Discrete confocal quadrics

Jan Techter

TU Berlin

23rd November 2018

<ロト < 団ト < 臣ト < 臣ト < 臣ト 三 のへで 1/1

- A.I. Bobenko, W.K. Schief, Y.B. Suris, J. Techter. On a discretization of confocal quadrics. I. An integrable systems approach, Journal of Integrable Systems (2016) Volume 1:1
- A.I. Bobenko, W.K. Schief, Y.B. Suris, J. Techter. On a discretization of confocal quadrics. II. A geometric approach to general parametrization, to appear in IMRN
- A.I. Bobenko, W.K. Schief, J. Techter. Checkerboard incircular nets. Laguerre geometry and parametrization, submitted

Confocal conics

Given $a_1 > a_2 > 0$. The one-parameter family of confocal conics is given by:

$$Q(\lambda) = \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid \frac{x_1^2}{a_1 + \lambda} + \frac{x_2^2}{a_2 + \lambda} = 1 \right\}, \quad \lambda \in \mathbb{R}.$$

Confocal quadrics

Given $a_1 > a_2 > \ldots > a_N > 0$. The one-parameter family of confocal quadrics is given by:

$$Q(\lambda) = \left\{ (x_1, \ldots, x_N) \in \mathbb{R}^N \mid \sum_{k=1}^N \frac{x_k^2}{a_k + \lambda} = 1 \right\}, \quad \lambda \in \mathbb{R}.$$

Projective point of view

The confocal quadric equation may also be written as

$$\left(\begin{array}{c} x_{1} \dots x_{N} 1 \end{array}\right) \underbrace{\begin{pmatrix} \frac{1}{a_{1} + \lambda} & \\ & \ddots & \\ & & \frac{1}{a_{N} + \lambda} \\ & & & -1 \end{pmatrix}}_{Q_{\lambda}} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \\ 1 \end{pmatrix} = 0$$

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

Projective point of view

The confocal quadric equation may also be written as

$$\left(\begin{array}{c} x_{1} \dots x_{N} 1 \end{array}\right) \underbrace{\begin{pmatrix} \frac{1}{a_{1} + \lambda} & \\ & \ddots & \\ & & \frac{1}{a_{N} + \lambda} \\ & & & -1 \end{pmatrix}}_{Q_{\lambda}} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \\ 1 \end{pmatrix} = 0$$

The dual quadrics of this family are given by

$$Q_{\lambda}^{-1} = \begin{pmatrix} a_{1}+\lambda \\ & \ddots \\ & a_{N}+\lambda \\ & & -1 \end{pmatrix} = \begin{pmatrix} a_{1} \\ & \ddots \\ & & a_{N} \\ & & -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ & \ddots \\ & & 1 \\ & & 0 \end{pmatrix}$$

Projective point of view

The confocal quadric equation may also be written as

$$\left(\begin{array}{c} x_{1} \dots x_{N} 1 \end{array}\right) \underbrace{\begin{pmatrix} \frac{1}{a_{1} + \lambda} & \\ & \ddots & \\ & & \frac{1}{a_{N} + \lambda} \\ & & & -1 \end{pmatrix}}_{Q_{\lambda}} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \\ 1 \end{pmatrix} = 0$$

The dual quadrics of this family are given by

$$Q_{\lambda}^{-1} = \begin{pmatrix} a_{1}+\lambda & & \\ & \ddots & \\ & & a_{N}+\lambda & \\ & & & -1 \end{pmatrix} = \begin{pmatrix} a_{1} & & \\ & \ddots & \\ & & a_{N} & \\ & & & -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 & & \\ & \ddots & \\ & & & 1 & 0 \end{pmatrix}$$

Confocal quadrics as dual pencils

A family of confocal quadrics is a dual pencil of quadrics containing the absolute quadric $\begin{cases} x_{N+1} = 0 \\ x_1^2 + \ldots + x_N^2 = 0 \end{cases}$

Given $(x_1, \ldots, x_N) \in \mathbb{R}^N$ with $x_1 \cdots x_N \neq 0$ the equation

$$\sum_{k=1}^{N} \frac{x_k^2}{a_k + \lambda} = 1$$

has N roots, $-a_1 < u_1 < -a_2 < u_2 < \cdots < -a_N < u_N$.

 Given $(x_1, \ldots, x_N) \in \mathbb{R}^N$ with $x_1 \cdots x_N \neq 0$ the equation

$$\sum_{k=1}^{N} \frac{x_k^2}{a_k + \lambda} = 1$$

has N roots, $-a_1 < u_1 < -a_2 < u_2 < \cdots < -a_N < u_N$.

■ The *N* roots correspond to *N* confocal quadrics *Q*(*u_i*) that intersect at the point (*x*₁,...,*x_N*).

Given $(x_1, \ldots, x_N) \in \mathbb{R}^N$ with $x_1 \cdots x_N \neq 0$ the equation

$$\sum_{k=1}^{N} \frac{x_k^2}{a_k + \lambda} = 1$$

has N roots, $-a_1 < u_1 < -a_2 < u_2 < \cdots < -a_N < u_N$.

