Discrete confocal quadrics and checkerboard incircular nets

Jan Techter

 TU Berlin

Discrete confocal quadrics

[1] A.I. Bobenko, W.K. Schief, Y.B. Suris, J. Techter. On a discretization of confocal quadrics.
I. An integrable systems approach, Journal of Integrable Systems (2016)
[2] A.I. Bobenko, W.K. Schief, Y.B. Suris, J. Techter. On a discretization of confocal quadrics. II. A geometric approach to general parametrization, International Mathematics Research Notices (2018)

Checkerboard incircular nets
[3] A.I. Bobenko, W.K. Schief, J. Techter. Checkerboard incircular nets. Laguerre geometry and parametrisation, Geometriae Dedicata (2019)

What and why

- confocal quadrics constitute an important example of orthogonal coordinate systems with isothermic coordinate surfaces
- no previous structure preserving discretization of confocal quadrics
- new discrete orthogonality constraint allowed for such a discretization
- identified incircular nets as a special case
- classification and parametrization of checkerboard incircular nets

Nets

Let $U \subset \mathbb{R}^{M}$ be open and connected. Then a smooth regular map

$$
\boldsymbol{x}: \mathbb{R}^{M} \supset U \rightarrow \mathbb{R}^{N}, \quad \boldsymbol{s}=\left(s_{1}, \ldots, s_{M}\right) \mapsto \boldsymbol{x}\left(s_{1}, \ldots, s_{M}\right)
$$

is called an M-dimensional (smooth regular) net.

- $M=1$: parametrized curves
- $M=2$: parametrized surfaces
- $M=N$: coordinate systems

Orthogonal nets

A net $\boldsymbol{x}: \mathbb{R}^{M} \supset U \rightarrow \mathbb{R}^{N}$ is called orthogonal if

$$
\left\langle\partial_{i} \boldsymbol{x}, \partial_{j} \boldsymbol{x}\right\rangle=0, \quad i, j=1, \ldots, M, i \neq j .
$$

- Möbius invariant
- diagonal first fundamental form

$$
\mathrm{I}=H_{1}^{2} \mathrm{~d} s_{1}^{2}+\ldots+H_{M}^{2} \mathrm{~d} s_{M}^{2},
$$

where $H_{i}^{2}=\left\langle\partial_{i} \boldsymbol{x}, \partial_{i} \boldsymbol{x}\right\rangle$ are called Lamé coefficients.

Theorem (Dupin)

For $M \geqslant 3$ every orthogonal net is conjugate.

- Classical formulation for $M=N=3$:

The coordinate surfaces of a triply orthogonal system intersect in common curvature lines.

conjugate nets

A net $\boldsymbol{x}: \mathbb{R}^{M} \supset U \rightarrow \mathbb{R}^{N}$ is called conjugate if

$$
\partial_{i} \partial_{j} x \wedge \partial_{i} x \wedge \partial_{j} x=0, \quad i, j=1, \ldots, i \neq j
$$

- projectively invariant
- condition on every two-dimensional subnet

Discrete nets

1. A map

$$
\boldsymbol{x}: \mathbb{Z}^{M} \rightarrow \mathbb{R}^{N}, \quad \boldsymbol{n}=\left(n_{1}, \ldots, n_{M}\right) \mapsto \boldsymbol{x}(\boldsymbol{n})
$$

is called an M-dimensional discrete net.
2. Denote the difference operators by

$$
\Delta_{i} x(n)=x\left(n+e_{i}\right)-x(n)
$$

for every $\boldsymbol{n} \in \mathbb{Z}^{M}$ and $i=1, \ldots, M$.

Circular nets as discrete orthogonal nets.

Circular nets

A discrete net $\boldsymbol{x}: \mathbb{Z}^{M} \rightarrow \mathbb{R}^{N}$ is called a circular net if all its elementary quadrilaterals are circular, i.e., each four points

$$
\left(\boldsymbol{x}(\boldsymbol{n}), \boldsymbol{x}\left(\boldsymbol{n}+\boldsymbol{e}_{i}\right), \boldsymbol{x}\left(\boldsymbol{n}+\boldsymbol{e}_{i}+\boldsymbol{e}_{j}\right), \boldsymbol{x}\left(\boldsymbol{n}+\boldsymbol{e}_{j}\right)\right), \quad i, j=1, \ldots, M, i \neq j
$$

lie on a circle.

