Mutually diagonal nets on quadrics and incircular nets

Jan Techter
TU Berlin
September 24, 2019

R A.V. Akopyan, A.I. Bobenko, W.K. Schief, J. Techter On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs, preprint (2019)

Discrete confocal quadrics

圊
A.I. Bobenko, W.K. Schief, Y.B. Suris, J. Techter.

On a discretization of confocal quadrics. I. An integrable systems approach, Journal of Integrable Systems (2016) Volume 1:1A.I. Bobenko, W.K. Schief, Y.B. Suris, J. Techter.

On a discretization of confocal quadrics. II. A geometric approach to general parametrization, IMRN (2018)

(Checkerboard) incircular nets

W. Böhm, Verwandte Sätze über Kreisvierseitnetze, Arch. Math. (Basel) 21 (1970) 326-330A. Akopyan, A.I. Bobenko, Incircular nets and confocal conics, Trans. AMS 370:4 (2018)
圊
A.I. Bobenko, W.K. Schief, J. Techter. Checkerboard incircular nets. Laguerre geometry and parametrization, Geometriae Dedicata (2019)

(Checkerboard) incircular nets

W. Böhm, Verwandte Sätze über Kreisvierseitnetze, Arch. Math. (Basel) 21 (1970) 326-330A. Akopyan, A.I. Bobenko, Incircular nets and confocal conics, Trans. AMS 370:4 (2018)
A.I. Bobenko, W.K. Schief, J. Techter. Checkerboard incircular nets. Laguerre geometry and parametrization, Geometriae Dedicata (2019)
(Checkerboard) incircular nets
W. Böhm, Verwandte Sätze über Kreisvierseitnetze, Arch. Math. (Basel) 21 (1970) 326-330A. Akopyan, A.I. Bobenko, Incircular nets and confocal conics, Trans. AMS 370:4 (2018)
圊
A.I. Bobenko, W.K. Schief, J. Techter. Checkerboard incircular nets. Laguerre geometry and parametrization, Geometriae Dedicata (2019)

Anschauliche Geometrie, 1932 (Geometry and the imagination)

Hilbert

Cohn-Vossen

Fig. 23a

Fig. 23b

Anschauliche Geometrie, 1932 (Geometry and the imagination)

Hilbert

Cohn-Vossen

Models at TU Wien

Anschauliche Geometrie, 1932 (Geometry and the imagination)

Hilbert

Cohn-Vossen

Anschauliche Geometrie, 1932 (Geometry and the imagination)

Hilbert

Cohn-Vossen

Fig. 25a

Fig. 25b

Anschauliche Geometrie, 1932 (Geometry and the imagination)

Hilbert

Cohn-Vossen

Models at TU Wien

Anschauliche Geometrie, 1932 (Geometry and the imagination)

Hilbert

Cohn-Vossen

Confocal quadrics
Given $a>b>c$. Corresponding one-parameter family of confocal quadrics:

$$
Q(\lambda)=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, \frac{x^{2}}{a+\lambda}+\frac{y^{2}}{b+\lambda}+\frac{z^{2}}{c+\lambda}=1\right.\right\}, \quad \lambda \in \mathbb{R} .
$$

Decomposition into three families:

$$
\begin{aligned}
& \frac{x^{2}}{u_{1}+a}+\frac{y^{2}}{u_{1}+b}+\frac{z^{2}}{u_{1}+c}=1 \\
& \frac{x^{2}}{u_{2}+a}+\frac{y^{2}}{u_{2}+b}+\frac{z^{2}}{u_{2}+c}=1 \\
& \frac{x^{2}}{u_{3}+a}+\frac{y^{2}}{u_{3}+b}+\frac{z^{2}}{u_{3}+c}=1
\end{aligned}
$$

with $-a<u_{1}<-b<u_{2}<-c<u_{3}$.