- The *N* roots correspond to *N* confocal quadrics *Q*(*u_i*) that intersect at the point (*x*₁,...,*x_N*).
- The N quadrics Q(u_i) all have different (affine) signature and intersect orthogonally.

To obtain the coordinates if the intersection points solve the linear system

$$\begin{cases} \frac{x_1^2}{a_1+u_1} + \ldots + \frac{x_N^2}{a_N+u_1} = 1\\ \vdots\\ \frac{x_1^2}{a_1+u_N} + \ldots + \frac{x_N^2}{a_N+u_N} = 1 \end{cases}$$

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

for
$$x_1^2, ..., x_N^2$$
.

To obtain the coordinates if the intersection points solve the linear system

$$\begin{cases} \frac{x_1^2}{a_1+u_1} + \ldots + \frac{x_N^2}{a_N+u_1} = 1\\ \vdots\\ \frac{x_1^2}{a_1+u_N} + \ldots + \frac{x_N^2}{a_N+u_N} = 1 \end{cases}$$

for $x_1^2,\ldots,x_N^2.$ By evaluating the residues at $\lambda=-a_k$ of

$$\sum_{k=1}^{N} \frac{x_k^2}{a_k + \lambda} - 1 = -\frac{\prod_{i=1}^{N} (\lambda - u_i)}{\prod_{i=1}^{N} (a_i + \lambda)}.$$

 To obtain the coordinates if the intersection points solve the linear system

$$\begin{cases} \frac{x_1^2}{a_1+u_1} + \ldots + \frac{x_N^2}{a_N+u_1} = 1\\ \vdots\\ \frac{x_1^2}{a_1+u_N} + \ldots + \frac{x_N^2}{a_N+u_N} = 1 \end{cases}$$

for $x_1^2,\ldots,x_N^2.$ By evaluating the residues at $\lambda=-a_k$ of

$$\sum_{k=1}^{N} \frac{x_k^2}{a_k + \lambda} - 1 = -\frac{\prod_{i=1}^{N} (\lambda - u_i)}{\prod_{i=1}^{N} (a_i + \lambda)}.$$

we obtain

$$x_k^2 = \frac{\prod_{i=1}^N (u_i + a_k)}{\prod_{i \neq k} (a_k - a_i)}, \quad k = 1, \dots, N.$$

Parametrization from confocal quadrics (confocal coordinates)

Thus, for any $(u_1, \ldots, u_N) \in \mathcal{U}$ with

$$\mathcal{U} = \left\{ (u_1, \dots, u_N) \in \mathbb{R}^N \mid -a_1 < u_1 < -a_2 < u_2 < \dots < -a_N < u_N \right\}$$

there are exactly 2^N intersection points $(x_1, \ldots, x_N) \in \mathbb{R}^N$, one in every hyperoctant of \mathbb{R}^N .

Parametrization from confocal quadrics (confocal coordinates)

Thus, for any $(u_1, \ldots, u_N) \in \mathcal{U}$ with

$$\mathcal{U} = \left\{ (u_1, \dots, u_N) \in \mathbb{R}^N \mid -a_1 < u_1 < -a_2 < u_2 < \dots < -a_N < u_N \right\}$$

there are exactly 2^N intersection points $(x_1, \ldots, x_N) \in \mathbb{R}^N$, one in every hyperoctant of \mathbb{R}^N .

We obtain a parametrization of, e.g., the first hyperoctant $\mathcal{U} \to \mathbb{R}^N_+$ by

$$x_k(u_1,\ldots,u_N) = \frac{\prod_{i=1}^{k-1} \sqrt{-(u_i+a_k)} \prod_{i=k}^N \sqrt{u_i+a_k}}{\prod_{i=1}^{k-1} \sqrt{a_i-a_k} \prod_{i=k+1}^N \sqrt{a_k-a_i}}, \quad k = 1,\ldots,N.$$

<ロト < 団 ト < 臣 ト < 臣 ト ミ の Q () 8/1

Parametrization from confocal quadrics (confocal coordinates)

Thus, for any $(u_1, \ldots, u_N) \in \mathcal{U}$ with

$$\mathcal{U} = \left\{ (u_1, \dots, u_N) \in \mathbb{R}^N \mid -a_1 < u_1 < -a_2 < u_2 < \dots < -a_N < u_N \right\}$$

there are exactly 2^N intersection points $(x_1, \ldots, x_N) \in \mathbb{R}^N$, one in every hyperoctant of \mathbb{R}^N .