- Möbius invariant

$N=M=2$

$N=M=3$
[Pictures:
(left) from DDG book (right) by M.R. Jimenez, L.M. María]

Circular nets as discrete orthogonal nets.

Circular nets

A discrete net $x: \mathbb{Z}^{M} \rightarrow \mathbb{R}^{N}$ is called a circular net if all its elementary quadrilaterals are circular, i.e., each four points

$$
\left(\boldsymbol{x}(\boldsymbol{n}), \boldsymbol{x}\left(\boldsymbol{n}+\boldsymbol{e}_{i}\right), \boldsymbol{x}\left(\boldsymbol{n}+\boldsymbol{e}_{i}+\boldsymbol{e}_{j}\right), \boldsymbol{x}\left(\boldsymbol{n}+\boldsymbol{e}_{j}\right)\right), \quad i, j=1, \ldots, M, i \neq j
$$

lie on a circle.

- Möbius invariant
- definition already includes discrete conjugacy (even for $M=2$)

Discrete conjugate nets

A discrete net $\boldsymbol{x}: \mathbb{Z}^{M} \rightarrow \mathbb{R}^{N}$ is called conjugate, or a \mathbf{Q}-net, if

$$
\Delta_{i} \Delta_{j} x \wedge \Delta_{i} x \wedge \Delta_{j} x=0, \quad i, j=1, \ldots, M, i \neq j,
$$

or equivalently, if all its elementary quadrilaterals are coplanar.

Curvature line parametrization
Let $\boldsymbol{x}: \mathbb{R}^{2} \supset U \rightarrow \mathbb{R}^{3}$ a parametrized surface. Then
\boldsymbol{x} curvature line parametrization $\Leftrightarrow \boldsymbol{x}$ conjugate and orthogonal.

- Let $\boldsymbol{m}: U \rightarrow \mathbb{S}^{3}$ be the stereographic projection of \boldsymbol{x} to the sphere
- $\boldsymbol{x}: U \rightarrow \mathbb{R}^{3}$ curvature line param. $\Leftrightarrow m: U \rightarrow \mathbb{S}^{3}$ conjugate
- Möbius invariant
- discretized by circular nets (discrete conjugate nets in \mathbb{S}^{3})

Let $\boldsymbol{x}: \mathbb{R}^{2} \supset U \rightarrow \mathbb{R}^{3}$ be a parametrized surface.

- the tangent plane of \boldsymbol{x} at $\left(s_{1}, s_{2}\right) \in U$ is given by

$$
\left\{\boldsymbol{X} \in \mathbb{R}^{3} \mid \boldsymbol{\nu}\left(s_{1}, s_{2}\right) \cdot \boldsymbol{X}=d\right\}
$$

where

$$
\boldsymbol{\nu}=\frac{\partial_{1} \boldsymbol{x} \times \partial_{2} \boldsymbol{x}}{\left\|\partial_{1} \boldsymbol{x} \times \partial_{2} \boldsymbol{x}\right\|}, \quad \boldsymbol{\nu} \cdot \boldsymbol{x}-d=0 .
$$

- identify oriented tangent planes with points on the Blaschke cylinder

$$
\boldsymbol{v}=(\boldsymbol{\nu},-d) \in \mathcal{Z}=\mathbb{S}^{2} \times \mathbb{R}
$$

- $\boldsymbol{x}: U \rightarrow \mathbb{R}^{3}$ curvature line parametrization $\Leftrightarrow \boldsymbol{v}: U \rightarrow \mathcal{Z}$ conjugate
- Laguerre invariant
- discretized by conical nets (discrete conjugate nets in \mathcal{Z})

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

- pairs of circular and conical nets have orthogonal dual edges

Associated circular and conical nets [PW]

For every circular net there is a three-parameter family of associated conical nets (and vice versa).

circular nets	
point representation	
Möbius invariant	
conical nets	
tangential representation	
Laguerre invariant	

combined representation

similarity invariant\end{array}\right.\)

- pairs of circular and conical nets have orthogonal dual edges

General pairs of dual orthogonal nets [PW, PJWP]

General pairs of dual orthogonal nets [PW, PJWP]

General pairs of dual orthogonal nets [PW, PJWP]