Decomposition into three families:

$$
\begin{aligned}
& \frac{x^{2}}{u_{1}+a}+\frac{y^{2}}{u_{1}+b}+\frac{z^{2}}{u_{1}+c}=1 \\
& \frac{x^{2}}{u_{2}+a}+\frac{y^{2}}{u_{2}+b}+\frac{z^{2}}{u_{2}+c}=1 \\
& \frac{x^{2}}{u_{3}+a}+\frac{y^{2}}{u_{3}+b}+\frac{z^{2}}{u_{3}+c}=1
\end{aligned}
$$

with $-a<u_{1}<-b<u_{2}<-c<u_{3}$.
This leads to the system of confocal coordinates $(x, y, z)=\boldsymbol{r}\left(u_{1}, u_{2}, u_{3}\right)$:

$$
\begin{aligned}
& x^{2}=\frac{\left(u_{1}+a\right)\left(u_{2}+a\right)\left(u_{3}+a\right)}{(a-b)(a-c)} \\
& y^{2}=\frac{\left(u_{1}+b\right)\left(u_{2}+b\right)\left(u_{3}+b\right)}{(b-a)(b-c)} \\
& z^{2}=\frac{\left(u_{1}+c\right)\left(u_{2}+c\right)\left(u_{3}+c\right)}{(c-a)(c-b)}
\end{aligned}
$$

For any reparametrization $u_{i}=u_{i}\left(s_{i}\right)$ the system of confocal coordinates

- has a diagonal first fundamental form:

$$
\begin{aligned}
& \mathrm{I}=d \boldsymbol{r} \cdot d \boldsymbol{r}=H_{1}^{2} d s_{1}^{2}+H_{2}^{2} d s_{2}^{2}+H_{3}^{2} d s_{3}^{2}, \\
& \text { with } \frac{H_{i}^{2}}{H_{k}^{2}}=\frac{V_{i}\left(s_{i}, s_{l}\right)}{V_{k}\left(s_{k}, s_{l}\right)},
\end{aligned}
$$

For any reparametrization $u_{i}=u_{i}\left(s_{i}\right)$ the system of confocal coordinates

- has a diagonal first fundamental form:

$$
\begin{aligned}
& \mathrm{I}=d \boldsymbol{r} \cdot d \boldsymbol{r}=H_{1}^{2} d s_{1}^{2}+H_{2}^{2} d s_{2}^{2}+H_{3}^{2} d s_{3}^{2}, \\
& \text { with } \frac{H_{i}^{2}}{H_{k}^{2}}=\frac{V_{i}\left(s_{i}, s_{l}\right)}{V_{k}\left(s_{k}, s_{l}\right)},
\end{aligned}
$$

- has diagonal second fundamental forms:

$$
\begin{aligned}
& \mathrm{II}_{i k}=-d \boldsymbol{r} \cdot d \boldsymbol{N}_{i k}=e_{i k} d s_{i}^{2}+g_{i k} d s_{k}^{2}, \\
& \text { with } \frac{e_{i k}}{g_{i k}}=-\frac{U_{i}\left(s_{i}\right)}{U_{k}\left(s_{k}\right)}, \quad U_{i}=\frac{1}{4} \frac{u_{i}^{\prime 2}}{\left(u_{i}+a\right)\left(u_{i}+b\right)\left(u_{i}+c\right)} .
\end{aligned}
$$

where $\boldsymbol{N}_{i k} \sim \boldsymbol{r}_{u_{l}}$ is the unit normal of the quadric $u_{l}=$ const.