We obtain a parametrization of, e.g., the first hyperoctant $\mathcal{U} \to \mathbb{R}^N_+$ by

$$x_k(u_1,\ldots,u_N) = \frac{\prod_{i=1}^{k-1} \sqrt{-(u_i+a_k)} \prod_{i=k}^N \sqrt{u_i+a_k}}{\prod_{i=1}^{k-1} \sqrt{a_i-a_k} \prod_{i=k+1}^N \sqrt{a_k-a_i}}, \quad k = 1,\ldots,N.$$

This parametrization is uniquely determined by the family of confocal quadrics up to replacing $u_i = u_i(s_i)$ (reparametrization along the coordinate lines).

$$x_1(u_1, u_2) = \frac{\sqrt{u_1 + a_1}\sqrt{u_2 + a_1}}{\sqrt{a_1 - a_2}}, \quad x_2(u_1, u_2) = \frac{\sqrt{-(u_1 + a_2)}\sqrt{u_2 + a_2}}{\sqrt{a_1 - a_2}},$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 9/1

$$x_1(u_1, u_2) = \frac{\sqrt{u_1 + a_1}\sqrt{u_2 + a_1}}{\sqrt{a_1 - a_2}}, \quad x_2(u_1, u_2) = \frac{\sqrt{-(u_1 + a_2)}\sqrt{u_2 + a_2}}{\sqrt{a_1 - a_2}},$$

$$u_1(s_1) + a_1 = f_1(s_1)^2, \quad u_2(s_2) + a_1 = f_2(s_2)^2$$
$$-(u_1(s_1) + a_2) = g_1(s_1)^2, \quad u_2(s_2) + a_2 = g_2(s_2)^2$$

$$x_1(u_1, u_2) = \frac{\sqrt{u_1 + a_1}\sqrt{u_2 + a_1}}{\sqrt{a_1 - a_2}}, \quad x_2(u_1, u_2) = \frac{\sqrt{-(u_1 + a_2)}\sqrt{u_2 + a_2}}{\sqrt{a_1 - a_2}},$$

$$u_1(s_1) + a_1 = f_1(s_1)^2, \quad u_2(s_2) + a_1 = f_2(s_2)^2$$
$$-(u_1(s_1) + a_2) = g_1(s_1)^2, \quad u_2(s_2) + a_2 = g_2(s_2)^2$$

This is a consistent reparametrization, if and only if

$$f_1(s_1)^2 + g_1(s_1)^2 = a_1 - a_2$$
, and $f_2(s_2)^2 - g_2(s_2)^2 = a_1 - a_2$,

イロト イヨト イヨト イヨト 二日

$$x_1(u_1, u_2) = \frac{\sqrt{u_1 + a_1}\sqrt{u_2 + a_1}}{\sqrt{a_1 - a_2}}, \quad x_2(u_1, u_2) = \frac{\sqrt{-(u_1 + a_2)}\sqrt{u_2 + a_2}}{\sqrt{a_1 - a_2}},$$

$$u_1(s_1) + a_1 = f_1(s_1)^2, \quad u_2(s_2) + a_1 = f_2(s_2)^2$$
$$-(u_1(s_1) + a_2) = g_1(s_1)^2, \quad u_2(s_2) + a_2 = g_2(s_2)^2$$

This is a consistent reparametrization, if and only if

$$f_1(s_1)^2 + g_1(s_1)^2 = a_1 - a_2$$
, and $f_2(s_2)^2 - g_2(s_2)^2 = a_1 - a_2$,

which may be solved by

$$\begin{split} f_1(s_1) &= \sqrt{a_1 - a_2}\cos s_1, \qquad f_2(s_2) = \sqrt{a_1 - a_2}\sin s_2\\ g_1(s_1) &= \sqrt{a_1 - a_2}\cosh s_1, \quad g_2(s_2) = \sqrt{a_1 - a_2}\sinh s_2. \end{split}$$

<ロト < 部ト < 言ト < 言ト 言 の Q () 10/1

$$x_1(u_1, u_2) = \frac{\sqrt{u_1 + a_1}\sqrt{u_2 + a_1}}{\sqrt{a_1 - a_2}}, \quad x_2(u_1, u_2) = \frac{\sqrt{-(u_1 + a_2)}\sqrt{u_2 + a_2}}{\sqrt{a_1 - a_2}},$$

$$u_1(s_1) + a_1 = f_1(s_1)^2, \quad u_2(s_2) + a_1 = f_2(s_2)^2$$
$$-(u_1(s_1) + a_2) = g_1(s_1)^2, \quad u_2(s_2) + a_2 = g_2(s_2)^2$$

This is a consistent reparametrization, if and only if

 $f_1(s_1)^2 + g_1(s_1)^2 = a_1 - a_2$, and $f_2(s_2)^2 - g_2(s_2)^2 = a_1 - a_2$,

which may be solved by

$$f_1(s_1) = \sqrt{a_1 - a_2} \cos s_1, \qquad f_2(s_2) = \sqrt{a_1 - a_2} \sin s_2$$

$$g_1(s_1) = \sqrt{a_1 - a_2} \cosh s_1, \qquad g_2(s_2) = \sqrt{a_1 - a_2} \sinh s_2.$$

uniformizing the square roots and leading to the parametrization

$$x_1(s_1, s_2) = \sqrt{a_1 - a_2} \cos s_1 \cosh s_2, \quad x_2(s_1, s_2) = \sqrt{a_1 - a_2} \sin s_1 \sinh s_2.$$

Example 2D: parametrization by trigonometric functions

Thus,

 $x_1(s_1, s_2) = \sqrt{a_1 - a_2} \cos s_1 \cosh s_2$, $x_2(s_1, s_2) = \sqrt{a_1 - a_2} \sin s_1 \sinh s_2$. parametrizes all quadrants by confocal conics at once (periodically in s_1).