- one normal line per vertex-face pair

General pairs of dual orthogonal nets [PW, PJWP]

- one normal line per vertex-face pair
- adjacent normals intersect

General pairs of dual orthogonal nets [PW, PJWP]

- one normal line per vertex-face pair
- adjacent normals intersect
- discrete focal surfaces

General pairs of dual orthogonal nets [PW, PJWP]

- one normal line per vertex-face pair
- adjacent normals intersect
- discrete focal surfaces
- discrete parallel surfaces
(extension to triply orthogonal system with $H_{3}^{2}=H_{3}^{2}\left(n_{3}\right)$)

General pairs of dual orthogonal nets [PW, PJWP]

- one normal line per vertex-face pair
- adjacent normals intersect
- discrete focal surfaces
- discrete parallel surfaces
(extension to triply orthogonal system with $H_{3}^{2}=H_{3}^{2}\left(n_{3}\right)$)

General pairs of dual orthogonal nets [PW, PJWP]

- one normal line per vertex-face pair
- adjacent normals intersect
- discrete focal surfaces
- discrete parallel surfaces
(extension to triply orthogonal system with $H_{3}^{2}=H_{3}^{2}\left(n_{3}\right)$)
- characterization of discrete channel surfaces and Dupin cyclides

Pairs of dual discrete nets

A map

$$
\boldsymbol{x}: \mathbb{Z}^{M} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{M} \rightarrow \mathbb{R}^{N}
$$

is called a pair of dual discrete nets.

$\mathbb{Z}^{2} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{2}$

$\mathbb{Z}^{3} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{3}$

Orthogonal pairs of dual discrete nets [1]

A pair of dual discrete nets $\boldsymbol{x}: \mathbb{Z}^{M} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{M} \rightarrow \mathbb{R}^{N}$ is called orthogonal if every pair of dual edges is orthogonal in \mathbb{R}^{N}, i.e.,

$$
\left\langle\Delta_{i} \boldsymbol{x}(\boldsymbol{n}), \Delta_{j} \boldsymbol{x}\left(\boldsymbol{n}+\frac{1}{2} \boldsymbol{\sigma}\right)\right\rangle=0, \quad i, j=1, \ldots, M
$$

where $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{M}\right) \in\{ \pm 1\}^{M}$ with $\sigma_{i}=1$ and $\sigma_{j}=-1$.

- invariant under translation of each of its two discrete subnets
- invariant under similarity transformations
(Möbius invariant version possible)

Theorem (discrete Dupin, [2])

Let $M \geqslant 3$ and $\boldsymbol{x}: \mathbb{Z}^{M} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{M} \rightarrow \mathbb{R}^{N}$ be an orthogonal pair of dual discrete nets. Then its two discrete subnets

$$
\left.\boldsymbol{x}\right|_{\mathbb{Z}^{M}} \text { and }\left.\boldsymbol{x}\right|_{\left(\mathbb{Z}+\frac{1}{2}\right)^{M}}
$$

are discrete conjugate nets, i.e., have planar faces.

Confocal quadrics

Given $a_{1}>a_{2}>\ldots>a_{N}$.
The one-parameter family of confocal quadrics is given by:

$$
Q(u)=\left\{\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N} \left\lvert\, \sum_{k=1}^{N} \frac{x_{k}^{2}}{a_{k}+u}=1\right.\right\}, \quad u \in \mathbb{R} .
$$

- given $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ with $x_{1} \cdots x_{N} \neq 0$ the N roots $-a_{1}<u_{1}<-a_{2}<u_{2}<\cdots<-a_{N}<u_{N}$ of equation

$$
\sum_{k=1}^{N} \frac{x_{k}^{2}}{a_{k}+u}=1
$$

correspond to N confocal quadrics $Q\left(u_{i}\right)$ of different (affine) type

- two quadrics $Q\left(u_{i}\right)$ and $Q\left(u_{j}\right)$ of different type intersect orthogonally
- two quadrics $Q\left(u_{i}\right)$ and $Q\left(\tilde{u}_{i}\right)$ of the same type do not intersect

Confocal coordinates

We call a coordinate system $\boldsymbol{x}: \mathbb{R}^{N} \supset U \rightarrow \mathbb{R}^{N}$ a confocal coordinate system if its coordinate hypersurfaces consist of confocal quadrics.