For any reparametrization $u_{i}=u_{i}\left(s_{i}\right)$ the system of confocal coordinates
■ has a diagonal first fundamental form:

$$
\begin{aligned}
& \mathrm{I}=d \boldsymbol{r} \cdot d \boldsymbol{r}=H_{1}^{2} d s_{1}^{2}+H_{2}^{2} d s_{2}^{2}+H_{3}^{2} d s_{3}^{2} \\
& \text { with } \frac{H_{i}^{2}}{H_{k}^{2}}=\frac{V_{i}\left(s_{i}, s_{l}\right)}{V_{k}\left(s_{k}, s_{l}\right)}
\end{aligned}
$$

■ has diagonal second fundamental forms:

$$
\begin{aligned}
& \mathrm{II}_{i k}=-d \boldsymbol{r} \cdot d \boldsymbol{N}_{i k}=e_{i k} d s_{i}^{2}+g_{i k} d s_{k}^{2} \\
& \text { with } \frac{e_{i k}}{g_{i k}}=-\frac{U_{i}\left(s_{i}\right)}{U_{k}\left(s_{k}\right)}, \quad U_{i}=\frac{1}{4} \frac{u_{i}^{\prime 2}}{\left(u_{i}+a\right)\left(u_{i}+b\right)\left(u_{i}+c\right)}
\end{aligned}
$$

where $\boldsymbol{N}_{i k} \sim \boldsymbol{r}_{u_{l}}$ is the unit normal of the quadric $u_{l}=$ const.

In particular

Orthogonal coordinate system along curvature lines of its isothermal coordinate surfaces.

$$
\mathrm{II}_{i k}=e_{i k} d s_{i}^{2}+g_{i k} d s_{k}^{2}, \quad \frac{e_{i k}}{g_{i k}}=-\frac{U_{i}\left(s_{i}\right)}{U_{k}\left(s_{k}\right)}, \quad U_{i}=\frac{1}{4} \frac{u_{i}^{\prime 2}}{\left(u_{i}+a\right)\left(u_{i}+b\right)\left(u_{i}+c\right)} .
$$

$$
\mathrm{I}_{i k}=e_{i k} d s_{i}^{2}+g_{i k} d s_{k}^{2}, \quad \frac{e_{i k}}{g_{i k}}=-\frac{U_{i}\left(s_{i}\right)}{U_{k}\left(s_{k}\right)}, \quad U_{i}=\frac{1}{4} \frac{u_{i}^{\prime 2}}{\left(u_{i}+a\right)\left(u_{i}+b\right)\left(u_{i}+c\right)} .
$$

Theorem

There exists a unique parametrisation $u_{i}=u_{i}\left(s_{i}\right)$ of confocal coordinate lines (up to a scaling of the s_{i} by the same constant) such that the second fundamental forms of the confocal quadrics are "conformally flat", that is,

$$
\mathrm{I}_{12} \sim d s_{1}^{2}+d s_{2}^{2}, \quad \mathrm{I}_{13} \sim d s_{1}^{2}-d s_{3}^{2}, \quad \mathrm{II}_{23} \sim d s_{2}^{2}+d s_{3}^{2} .
$$

$$
\mathrm{I}_{i k}=e_{i k} d s_{i}^{2}+g_{i k} d s_{k}^{2}, \quad \frac{e_{i k}}{g_{i k}}=-\frac{U_{i}\left(s_{i}\right)}{U_{k}\left(s_{k}\right)}, \quad U_{i}=\frac{1}{4} \frac{u_{i}^{\prime 2}}{\left(u_{i}+a\right)\left(u_{i}+b\right)\left(u_{i}+c\right)} .
$$

Theorem

There exists a unique parametrisation $u_{i}=u_{i}\left(s_{i}\right)$ of confocal coordinate lines (up to a scaling of the s_{i} by the same constant) such that the second fundamental forms of the confocal quadrics are "conformally flat", that is,

$$
\mathrm{I}_{12} \sim d s_{1}^{2}+d s_{2}^{2}, \quad \mathrm{I}_{13} \sim d s_{1}^{2}-d s_{3}^{2}, \quad \mathrm{I}_{23} \sim d s_{2}^{2}+d s_{3}^{2} .
$$

Solve $U_{1}=-U_{2}=U_{3}=$ const >0

$$
\mathrm{I}_{i k}=e_{i k} d s_{i}^{2}+g_{i k} d s_{k}^{2}, \quad \frac{e_{i k}}{g_{i k}}=-\frac{U_{i}\left(s_{i}\right)}{U_{k}\left(s_{k}\right)}, \quad U_{i}=\frac{1}{4} \frac{u_{i}^{\prime 2}}{\left(u_{i}+a\right)\left(u_{i}+b\right)\left(u_{i}+c\right)} .
$$