This parametrization is conformal (complex cosine function), $z \rightarrow z = -2$

Example 3D

Parametrization of the first octant by square roots:

$$\begin{aligned} x_1(u_1, u_2, u_3) &= \frac{\sqrt{u_1 + a_1}\sqrt{u_2 + a_1}\sqrt{u_3 + a_1}}{\sqrt{a_1 - a_2}\sqrt{a_1 - a_3}}, \\ x_2(u_1, u_2, u_3) &= \frac{\sqrt{-(u_1 + a_2)}\sqrt{u_2 + a_2}\sqrt{u_3 + a_2}}{\sqrt{a_1 - a_2}\sqrt{a_2 - a_3}}, \\ x_3(u_1, u_2, u_3) &= \frac{\sqrt{-(u_1 + a_3)}\sqrt{-(u_2 + a_3)}\sqrt{u_3 + a_3}}{\sqrt{a_1 - a_3}\sqrt{a_2 - a_3}} \end{aligned}$$

< ≣> ≣ ∽ Q (? 12/1

Example 3D: parametrization by elliptic functions

Reparametrization by elliptic functions allows to parametrize all octants simultaneously:

$$\begin{aligned} x_1(s_1, s_2, s_3) &= \sqrt{a_1 - a_3} \operatorname{sn}(s_1, k_1) \operatorname{dn}(s_2, k_2) \operatorname{ns}(s_3, k_3) \\ x_2(s_1, s_2, s_3) &= \sqrt{a_1 - a_3} \operatorname{cn}(s_1, k_1) \operatorname{cn}(s_2, k_2) \operatorname{ds}(s_3, k_3) \\ x_3(s_1, s_2, s_3) &= \sqrt{a_1 - a_3} \operatorname{dn}(s_1, k_1) \operatorname{sn}(s_2, k_2) \operatorname{cs}(s_3, k_3) \end{aligned}$$

with $k_1^2 &= \frac{a_1 - a_2}{a_1 - a_3}, k_2^2 = 1 - k_2^2, k_3^2 = k_1^2.$

Confocal coordinates is a parametrization with the following properties:

Confocal coordinates is a parametrization with the following properties:

• The coordinate functions $x_k(s_1, \ldots, s_N)$ factorize, i.e.

$$x_k(s_1,\ldots,s_N)=f_1^k(s_1)f_2^k(s_2)\cdots f_N^k(s_N)$$

Confocal coordinates is a parametrization with the following properties:

• The coordinate functions $x_k(s_1, \ldots, s_N)$ factorize, i.e.

$$x_k(s_1,\ldots,s_N)=f_1^k(s_1)f_2^k(s_2)\cdots f_N^k(s_N)$$

All parameter lines intersect orthogonally.

Confocal coordinates is a parametrization with the following properties:

• The coordinate functions $x_k(s_1, \ldots, s_N)$ factorize, i.e.

$$x_k(s_1,\ldots,s_N)=f_1^k(s_1)f_2^k(s_2)\cdots f_N^k(s_N)$$

イロト イヨト イヨト イヨト 三日

- All parameter lines intersect orthogonally.
- All two-dimensional coordinate surfaces are parametrized by conjugate lines (N ≥ 3).
 (For N = 3 this follows from Dupin's theorem.)

Confocal coordinates is a parametrization with the following properties:

• The coordinate functions $x_k(s_1, \ldots, s_N)$ factorize, i.e.

$$x_k(s_1,\ldots,s_N)=f_1^k(s_1)f_2^k(s_2)\cdots f_N^k(s_N)$$

イロト イヨト イヨト イヨト 三日

- All parameter lines intersect orthogonally.
- All two-dimensional coordinate surfaces are parametrized by conjugate lines (N ≥ 3).
 (For N = 3 this follows from Dupin's theorem.)
- All two-dimensional coordinate surfaces are isothermic. (Though in general not conformally parametrized.)

