conjecture 5.16 (convergence of generalized isoradial nets on the torus). Let
f : Z2 Ñ R2 be a M ˆ N generalized isoradial net with periods a K b. Then,
under certain regularity conditions on f , the sequence

`

c2npfq
˘

nPN converges to an
isoradial net.

For the special case of rectangular nets a proof of convergence will be given in
the following.

Proposition 5.17 (convergence of rectangular nets). Let f : Z2 Ñ R2 be a M ˆN
rectangular net with periods a K b and no flips, i.e. the vertical and horizontal lines
of the net are enumerated as they are ordered geometrically.
Then

`

c2npfq
˘

nPN converges to an rectangular net with all identical rectangles, i.e.
in particular an isoradial net.

Proof. W.l.o.g let the lines of the rectangular net be parallel to the x and y-axes,
i.e. a ‖ e1 and b ‖ e2.

Consider the sequence pcnpfqqnPN instead of
`

c2npfq
˘

nPN. We first note that all
nets in this sequence are rectangular and we therefore only have to consider the
x-coordinates of the vertical lines and the y-coordinates of the horizontal lines.
The positions of the horizontal lines after one step does not depend on the position
of the vertical lines, i.e. the x and y-coordinates vary independently and can be
treated separately. Since both x and y are interchangeable this reduces the problem
to an one-dimensional problem.

We show that the distance between neighboring lines becomes equally distributed
under iteration therefore making all the rectangles identical.

Identifying the torus lattice Z2
MN of each even step with pZ2

MN q
˚ of the subse-

quent odd step by moving it up and to the right

(5.54) Z2
MN `

`

1
2 ,

1
2

˘

– pZ2
MN q

˚

and identifying each lattice pZ2
MN q

˚ of each odd step with Z2
MN of the subsequent

even step in the same way by moving it up and to the right

(5.55) pZ2
MN q

˚ `
`

1
2 ,

1
2

˘

– Z2
MN

makes each point walking diagonally through the torus lattice while iterating the se-
quence. Since we only want to show the equal distribution of the distances between
points this does not matter to us.

Let Xpnq “ px
pnq
1 , . . . , x

pnq
M q be the vector of x-coordinates of vertical lines in the

n-th step resulting from this identification.
Then

(5.56) x
pn`1q
k “

x
pnq
k ` x

pnq
k`1

2
mod |a|

for k P 1, . . . ,M ´ 1 and

(5.57) x
pn`1q
M “

x
pnq
M ` x

pnq
1 ` |a|

2
mod |a|

due to the identification at the boundary. This is nothing but an averaging process
of M points on a circle.

Defining the distances

(5.58) l
pnq
k – x

pnq
k`1 ´ x

pnq
k
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x
pnq
k x

pnq
k`1

l
pnq
k

x
pn`1q
k x

pn`1q
k`1

l
pn`1q
k

Figure 5.25. One step of the sequence of central nets for a rect-
angular net on the torus

the iteration formula for those distances becomes

(5.59) l
pn`1q
k “

l
pnq
k´1 ` l

pnq
k

2

for k P 1, . . . ,M , indices taken modulo M . These are all non-negative since no
flipped lines were allowed.

We have to show that these distances become equally distributed reducing the
claim to the following lemma. �

Lemma 5.18 (averaging on a circle). Let X “ px1, . . . , xM q be M points on a
circle R{|a|R of length |a|, such that neighboring points on the circle are actually
successive points in the enumeration X.
Then they become equally distributed under the process which arithmetically averages
each two neighboring points upon each step.

l
pnq
k

l
pn`1q
k

Figure 5.26. One step of the averaging process on a circle.

Proof. Let tpnq “ pl
pnq
1 , . . . , l

pnq
M q be the distances of neighboring points after the

n-th step. Then

(5.60) tpn`1q “ Atpnq “ Ant with A “

¨

˚

˚

˚

˝

1
2

1
2

1
2

1
2

. . .
. . .
1
2

1
2

˛

‹

‹

‹

‚

for n P N.
A is a stochastic matrix since columns (and even rows) add up to one. Additionally
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each entry of Ak is positive for k P N big enough.
So from Theorem C.1 follows that Ant converges to the eigenvector of A with
corresponding eigenvalue 1 and length L – |t| “ |a|. Since p1, . . . , 1q is obviously
an eigenvector of A with eigenvalue 1 we get

(5.61) tpnq Ñ
`

L
M , . . . , LM

˘

for nÑ8

i.e. the points become equally distributed. �
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6. Circular conical nets

The considerations in Section 4.4 suggest that in the spirit of investigating gen-
eralized isoradial circle patterns we also consider nets in R3 which are circular and
conical at the same time with constant cone opening angle.31

In [PW08] it is shown that the nets f : Z2 Ñ R3 which possess a Combescure
transform which is both of constant vertex distance and of constant face distance
is circular and conical of constant cone opening angle. They also show that these
nets are exactly the nets which possess a Combescure transform on the sphere with
circurmcircles of constant radius. A similar property to that of generalized isoradial
circle patterns being exactly the Combescure transforms of isoradial circle patterns.