- x is a confocal coordinate system if and only if

$$
\sum_{k=1}^{N} \frac{x_{k}(s)^{2}}{a_{k}+u_{i}\left(s_{i}\right)}=1, \quad i=1, \ldots, N
$$

with some $a_{1}>\ldots>a_{N}$, and some functions $u_{1}\left(s_{1}\right), \ldots, u_{N}\left(s_{N}\right)$ in the intervals $\left(-a_{1},-a_{2}\right), \ldots,\left(-a_{N}, \infty\right)$.

- a confocal coordinate system is uniquely determined by
- the constants a_{k} (confocal family) and
- the functions u_{i} (reparametrization along coordinate lines)

Main Theorem 1 [2]

If a coordinate system $\boldsymbol{x}: \mathbb{R}^{N} \supset U \rightarrow \mathbb{R}^{N}$ satisfies the two conditions:
i) \boldsymbol{x} factorizes, in the sense that

$$
x_{k}(s)=f_{1}^{k}\left(s_{1}\right) f_{2}^{k}\left(s_{2}\right) \cdots f_{N}^{k}\left(s_{N}\right), \quad k=1, \ldots, N
$$

with $f_{i}^{k}\left(s_{i}\right) \neq 0$ and $\left(f_{i}^{k}\right)^{\prime}\left(s_{i}\right) \neq 0$, and
ii) \boldsymbol{x} is orthogonal, that is,

$$
\left\langle\partial_{i} \boldsymbol{x}, \partial_{j} \boldsymbol{x}\right\rangle=0 \quad \text { for } \quad i \neq j,
$$

then all coordinate hypersurfaces are confocal quadrics, i.e., \boldsymbol{x} is a confocal coordinate system.

Discrete confocal coordinates [2]

A discrete coordinate system $\boldsymbol{x}:\left(\frac{1}{2} \mathbb{Z}\right)^{N} \supset U \rightarrow \mathbb{R}^{N}$ is called a discrete confocal coordinate system if it satisfies two conditions:
i) \boldsymbol{x} factorizes, in the sense that for any $\boldsymbol{n} \in \mathcal{U}$

$$
x_{k}(\boldsymbol{n})=f_{1}^{k}\left(n_{1}\right) f_{2}^{k}\left(n_{2}\right) \cdots f_{N}^{k}\left(n_{N}\right), \quad k=1, \ldots, N
$$

with $f_{i}^{k}\left(n_{i}\right) \neq 0$ and $\Delta f_{i}^{k}\left(n_{i}\right) \neq 0$, and
ii) \boldsymbol{x} is orthogonal (all pairs of dual subnets).

- stepsize- $\frac{1}{2}$-lattice contains 2^{N-1} orthogonal pairs

Discrete confocal coordinates [2]

A discrete coordinate system $\boldsymbol{x}:\left(\frac{1}{2} \mathbb{Z}\right)^{N} \supset U \rightarrow \mathbb{R}^{N}$ is called a discrete confocal coordinate system if it satisfies two conditions:
i) \boldsymbol{x} factorizes, in the sense that for any $\boldsymbol{n} \in \mathcal{U}$

$$
x_{k}(\boldsymbol{n})=f_{1}^{k}\left(n_{1}\right) f_{2}^{k}\left(n_{2}\right) \cdots f_{N}^{k}\left(n_{N}\right), \quad k=1, \ldots, N
$$

with $f_{i}^{k}\left(n_{i}\right) \neq 0$ and $\Delta f_{i}^{k}\left(n_{i}\right) \neq 0$, and
ii) \boldsymbol{x} is orthogonal (all pairs of dual subnets).

- stepsize- $\frac{1}{2}$-lattice contains 2^{N-1} orthogonal pairs

Discrete confocal coordinates [2]

A discrete coordinate system $\boldsymbol{x}:\left(\frac{1}{2} \mathbb{Z}\right)^{N} \supset U \rightarrow \mathbb{R}^{N}$ is called a discrete confocal coordinate system if it satisfies two conditions:
i) \boldsymbol{x} factorizes, in the sense that for any $\boldsymbol{n} \in \mathcal{U}$

$$
x_{k}(\boldsymbol{n})=f_{1}^{k}\left(n_{1}\right) f_{2}^{k}\left(n_{2}\right) \cdots f_{N}^{k}\left(n_{N}\right), \quad k=1, \ldots, N
$$

with $f_{i}^{k}\left(n_{i}\right) \neq 0$ and $\Delta f_{i}^{k}\left(n_{i}\right) \neq 0$, and
ii) \boldsymbol{x} is orthogonal (all pairs of dual subnets).