Confocal coordinates is a parametrization with the following properties:

• The coordinate functions $x_k(s_1, \ldots, s_N)$ factorize, i.e.

$$x_k(s_1,\ldots,s_N)=f_1^k(s_1)f_2^k(s_2)\cdots f_N^k(s_N)$$

- All parameter lines intersect orthogonally.
- All two-dimensional coordinate surfaces are parametrized by conjugate lines (N ≥ 3).
 (For N = 3 this follows from Dupin's theorem.)
- All two-dimensional coordinate surfaces are isothermic. (Though in general not conformally parametrized.)
- Satisfies the Euler-Poisson-Darboux equation for $\gamma = \frac{1}{2}$ (up to reparametrization)

$$\partial_{u_i}\partial_{u_j}\boldsymbol{x} = \frac{\gamma}{u_i - u_j} (\partial_{u_j}\boldsymbol{x} - \partial_{u_i}\boldsymbol{x}), \quad i, j \in \{1, \dots, N\}$$

Characterization of confocal coordinates

Theorem

If a coordinate system $\mathbf{x} : \mathbb{R}^N \supset U \rightarrow \mathbb{R}^N$ satisfies two conditions:

i) $\boldsymbol{x}(s_1,\ldots,s_N)$ factorizes, in the sense that

$$\begin{cases} x_1(s_1, \dots, s_N) = f_1^1(s_1)f_2^1(s_2)\cdots f_N^1(s_N), \\ x_2(s_1, \dots, s_N) = f_1^2(s_1)f_2^2(s_2)\cdots f_N^2(s_N), \\ \vdots \\ x_N(s_1, \dots, s_N) = f_1^N(s_1)f_2^N(s_2)\cdots f_N^N(s_N) \end{cases}$$

with all $f_i^k(s_i) \neq 0$ and $(f_i^k)'(s_i) \neq 0$; ii) **x** is orthogonal, that is,

$$\langle \partial_i \mathbf{x}, \partial_j \mathbf{x} \rangle = 0 \quad \text{for} \quad i \neq j,$$

then all coordinate hypersurfaces are confocal quadrics.

Discrete orthogonal nets

Definition

A discrete net (on a stepsize 1/2 square lattice)

$$\boldsymbol{x}: (\frac{1}{2}\mathbb{Z})^{N} \supset \mathcal{U} \to \mathbb{R}^{N}.$$

is called *orthogonal* if any pair of dual stepsize 1 edges is orthogonal:

$$(\mathbf{x}(\mathbf{n}), \mathbf{x}(\mathbf{n} + \mathbf{e}_i)) \perp (\mathbf{x}(\mathbf{n} + \frac{1}{2}\sigma), \mathbf{x}(\mathbf{n} + \frac{1}{2}\sigma + \mathbf{e}_j))$$

where $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_N) \in \{\pm 1\}^N$ with $\sigma_i = 1, \sigma_j = -1$.

Remark

Each stepsize 1/2 discrete orthogonal net $\mathbf{x} : (\frac{1}{2}\mathbb{Z})^N \to \mathbb{R}^N$, contains 2^{N-1} pairs of combinatorially dual stepsize 1 nets, e.g.

$$\boldsymbol{x}: \mathbb{Z}^N \to \mathbb{R}^N$$
 and $\boldsymbol{x}^*: \mathbb{Z}^N + \frac{1}{2}\boldsymbol{\sigma} \to \mathbb{R}^N$.

with orthogonal dual edges.

We call any such pair, a pair of discrete orthogonal nets.

Theorem ((classical) Dupin's theorem)

The coordinate surfaces of a triply orthogonal coordinate system intersect each other in curvature lines.

Theorem ((classical) Dupin's theorem)

The coordinate surfaces of a triply orthogonal coordinate system intersect each other in curvature lines.

Theorem (discrete Dupin's theorem)

All elementary quadrilaterals

$$(\boldsymbol{x}(\boldsymbol{n}), \boldsymbol{x}(\boldsymbol{n}+\boldsymbol{e}_j), \boldsymbol{x}(\boldsymbol{n}+\boldsymbol{e}_j+\boldsymbol{e}_k), \boldsymbol{x}(\boldsymbol{n}+\boldsymbol{e}_k))$$
(1)

of a generic orthogonal net are planar.

18/1

(日) (部) (注) (注) (三)

Möbius invariant formulation

Given a pair of two combinatorially dual stepsize 1 nets x, x^* , introduce circles / spheres with centers x, x^* and radii r, r^* respectively.
$$\|\mathbf{x} - \mathbf{x}^*\|^2 = r^2 + (r^*)^2$$

$$\|\mathbf{x} - \mathbf{x}^*\|^2 = r^2 + (r^*)^2$$

$$\Leftrightarrow \|\mathbf{x}\|^2 + \|\mathbf{x}^*\|^2 - 2\langle \mathbf{x}, \mathbf{x}^* \rangle = r^2 + (r^*)^2$$

$$\|\mathbf{x} - \mathbf{x}^*\|^2 = r^2 + (r^*)^2$$

$$\Rightarrow \|\mathbf{x}\|^2 + \|\mathbf{x}^*\|^2 - 2\langle \mathbf{x}, \mathbf{x}^* \rangle = r^2 + (r^*)^2$$

$$\Rightarrow \langle \mathbf{x}, \mathbf{x}^* \rangle = \underbrace{\frac{1}{2}(\|\mathbf{x}\|^2 - r^2)}_{\rho} + \underbrace{\frac{1}{2}(\|\mathbf{x}^*\|^2 - (r^*)^2)}_{\rho^*}$$