Theorem

There exists a unique parametrisation $u_{i}=u_{i}\left(s_{i}\right)$ of confocal coordinate lines (up to a scaling of the s_{i} by the same constant) such that the second fundamental forms of the confocal quadrics are "conformally flat", that is,

$$
\mathrm{I}_{12} \sim d s_{1}^{2}+d s_{2}^{2}, \quad \mathrm{I}_{13} \sim d s_{1}^{2}-d s_{3}^{2}, \quad \mathrm{I}_{23} \sim d s_{2}^{2}+d s_{3}^{2} .
$$

Solve $U_{1}=-U_{2}=U_{3}=$ const $>0 \rightarrow$ Weierstrass $\wp-$ function.

Theorem

There exists a unique parametrisation $u_{i}=u_{i}\left(s_{i}\right)$ of confocal coordinate lines (up to a scaling of the s_{i} by the same constant) such that the second fundamental forms of the confocal quadrics are "conformally flat", that is,

$$
\mathrm{I}_{12} \sim d s_{1}^{2}+d s_{2}^{2}, \quad \mathrm{II}_{13} \sim d s_{1}^{2}-d s_{3}^{2}, \quad \mathrm{II}_{23} \sim d s_{2}^{2}+d s_{3}^{2} .
$$

Solve $U_{1}=-U_{2}=U_{3}=$ const $>0 \rightarrow$ Weierstrass \wp-function.

Theorem

There exists a unique parametrisation $u_{i}=u_{i}\left(s_{i}\right)$ of confocal coordinate lines (up to a scaling of the s_{i} by the same constant) such that the second fundamental forms of the confocal quadrics are "conformally flat", that is,

$$
\mathrm{I}_{12} \sim d s_{1}^{2}+d s_{2}^{2}, \quad \mathrm{II}_{13} \sim d s_{1}^{2}-d s_{3}^{2}, \quad \mathrm{II}_{23} \sim d s_{2}^{2}+d s_{3}^{2} .
$$

Solve $U_{1}=-U_{2}=U_{3}=$ const $>0 \rightarrow$ Weierstrass \wp-function.
In terms of Jacobi elliptic functions this parametrization is given by

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\sqrt{a-c}\left(\begin{array}{l}
\operatorname{sn}\left(s_{1}, k_{1}\right) \operatorname{dn}\left(s_{2}, k_{2}\right) \operatorname{ns}\left(s_{3}, k_{3}\right) \\
\operatorname{cn}\left(s_{1}, k_{1}\right) \operatorname{cn}\left(s_{2}, k_{2}\right) \operatorname{ds}\left(s_{3}, k_{3}\right) \\
\operatorname{dn}\left(s_{1}, k_{1}\right) \operatorname{sn}\left(s_{2}, k_{2}\right) \operatorname{cs}\left(s_{3}, k_{3}\right)
\end{array}\right),
$$

with $k_{1}^{2}=\frac{a-b}{a-c}, \quad k_{2}^{2}=\frac{b-c}{a-c}=1-k_{1}^{2}, \quad k_{3}=k_{1}$.

Net

A two-parameter family of curves on a surface, such that there exist exactly two curves of the family passing through any point on the surface.

Net

A two-parameter family of curves on a surface, such that there exist exactly two curves of the family passing through any point on the surface.

Two diagonally related nets

For any quadrilateral of \mathcal{N}_{1} with one pair of opposite vertices connected by a curve of \mathcal{N}_{2}, the other pair of opposite vertices is also connected by a curve of \mathcal{N}_{2}.

Two diagonally related nets
For any quadrilateral of \mathcal{N}_{1} with one pair of opposite vertices connected by a curve of \mathcal{N}_{2}, the other pair of opposite vertices is also connected by a curve of \mathcal{N}_{2}.