- stepsize- $\frac{1}{2}$-lattice contains 2^{N-1} orthogonal pairs

Main Theorem 2 [2]

For a discrete confocal coordinate system, there exist $a_{1}, \ldots, a_{N} \in \mathbb{R}$, and sequences $u_{i}:\left(\frac{1}{2} \mathbb{Z}+\frac{1}{4}\right) \rightarrow \mathbb{R}, i=1, \ldots, N$, such that

$$
\sum_{k=1}^{N} \frac{x_{k}(\boldsymbol{n}) x_{k}\left(\boldsymbol{n}+\frac{1}{2} \boldsymbol{\sigma}\right)}{a_{k}+u_{i}\left(n_{i}+\frac{1}{4} \sigma_{i}\right)}=1, \quad i=1, \ldots, N
$$

for any $\boldsymbol{n} \in \mathcal{U}$ and $\boldsymbol{\sigma} \in\{ \pm 1\}^{N}$.

- proof by "discretization of smooth proof"
- geometric construction by polarity (generalizable to dual pencils)
- reparametrization captured in the functions u_{i}

$$
\left[\sum_{k=1}^{N} \frac{x_{k}(\boldsymbol{s})^{2}}{a_{k}+u_{i}\left(s_{i}\right)}=1\right]
$$

Example ($N=3$): Explicit solution by solving functional equations for f_{i}^{k} in terms of elliptic functions [2].

Example ($N=3$): Explicit solution by solving functional equations for f_{i}^{k} in terms of elliptic functions [2].

Properties of discrete confocal coordinates

- factorizable
- discrete orthogonal
- geometric construction
(generalizable to dual pencils and thus to hyperbolic / elliptic geometry)
- 2D-subnets discrete isothermic
- satisfy generalized discrete Euler-Poisson-Darboux equation (3D-consistent)
- discrete umbilical points (focal conics) and corresponding discrete Dupin cyclides

Example with straight diagonal lines.

- explicit parametrization [2]

Example with straight diagonal lines.

- explicit parametrization [2]
- all lines tangent to a common conic from the confocal family
[AB]
[B̈]

Example with straight diagonal lines.

- explicit parametrization [2]
- all lines tangent to a common conic from the confocal family
- incircles by Graves-Chasles theorem \rightarrow incircular nets [Bö, AB, 3]

Example with straight diagonal lines.

- explicit parametrization [2]
- all lines tangent to a common conic from the confocal family
- incircles by Graves-Chasles theorem \rightarrow incircular nets [Bö, AB, 3]
- incircle centers constitute discrete confocal conics [2]

Elementary construction of incircular nets [$\mathrm{Bö}, \mathrm{AB}$]

Elementary construction of incircular nets [$\mathrm{Bö}, \mathrm{AB}$]

Elementary construction of incircular nets [$\mathrm{Bö}, \mathrm{AB}$]

Elementary construction of incircular nets [$\mathrm{Bö}, \mathrm{AB}$]

Elementary construction of incircular nets [$\mathrm{Bö}, \mathrm{AB}$]

Elementary construction of incircular nets $[\mathrm{Bö}, \mathrm{AB}]$

- incidence theorem (existence of the 9-th circle)

Elementary construction of incircular nets $[\mathrm{Bö}, \mathrm{AB}]$

- incidence theorem (existence of the 9-th circle)

Elementary construction of incircular nets $[\mathrm{Bö}, \mathrm{AB}]$

- incidence theorem (existence of the 9-th circle)

Elementary construction of incircular nets [Bö, $A B$]

- incidence theorem (existence of the 9-th circle)
- all lines touch a common conic
- proofs easier in Laguerre geometric generalization

Laguerre geometric generalization: checkerboard incircular nets [AB]

- two one-parameter families of oriented lines

Main Theorem 3 [AB, 3]

1. incidence theorem (existence of the 13 -th circle)
2. all lines of a checkerboard incircular net touch a common hypercycle