$$\|\boldsymbol{x} - \boldsymbol{x}^*\|^2 = r^2 + (r^*)^2$$

$$\Leftrightarrow \|\boldsymbol{x}\|^2 + \|\boldsymbol{x}^*\|^2 - 2\langle \boldsymbol{x}, \boldsymbol{x}^* \rangle = r^2 + (r^*)^2$$

$$\Leftrightarrow \langle \boldsymbol{x}, \boldsymbol{x}^* \rangle = \underbrace{\frac{1}{2}(\|\boldsymbol{x}\|^2 - r^2)}_{\rho} + \underbrace{\frac{1}{2}(\|\boldsymbol{x}^*\|^2 - (r^*)^2)}_{\rho^*}$$

$$\Leftrightarrow \langle \boldsymbol{x}, \boldsymbol{x}^* \rangle = \rho + \rho^* \qquad (\star)$$

Given a pair of two combinatorially dual stepsize 1 nets x, x^* , introduce circles / spheres with centers x, x^* and radii r, r^* respectively. Then two adjacent circles (x, r), (x^*, r^*) are orthogonal if

$$\begin{aligned} \|\mathbf{x} - \mathbf{x}^*\|^2 &= r^2 + (r^*)^2 \\ \Leftrightarrow \ \|\mathbf{x}\|^2 + \|\mathbf{x}^*\|^2 - 2\langle \mathbf{x}, \mathbf{x}^* \rangle = r^2 + (r^*)^2 \\ \Leftrightarrow \ \langle \mathbf{x}, \mathbf{x}^* \rangle &= \underbrace{\frac{1}{2}(\|\mathbf{x}\|^2 - r^2)}_{\rho} + \underbrace{\frac{1}{2}(\|\mathbf{x}^*\|^2 - (r^*)^2)}_{\rho^*} \\ \Leftrightarrow \ \langle \mathbf{x}, \mathbf{x}^* \rangle &= \rho + \rho^* \qquad (\star) \end{aligned}$$

Given **x**, **x**^{*}, interpret (*) as a map $\rho \mapsto \rho^*$.

Given a pair of two combinatorially dual stepsize 1 nets x, x^* , introduce circles / spheres with centers x, x^* and radii r, r^* respectively. Then two adjacent circles (x, r), (x^*, r^*) are orthogonal if

$$\|\mathbf{x} - \mathbf{x}^*\|^2 = r^2 + (r^*)^2$$

$$\Rightarrow \|\mathbf{x}\|^2 + \|\mathbf{x}^*\|^2 - 2\langle \mathbf{x}, \mathbf{x}^* \rangle = r^2 + (r^*)^2$$

$$\Rightarrow \langle \mathbf{x}, \mathbf{x}^* \rangle = \underbrace{\frac{1}{2}(\|\mathbf{x}\|^2 - r^2)}_{\rho} + \underbrace{\frac{1}{2}(\|\mathbf{x}^*\|^2 - (r^*)^2)}_{\rho^*}$$

$$\Rightarrow \langle \mathbf{x}, \mathbf{x}^* \rangle = \rho + \rho^* \qquad (\star)$$

Given **x**, **x**^{*}, interpret (*) as a map $\rho \mapsto \rho^*$.

Proposition

(*) is compatible \Leftrightarrow x, x* is a pair of discrete orthogonal nets

Given a pair of two combinatorially dual stepsize 1 nets x, x^* , introduce circles / spheres with centers x, x^* and radii r, r^* respectively. Then two adjacent circles (x, r), (x^*, r^*) are orthogonal if

$$\|\mathbf{x} - \mathbf{x}^*\|^2 = r^2 + (r^*)^2$$

$$\Leftrightarrow \|\mathbf{x}\|^2 + \|\mathbf{x}^*\|^2 - 2\langle \mathbf{x}, \mathbf{x}^* \rangle = r^2 + (r^*)^2$$

$$\Leftrightarrow \langle \mathbf{x}, \mathbf{x}^* \rangle = \underbrace{\frac{1}{2}(\|\mathbf{x}\|^2 - r^2)}_{\rho} + \underbrace{\frac{1}{2}(\|\mathbf{x}^*\|^2 - (r^*)^2)}_{\rho^*}$$

$$\Leftrightarrow \langle \mathbf{x}, \mathbf{x}^* \rangle = \rho + \rho^* \qquad (\star)$$

Given **x**, **x**^{*}, interpret (*) as a map $\rho \mapsto \rho^*$.