Two diagonally related nets
For any quadrilateral of \mathcal{N}_{1} with one pair of opposite vertices connected by a curve of \mathcal{N}_{2}, the other pair of opposite vertices is also connected by a curve of \mathcal{N}_{2}.

- symmetric relation

Two diagonally related nets
For any quadrilateral of \mathcal{N}_{1} with one pair of opposite vertices connected by a curve of \mathcal{N}_{2}, the other pair of opposite vertices is also connected by a curve of \mathcal{N}_{2}.

- symmetric relation
- If $\boldsymbol{r}(u, v)$ is a parametrization, then the two nets given by

$$
\left\{\begin{array} { l }
{ u = \text { const } } \\
{ v = \text { const } }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
u+v=\text { const } \\
u-v=\text { const }
\end{array}\right.\right.
$$

are diagonally related.

Theorem

On any one-sheeted hyperboloid, the lines of curvature and the (straight) asymptotic lines form mutually diagonal nets.

Theorem

On any one-sheeted hyperboloid, the lines of curvature and the (straight) asymptotic lines form mutually diagonal nets.

Every one-sheeted hyperboloid is part of a confocal family.

Theorem

On any one-sheeted hyperboloid, the lines of curvature and the (straight) asymptotic lines form mutually diagonal nets.

Every one-sheeted hyperboloid is part of a confocal family.
Second fundamental form: $\mathrm{II}_{13} \sim d s_{1}^{2}-d s_{3}^{2}=\left(d s_{1}+d s_{3}\right)\left(d s_{1}-d s_{3}\right)$.

What is the meaning of the curvature lines on confocal ellipsoids being parametrized such that

$$
\mathrm{II}_{12} \sim d s_{1}^{2}+d s_{2}^{2}, \quad \mathrm{II}_{23} \sim d s_{2}^{2}+d s_{3}^{2} ?
$$

What is the meaning of the curvature lines on confocal ellipsoids being parametrized such that

$$
\mathrm{II}_{12} \sim d s_{1}^{2}+d s_{2}^{2}, \quad \mathrm{II}_{23} \sim d s_{2}^{2}+d s_{3}^{2} ?
$$

What is the meaning of the curvature lines on confocal ellipsoids being parametrized such that

$$
\mathrm{II}_{12} \sim d s_{1}^{2}+d s_{2}^{2}, \quad \mathrm{II}_{23} \sim d s_{2}^{2}+d s_{3}^{2} ?
$$

These lines are characteristic conjugate lines:

What is the meaning of the curvature lines on confocal ellipsoids being parametrized such that

$$
\mathrm{II}_{12} \sim d s_{1}^{2}+d s_{2}^{2}, \quad \mathrm{I}_{23} \sim d s_{2}^{2}+d s_{3}^{2} ?
$$

These lines are characteristic conjugate lines:

- analogue of asymptotic lines on positively curved surfaces

What is the meaning of the curvature lines on confocal ellipsoids being parametrized such that

$$
\mathrm{II}_{12} \sim d s_{1}^{2}+d s_{2}^{2}, \quad \mathrm{I}_{23} \sim d s_{2}^{2}+d s_{3}^{2} ?
$$

These lines are characteristic conjugate lines:

- analogue of asymptotic lines on positively curved surfaces
- conjugate directions that are bisected by curvature lines

What is the meaning of the curvature lines on confocal ellipsoids being parametrized such that

$$
\mathrm{I}_{12} \sim d s_{1}^{2}+d s_{2}^{2}, \quad \mathrm{I}_{23} \sim d s_{2}^{2}+d s_{3}^{2} ?
$$

These lines are characteristic conjugate lines:

- analogue of asymptotic lines on positively curved surfaces
- conjugate directions that are bisected by curvature lines

Theorem

On any ellipsoid / two-sheeted hyperboloid, the lines of curvature and the characteristic conjugate lines form mutually diagonal nets.