The central extension32 of an isoradial net f : Z2 Ñ R3 is a rhombic net with pla-
nar vertex stars. Such nets have been studied in [Wun51] as a suitable discretization
of surfaces with constant negative Gaussian curvature.

The other way round does a rhombic net with planar vertex stars define a pair
of isoradial nets by taking its two diagonal nets which build a subclass of circular-
conical nets with constant cone opening angle.

31We described in Section 4.4 how conical nets in the plane can be viewed as degenerated
conical nets in R3 with constant cone opening angle π.

32As defined in Section 5.2.
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Appendix A. Sample simulations on the torus

Starting with a square grid and perturbing each vertex a little bit gives a suitable
initial condition to minimize the energy making flips and non-embedded quads
rather unprobable.

We generated generalized isoradial circle patterns on various sized tori mini-
mizing the energy using the Broyden-Fletcher-Goldfarb-Shanno algorithm with the
gradient calculated in Section B.

In the following you can see some sample results. The periods for an M ˆ N
torus are always chosen to be a “ pM, 0q and b “ p0, Nq.

On the left the initial data is shown and on the right the resulting generalized
isoradial net. The dots indicate the vertices of the net contained in one fundamen-
tal domain of the torus while the unmarked vertices are copies obtained by the
identification.

0.0 0.5 1.0 1.5 2.0
0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
0.5

0.0

0.5

1.0

1.5

2.0

Figure A.1. Minimizing on a 2 ˆ 2-torus. The result is a sym-
metric trapezoid as described in Conjecture 5.15.
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Figure A.2. Minimizing on a 4ˆ 5-torus. The result is a rectan-
gular net as described in Proposition 5.13.
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Figure A.3. Minimizing on a 4 ˆ 6-torus. There are only four
different diagonals and therefore only four different angles (plus
supplementary angles) in this net as on the 2 ˆ 2-torus, making
the result very similar.
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Figure A.4. Minimizing on a 5 ˆ 5-torus. The patterns become
richer on square-tori.
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The following figures show sample simulations of the iteration process described
in Section 5.6. In the top left the initial generalized isoradial net is shown generated
on an M ˆN -torus as in the examples above. Below you can see the resulting net
after 20 steps of iteration. On the right side from top to bottom are shown

‚ total circular (blue) and conical (green) energy
‚ the average radius of the circumcircles
‚ the mean square error of the radii of the circumcircles

all plotted against the iteration step.
You can see that in the examples the radii become equally distributed while the
circular and conical energies do not rise significantly, i.e. the nets stay generalized
isoradial during the iteration process.

This behavior was observed with all initial data generated which led to an it-
eration process in which the energies of the net did not explode. Note though,
that the method by which the initial nets are created leads to fairly ”regular” nets
with all embedded quads which are not far from being isoradial themselves if the
minimizing process of the energies converges.
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Figure A.5. Iteration on a 3ˆ 3-torus.
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Figure A.6. Iteration on a 6ˆ 6-torus.

For running the simulations with various initial conditions yourself you can down-
load the source code from [Tec13].

https://gitlab.discretization.de/public/projects/techter/ddgtools
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Appendix B. Gradient of the circular and conical energy

Let x, x1, x12, x2 P R2 be the vertices of an embedded, non-flipped quadrilateral
in cyclic order. In this case the angle ?px2, x, x1q at the vertex of x is given by

(B.1) ?px2, x, x1q “ arccos
〈x1 ´ x, x2 ´ x〉
}x1 ´ x} }x2 ´ x}
loooooooooomoooooooooon

–hpx2,x,x1q

P p0, πq

Let us calculate the gradient.33

(B.2)

∇x1
hpx2, x, x1q “

1

}x1 ´ x} }x2 ´ x}

˜

px2 ´ xq ´
〈x1 ´ x, x2 ´ x〉
}x1 ´ x}

2 px1 ´ xq

¸

“ ´
cos?