Proposition

(*) is compatible \Leftrightarrow **x**, **x**^{*} is a pair of discrete orthogonal nets

Definition

A discrete coordinate system $\mathbf{x} : \left(\frac{1}{2}\mathbb{Z}\right)^N \supset \mathcal{U} \to \mathbb{R}^N$ is called a *discrete confocal coordinate system* if it satisfies two conditions:

i) $\boldsymbol{x}(\boldsymbol{n})$ factorizes, in the sense that for any $\boldsymbol{n} \in \mathcal{U}$

$$\begin{cases} x_1(\boldsymbol{n}) = f_1^1(n_1)f_2^1(n_2)\cdots f_N^1(n_N), \\ x_2(\boldsymbol{n}) = f_1^2(n_1)f_2^2(n_2)\cdots f_N^2(n_N), \\ \cdots \\ x_N(\boldsymbol{n}) = f_1^N(n_1)f_2^N(n_2)\cdots f_N^N(n_N), \end{cases}$$

with $f_i^k(n_i) \neq 0$ and $\overline{\Delta} f_i^k(n_i) = f_i^k(n_i) - f_i^k(n_i - 1) \neq 0$; ii) **x** is orthogonal.

Theorem

For a discrete confocal coordinate system, there exist N real numbers a_k , $1 \le k \le N$, and N sequences $u_i : \frac{1}{2}\mathbb{Z} + \frac{1}{4} \to \mathbb{R}$ such that the following equations are satisfied for any $\mathbf{n} \in \mathcal{U}$ and for any $\mathbf{\sigma} \in \{\pm 1\}^N$:

$$\sum_{k=1}^{N} \frac{x_k(n) x_k(n + \frac{1}{2}\sigma)}{a_k + u_i} = 1, \quad u_i = u_i(n_i + \frac{1}{4}\sigma_i), \quad i = 1, \dots, N.$$

Equivalently,

$$x_k(\boldsymbol{n})x_k(\boldsymbol{n}+\frac{1}{2}\boldsymbol{\sigma})=\frac{\prod_{j=1}^N(u_j+a_k)}{\prod_{j\neq k}(a_k-a_j)},\quad u_j=u_j(n_j+\frac{1}{4}\sigma_j),\quad k=1,\ldots,N.$$

Geometric interpretation

The discrete confocal quadric equation

$$\sum_{k=1}^{N} \frac{x_k(\boldsymbol{n}) x_k(\boldsymbol{n} + \frac{1}{2}\sigma)}{a_k + u_i} = 1, \quad u_i = u_i(n_i + \frac{1}{4}\sigma_i), \quad i = 1, \dots, N.$$

allows for the following

Geometric interpretation

The discrete confocal quadric equation

$$\sum_{k=1}^{N} \frac{x_k(\boldsymbol{n}) x_k(\boldsymbol{n} + \frac{1}{2}\boldsymbol{\sigma})}{a_k + u_i} = 1, \quad u_i = u_i(n_i + \frac{1}{4}\sigma_i), \quad i = 1, \dots, N.$$

allows for the following

geomemtric interpretation

The point $\mathbf{x}(\mathbf{n} + \frac{1}{2}\sigma)$ lies in the intersection of the polar hyperplanes of $\mathbf{x}(\mathbf{n})$ with respect to the confocal quadrics $Q(u_i)$, i = 1, ..., N.

Geometric construction

Given a sequence of quadrics from a confocal family with the parameters

$$u_i: \left(\frac{1}{2}\mathbb{Z}+\frac{1}{4}\right) \cap \mathcal{I}_i \to \mathbb{R}.$$

Geometric construction

Given a sequence of quadrics from a confocal family with the parameters

$$u_i: \left(\frac{1}{2}\mathbb{Z}+\frac{1}{4}\right) \cap \mathcal{I}_i \to \mathbb{R}.$$

Suppose $\mathbf{x}(\mathbf{n}) = \mathbf{x}$ is already known. Construct a neighboring point $\mathbf{x}(\mathbf{n}^*) = \mathbf{x}^*$ as the intersection point of the *N* polar hyperplanes

$$\mathbf{x}^* = \bigcap_{i=1}^N P_{\mathcal{Q}(u_i)}(\mathbf{x}), \quad u_i = u_i(n_i + \frac{1}{4}\sigma_i).$$

Proposition

This construction closes and yields discrete confocal coordinates.

Proposition

This construction closes and yields discrete confocal coordinates.

The construction is purely projective and closes for any dual pencil.

Proposition

This construction closes and yields discrete confocal coordinates.

The construction is purely projective and closes for any dual pencil.

Proposition

Let Π be a hyperplane. Then the poles of Π with respect to all quadrics of a dual pencil of quadrics lie on a line ℓ .

Proposition

This construction closes and yields discrete confocal coordinates.

The construction is purely projective and closes for any dual pencil.

Proposition

Let Π be a hyperplane. Then the poles of Π with respect to all quadrics of a dual pencil of quadrics lie on a line ℓ .

For a family of confocal quadrics this line ℓ is orthogonal to Π .