Proof

oriented lines
oriented circels
\longleftrightarrow
\longleftrightarrow

points on the Blaschke cylinder \mathcal{Z} planes

Main Theorem $4[B 1,3]$

1. classification of hypercycles
2. parametrization of checkerboard incircular nets

Example: base curve of an ellipse

- the hypercycle corresponding to an ellipse $\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1$
 is given by the intersection of the Blaschke cylinder \mathcal{Z}

$$
v^{2}+w^{2}=1
$$

with the cone

$$
\alpha^{2} v^{2}+\beta^{2} w^{2}=d^{2}
$$

- or equivalently by the base curve of the pencil

$$
\left(\alpha^{2}+\lambda\right) v^{2}+\left(\beta^{2}+\lambda\right) w^{2}=d^{2}+\lambda
$$

Example (cont'd): parametrization / construction

- parametrize the base curve by elliptic functions

$$
\boldsymbol{v}_{ \pm}(\psi)=\left(\begin{array}{c}
v(\psi) \\
w(\psi) \\
d_{ \pm}(\psi)
\end{array}\right)=\left(\begin{array}{c}
\operatorname{cn}(\psi, k) \\
\operatorname{sn}(\psi, k) \\
\pm \alpha \operatorname{dn}(\psi, k)
\end{array}\right), \quad k=\sqrt{1-\frac{\beta^{2}}{\alpha^{2}}},
$$

- choose two hyperboloids in the pencil by

$$
\lambda=\alpha^{2} \operatorname{cs}^{2}\left(\frac{s}{2}, k\right), \quad \tilde{\lambda}=\alpha^{2} \operatorname{cs}^{2}\left(\frac{\tilde{s}}{2}, k\right)
$$

- alternate the corresponding shifts s and \tilde{s} to switch component along the generators (Poncelet map)

$$
\boldsymbol{v}_{-}(\psi) \rightarrow \boldsymbol{v}_{+}(\psi+s) \rightarrow \boldsymbol{v}_{-}(\psi+s+\tilde{s}) \rightarrow \cdots
$$

- constrain $s+\tilde{s}$ to obtain periodic patterns

- constrain $s+\tilde{s}$ to obtain periodic patterns

Summary

- Main Theorem 1: characterization of confocal coordinates by factorizability and orthogonality
- Definition: new discrete orthogonality
- Definition: discrete confocal coordinates (including arbitrary parametrizations)
- Main Theorem 2: discrete version of Main Theorem 1
- geometric construction of discrete confocal quadrics
- relation to checkerboard incircular nets
- Main Theorem 3: incidence theorem / touching hypercycle
- Main Theorem 4: classification of hypercycles / parametrization of checkerboard incircular nets

Thank you!

How to obtain confocal coordinates (specific parametrization)?

$$
\left[\sum_{k=1}^{N} \frac{x_{k}(s)^{2}}{a_{k}+u_{i}\left(s_{i}\right)}=1\right]_{i=1, \ldots, N} \Leftrightarrow\left[x_{k}(\boldsymbol{s})^{2}=\frac{\prod_{i=1}^{N}\left(u_{i}\left(s_{i}\right)+a_{k}\right)}{\prod_{i \neq k}\left(a_{k}-a_{i}\right)}\right]_{k=1, \ldots, N}
$$

- \boldsymbol{x} may equivalently be written as

$$
\begin{gathered}
x_{k}(\boldsymbol{s})=\frac{f_{1}^{k}\left(s_{1}\right) \cdots f_{N}^{k}\left(s_{N}\right)}{\prod_{i=1}^{k-1} \sqrt{a_{i}-a_{k}} \prod_{i=k+1}^{N} \sqrt{a_{k}-a_{i}}} \\
\left(f_{i}^{k}\left(s_{i}\right)\right)^{2}= \begin{cases}u_{i}\left(s_{i}\right)+a_{k}, & k \leqslant i \\
-\left(u_{i}\left(s_{i}\right)+a_{k}\right), & k>i\end{cases}
\end{gathered}
$$

- Consistency equations for f_{i}^{k} are given by

$$
\begin{cases}\left(f_{i}^{1}\left(s_{i}\right)\right)^{2}-\left(f_{i}^{k}\left(s_{i}\right)\right)^{2}=a_{1}-a_{k}, & k \leqslant i, \\ \left(f_{i}^{1}\left(s_{i}\right)\right)^{2}+\left(f_{i}^{k}\left(s_{i}\right)\right)^{2}=a_{1}-a_{k}, & k>i\end{cases}
$$