l21
px1 ´ xq `

1

l1l2
px2 ´ xq

∇x2
hpx2, x, x1q “

1

}x1 ´ x} }x2 ´ x}

˜

px1 ´ xq ´
〈x1 ´ x, x2 ´ x〉
}x2 ´ x}

2 px1 ´ xq

¸

“
1

l1l2
px1 ´ xq ´

cos?

l21
px2 ´ xq

∇xhpx2, x, x1q “
1

}x1 ´ x} }x2 ´ x}

˜˜

〈x1 ´ x, x2 ´ x〉
}x1 ´ x}

2 ´ 1

¸

px1 ´ xq `

˜

〈x1 ´ x, x2 ´ x〉
}x2 ´ x}

2 ´ 1

¸

px2 ´ xq

¸

“

ˆ

cos?

l21
´

1

l1l2

˙

px1 ´ xq `

ˆ

cos?

l22
´

1

l1l2

˙

px2 ´ xq

where li – }xi ´ x}, i “ 1, 2.34.
Now

(B.3) ∇?px2, x, x1q “ ´
1

?
1´ h2

p∇xh,∇x1h,∇x2
hq “ ´

1

sinα
p∇xh,∇x1h,∇x2

hq

Note that ∇xi?px2, x, x1q K pxi ´ xq.
Finally the gradient of the circular energy for the whole net f with x “ fpvq,
x1 “ τ1fpvq,... for v P Z2

(B.4)

∇Ecircpfq “
ÿ

vPZ2

2 pαpx2, x, x1q ` γpx1, x12, x2q ´ πq p∇αpx2, x, x1q `∇γpx1, x12, x2qq

Be careful to add the right components of the gradient. There are four summands
which contribute to one component (corresponding to the four quads adjacent to
the point x “ fpvq)
(B.5)
∇xEcirc “ 2 pα` γ12 ´ πq∇xαpx2, x, x1q ` 2 pα´1´2 ` γ ´ πq∇xγpx´2, x, x´1q

` 2 pα´1 ` γ2 ´ πq p∇xα´1px´1´2, x´1, xq `∇xγ2px, x2, x´1´2qq

` 2 pα´2 ` γ1 ´ πq p∇xα´2px, x´2, x1´2q `∇xγ1px1´2, x1, xqq

For the gradient of the conical energy we get
(B.6)

∇Econpfq “
ÿ

vPZ2

2 pαpx2, x, x1q ` γpx´2, x, x´1q ´ πq p∇αpx2, x, x1q `∇γpx´2, x, x´1qq

33 B

Bai

´

〈a,b〉
}a}}b}

¯

“ 1
}a}}b}

´

bi ´
〈a,b〉
}a}2

ai
¯

for i “ 1, 2, a “ pa1, a2q, b “ pb1, b2q P R2.
34We express the coefficients in term of the angle itself since it is most times available when

minimizing and simplifies the expression.
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There are five summands contributing to one component (corresponding to the five
points of vertex star with center x “ fpvq.
(B.7)
∇xEcon “ 2 pα` γ ´ πq p∇xαpx2, x, x1q `∇xγpx´2, x, x´1qq

` 2 pα1 ` γ1 ´ πq∇xγ1px1´2, x1, xq ` 2 pα2 ` γ2 ´ πq∇xγ2px, x2, x´12q

` 2 pα´1 ` γ´1 ´ πq∇xα´1px, x´1, x´12q ` 2 pα´2 ` γ´2 ´ πq∇xα´2px, x´2, x1´2q
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Appendix C. Ergodic theorem for Markov chains

Theorem C.1. Let M P N, A “ paijqi,j“1,...,M P RMˆM be a stochastic matrix,

i.e. aij ą 0 for i, j “ 1, . . . ,M and

(C.1)
M
ÿ

i“1

aij “ 1

for j “ 1, . . . ,M .

Denote
´

a
pkq
ij

¯

i,j“1,...,M
– Ak.

If for every i, j “ 1, . . . ,M there is a k P N such that a
pkq
ij ą 0, then for any t P RM

with non-negative entries

(C.2) lim
nÑ8

Ant “ b

where b P RM is the only vector with non-negative entries satisfying

(C.3) Ab “ b

and |b| “ |t|.

Remark C.1. We want our state vectors to be column vectors getting multiplied by
the stochastic matrix from the left upon each step. So, we use the more unusual
convention of stochastic matrices with columns adding up to one instead of rows.

Proof. See for example [Geo00]. �
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