Additional property (for asymptotic lines on hyperboloids)
If $P_{1}, P_{3}, P_{\overline{1}}, P_{\overline{3}}$ are the vertices of a quadrilateral of asymptotic lines with curvature lines as diagonals, then $\overline{P_{1} P_{3}}+\overline{P_{\overline{1}} P_{\overline{3}}}=\overline{P_{1} P_{\overline{3}}}+\overline{P_{\overline{1}} P_{3}}$.

Sphere model of a one-sheeted hyperboloid:

Disk model of a one-sheeted hyperboloid:

Indisk model of a one-sheeted hyperboloid:

The deformation between the one-sheeted hyperboloids of a confocal family

- preserves lines of curvature / asymptotic lines and their mutual diagonal relation
- is isometric along the asymptotic lines
- produces skew parallelograms

"Isometric" deformation of hyperboloids

Incircular nets

"Isometric" deformation of ellipsoids
Circular sections and "diagonal" curvature lines.

Hyperbolic incircular net

Is there a version of confocal coordinates where the curvature lines on all quadrics are diagonally related to straight lines?

Is there a version of confocal coordinates where the curvature lines on all quadrics are diagonally related to straight lines?
\rightarrow replace (Euclidean) confocal quadrics by Minkowski confocal quadrics:

$$
\frac{x^{2}}{\mu+a}+\frac{y^{2}}{\mu+b}-\frac{z^{2}}{\mu+c}=1
$$

Is there a version of confocal coordinates where the curvature lines on all quadrics are diagonally related to straight lines?
\rightarrow replace (Euclidean) confocal quadrics by Minkowski confocal quadrics:

$$
\frac{x^{2}}{\mu+a}+\frac{y^{2}}{\mu+b}-\frac{z^{2}}{\mu+c}=1
$$

Is there a version of confocal coordinates where the curvature lines on all quadrics are diagonally related to straight lines?
\rightarrow replace (Euclidean) confocal quadrics by Minkowski confocal quadrics:

$$
\frac{x^{2}}{\mu+a}+\frac{y^{2}}{\mu+b}-\frac{z^{2}}{\mu+c}=1
$$

All second fundamental forms: $\mathrm{II}_{i j} \sim d s_{i}^{2}-d s_{j}^{2}, \quad i<j$

Octahedral webs of planes

Theorem

The four "diagonal" families of planes of a system of Minkowski confocal coordinates, given by

$$
\begin{array}{ll}
s_{1}+s_{2}+s_{3}=\text { const }, & s_{1}+s_{2}-s_{3}=\text { const } \\
s_{1}-s_{2}+s_{3}=\text { const }, & s_{1}-s_{2}-s_{3}=\text { const }
\end{array}
$$

form an octahedral web of planes.

Octahedral webs of planes

Theorem

The four "diagonal" families of planes of a system of Minkowski confocal coordinates, given by

$$
\begin{array}{ll}
s_{1}+s_{2}+s_{3}=\text { const }, & s_{1}+s_{2}-s_{3}=\text { const } \\
s_{1}-s_{2}+s_{3}=\text { const }, & s_{1}-s_{2}-s_{3}=\text { const }
\end{array}
$$

form an octahedral web of planes.

R. Sauer, Die Raumeinteilungen, welche durch Ebenen erzeugt werden, von denen je vier sich in einem Punkt schneiden, Sitzgsb. der bayer. Akad. der Wiss., math.-naturw. Abt. (1925) 41-56.
著
W. Blaschke, Topologische Fragen der Differentialgeometrie II. Achtflachgewebe, Math. Z. 28 (1928) 158-160.

Conical octahedral grids

Conical octahedral grids

(Checkerboard) incircular nets

(Checkerboard) incircular nets

(Checkerboard) incircular nets in space forms

A.I. Bobenko, C.O.R. Lutz, H. Pottmann, J. Techter Laguerre geometry and incircular nets in space forms, in preparation

Hyperbolic checkerboard incircular net

Thank you!