How to obtain discrete confocal coordinates?

$$
\left[\sum_{k=1}^{N} \frac{x_{k}(\boldsymbol{n}) x_{k}\left(\boldsymbol{n}+\frac{1}{2} \boldsymbol{\sigma}\right)}{a_{k}+u_{i}\left(n_{i}+\frac{1}{4} \sigma_{i}\right)}=1\right]_{i=1 \ldots, N} \Leftrightarrow\left[x_{k}(\boldsymbol{n}) x_{k}\left(\boldsymbol{n}+\frac{1}{2} \boldsymbol{\sigma}\right)=\frac{\prod_{j=1}^{N}\left(u_{i}\left(n_{i}+\frac{1}{4} \sigma_{i}\right)+a_{k}\right)}{\prod_{j \neq k}\left(a_{k}-a_{j}\right)}\right]_{k=1, \ldots, N}
$$

- \boldsymbol{x} may equivalently be written as

$$
\begin{gathered}
x_{k}(\boldsymbol{n})=\frac{f_{1}^{k}\left(n_{1}\right) \cdots f_{N}^{k}\left(n_{N}\right)}{\prod_{i=1}^{k-1} \sqrt{a_{i}-a_{k}} \prod_{i=k+1}^{N} \sqrt{a_{k}-a_{i}}} \\
f_{i}^{k}\left(n_{i}\right) f_{i}^{k}\left(n_{i}+\frac{1}{2}\right)= \begin{cases}u_{i}\left(n_{i}+\frac{1}{4}\right)+a_{k}, & k \leqslant i, \\
-\left(u_{i}\left(n_{i}+\frac{1}{4}\right)+a_{k}\right), & k>i .\end{cases}
\end{gathered}
$$

- Consistency equations for f_{i}^{k} are given by

$$
\begin{cases}f_{i}^{1}\left(n_{i}\right) f_{i}^{1}\left(n_{i}+\frac{1}{2}\right)-f_{i}^{k}\left(n_{i}\right) f_{i}^{k}\left(n_{i}+\frac{1}{2}\right)=a_{1}-a_{k}, & k \leqslant i, \\ f_{i}^{1}\left(n_{i}\right) f_{i}^{1}\left(n_{i}+\frac{1}{2}\right)+f_{i}^{k}\left(n_{i}\right) f_{i}^{k}\left(n_{i}+\frac{1}{2}\right)=a_{1}-a_{k}, & k>i .\end{cases}
$$

discrete Lamé coefficients

For a pair of dual discrete nets $\boldsymbol{x}: \mathbb{Z}^{M} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{M} \rightarrow \mathbb{R}^{N}$ the discrete Lamé coefficients $H_{i}^{2}:\left(\mathbb{Z}+\frac{1}{4}\right)^{M} \rightarrow \mathbb{R}$ are defined by

$$
H_{i}^{2}\left(\boldsymbol{n}+\frac{1}{4} \boldsymbol{\sigma}\right)= \begin{cases}\left\langle\Delta_{i} \boldsymbol{x}(\boldsymbol{n}), \bar{\Delta}_{i} \boldsymbol{x}\left(\boldsymbol{n}+\frac{1}{2} \boldsymbol{\sigma}\right)\right\rangle, & \sigma_{i}=1 \\ \left\langle\bar{\Delta}_{i} \boldsymbol{x}(\boldsymbol{n}), \Delta_{i} \boldsymbol{x}\left(\boldsymbol{n}+\frac{1}{2} \boldsymbol{\sigma}\right)\right\rangle, & \sigma_{i}=-1\end{cases}
$$

for all $\boldsymbol{n} \in \mathbb{Z}^{M}$ and $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{M}\right) \in\{ \pm 1\}^{M}$, where $\bar{\Delta}_{i} \boldsymbol{x}(\boldsymbol{n})=\boldsymbol{x}(\boldsymbol{n})-\boldsymbol{x}\left(\boldsymbol{n}-\boldsymbol{e}_{i}\right)$.

$M=2$

$$
M=3
$$

Isothermic nets

A net $\boldsymbol{x}: \mathbb{R}^{2} \supset U \rightarrow \mathbb{R}^{3}$ is called isothermic if it is a curvature line parametrization and

$$
\frac{H_{1}^{2}}{H_{2}^{2}}=\frac{\alpha\left(s_{1}\right)}{\beta\left(s_{2}\right)}
$$

for some functions α and β only depending on s_{1} and s_{2} respectively.

- definition can immediately be carried over to orthogonal pairs of discrete nets
- discrete isothermicity condition:

$$
\phi \phi_{\mathbb{1}}=\phi_{\mathbb{1}} \phi_{\mathbb{1}}
$$

Darboux classified all triply orthogonal systems with isothermic coordinate surfaces [Da]:

- solutions of the Euler-Poisson-Darboux equation

$$
\partial_{i} \partial_{j} \boldsymbol{x}(\boldsymbol{s})=\frac{\gamma}{s_{i}-s_{j}}\left(\partial_{j} \boldsymbol{x}(\boldsymbol{s})-\partial_{i} \boldsymbol{x}(\boldsymbol{s})\right), \quad i, j=1, \ldots, N, i \neq j
$$

with $\gamma= \pm \frac{1}{2},-1,-2$.

- the case $\gamma=\frac{1}{2}$ includes confocal coordinates

$$
x_{k}(\boldsymbol{s})=\frac{\prod_{i=1}^{k-1} \sqrt{-\left(s_{i}+a_{k}\right)} \prod_{i=k}^{N} \sqrt{s_{i}+a_{k}}}{\prod_{i=1}^{k-1} \sqrt{a_{i}-a_{k}} \prod_{i=k+1}^{N} \sqrt{a_{k}-a_{i}}}, \quad k=1, \ldots, N
$$

Example: Explicit solution from choosing u_{i}.

- setting $u_{i}\left(n_{i}+\frac{1}{4}\right)=n_{i}+\epsilon_{i}$ leads to

$$
f_{i}^{k}\left(n_{i}\right)=\left\{\begin{array}{ll}
\left(n_{i}+a_{k}+\epsilon_{i}\right)_{1 / 2} & \text { for } i \geqslant k \\
\left(-n_{i}-a_{k}-\epsilon_{i}+\frac{1}{2}\right)_{1 / 2} & \text { for } i<k
\end{array} \quad \text { with }(n)_{1 / 2}=\frac{\Gamma\left(n+\frac{1}{2}\right)}{\Gamma(n)}\right.
$$

- solutions of the discrete Euler-Poisson-Darboux equation with $\gamma=\frac{1}{2}$ [1, KS]:

$$
\Delta_{i} \Delta_{j} \boldsymbol{x}(\boldsymbol{n})=\frac{\gamma}{n_{i}+\epsilon_{i}-n_{j}-\epsilon_{j}}\left(\Delta_{j} \boldsymbol{x}(\boldsymbol{n})-\Delta_{i} \boldsymbol{x}(\boldsymbol{n})\right), \quad i \neq j
$$

generalized discrete Euler-Poisson-Darboux equation with $\gamma=\frac{1}{2}$

$$
\Delta_{i} \Delta_{j} \boldsymbol{x}=\frac{1}{u_{i}-u_{j}}\left(\Delta^{1 / 2} u_{i} \Delta_{j} x-\Delta^{1 / 2} u_{j} \Delta_{i} x\right),
$$

where $\boldsymbol{x}=\boldsymbol{x}(\boldsymbol{n}), u_{i}=u_{i}\left(n_{i}+\frac{1}{4}\right)$, and $\Delta^{1 / 2} u_{i}=u_{i}\left(n_{i}+\frac{3}{4}\right)-u_{i}\left(n_{i}+\frac{1}{4}\right)$

Examples related to 3 -webs and 4 -webs [Ak, Ag, 2]

Similar constructions of webs also exist on quadrics in 3-space [ABST].

$[\mathrm{Ag}]$	S.I. Agafonov. Confocal conics and 4-webs of maximal rank, arxiv:1912.01817v1 (2019).
$[\mathrm{Ak}]$	A.V. Akopyan. 3-Webs generated by confocal conics and circles. Geometriae Dedicata, (2017).
[ABST]	A.V. Akopyan, A.I. Bobenko, W.K. Schief, J. Techter. On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs, arXiv:1908.00856, (2019).