Finding explicit solutions

Looking at

$$x_k(\boldsymbol{n})x_k(\boldsymbol{n}+\frac{1}{2}\boldsymbol{\sigma})=\frac{\prod_{j=1}^N(u_j+a_k)}{\prod_{j\neq k}(a_k-a_j)},\quad u_j=u_j(n_j+\frac{1}{4}\sigma_j),\quad k=1,\ldots,N,$$

we might want to rewrite the coordinate functions as

$$x_k(\mathbf{n}) = \frac{\prod_{j=1}^N f_j^k(n_j)}{\prod_{i=1}^{k-1} \sqrt{a_i - a_k} \prod_{i=k+1}^N \sqrt{a_k - a_i}}, \quad k = 1, \dots, N,$$

where

$$f_i^k(n_i)f_i^k(n_i+\frac{1}{2}) = \begin{cases} u_i(n_i+\frac{1}{4}) + a_k, & k \leq i, \\ -(u_i(n_i+\frac{1}{4}) + a_k), & k > i. \end{cases}$$

・ロ・・母・・ヨ・・ヨー シタぐ

Finding explicit solutions

Construction1

1 Prescribe $a_1 < \ldots < a_N$ and functions $u_i(n_i + \frac{1}{4})$

Finding explicit solutions

Construction1

1 Prescribe $a_1 < \ldots < a_N$ and functions $u_i(n_i + \frac{1}{4})$ 2 Solve

$$f_i^k(n_i)f_i^k(n_i+\frac{1}{2}) = \begin{cases} u_i(n_i+\frac{1}{4}) + a_k, & k \leq i, \\ -(u_i(n_i+\frac{1}{4}) + a_k), & k > i. \end{cases}$$

to find f_i^k 's.

Construction1

1 Prescribe $a_1 < \ldots < a_N$ and functions $u_i(n_i + \frac{1}{4})$ 2 Solve

$$f_i^k(n_i)f_i^k(n_i+\frac{1}{2}) = \begin{cases} u_i(n_i+\frac{1}{4})+a_k, & k \leq i, \\ -(u_i(n_i+\frac{1}{4})+a_k), & k > i. \end{cases}$$

to find f_i^k 's. 3 Substitute into

$$x_k(\mathbf{n}) = \frac{\prod_{j=1}^N f_j^k(n_j)}{\prod_{i=1}^{k-1} \sqrt{a_i - a_k} \prod_{i=k+1}^N \sqrt{a_k - a_i}}, \quad k = 1, \dots, N,$$

Choosing

$$u_i(n_i+\frac{1}{4})=n_i+\epsilon_i, \quad i=1,\ldots,N,$$

Choosing

$$u_i(n_i+\frac{1}{4})=n_i+\epsilon_i, \quad i=1,\ldots,N,$$

we obtain

$$f_i^k(n_i)f_i^k(n_i+\frac{1}{2}) = \begin{cases} n_i+a_k+\epsilon_i, & k \leq i, \\ -(n_i+a_k+\epsilon_i), & k > i. \end{cases}$$

イロト イロト イヨト イヨト ヨー わへで

Choosing

$$u_i(n_i+\frac{1}{4})=n_i+\epsilon_i, \quad i=1,\ldots,N,$$

we obtain

$$f_i^k(n_i)f_i^k(n_i+\frac{1}{2}) = \begin{cases} n_i+a_k+\epsilon_i, & k \leq i, \\ -(n_i+a_k+\epsilon_i), & k > i. \end{cases}$$

which may be solved by

$$f_i^k(n_i) = \begin{cases} \sqrt[a]{n_i + a_k + \epsilon_i} & \text{for } i \ge k, \\ \sqrt[a]{-n_i - a_k - \epsilon_i + \frac{1}{2}} & \text{for } i < k. \end{cases}$$

with the "discrete square root" function $\sqrt[A]{u} = \frac{\Gamma(u+\frac{1}{2})}{\Gamma(u)}$, which satisfies

$$\sqrt[\Delta]{u}\sqrt[\Delta]{u+\frac{1}{2}} = u.$$

< □ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ 27/1

Choosing

$$u_i(n_i+\frac{1}{4})=n_i+\epsilon_i, \quad i=1,\ldots,N,$$

we obtain

$$f_i^k(n_i)f_i^k(n_i+\frac{1}{2}) = \begin{cases} n_i+a_k+\epsilon_i, & k \leq i, \\ -(n_i+a_k+\epsilon_i), & k > i. \end{cases}$$

which may be solved by

$$f_i^k(n_i) = \begin{cases} \sqrt[a]{n_i + a_k + \epsilon_i} & \text{for } i \ge k, \\ \sqrt[a]{-n_i - a_k - \epsilon_i + \frac{1}{2}} & \text{for } i < k. \end{cases}$$

with the "discrete square root" function $\sqrt[A]{u} = \frac{\Gamma(u+\frac{1}{2})}{\Gamma(u)}$, which satisfies

$$\sqrt[\Delta]{u}\sqrt[\Delta]{u+\frac{1}{2}}=u.$$

The parameters ϵ_i can be used to achieve certain boundary conditions.

$$x(n_1, n_2) = \frac{\frac{\Delta}{\sqrt{n_1 + a_1 - \frac{1}{2}} \frac{\Delta}{\sqrt{n_2 + a_1 - 1}}}}{\sqrt{a_1 - a_2}}, \ y(n_1, n_2) = \frac{\frac{\Delta}{\sqrt{-n_1 - a_2 + 1} \frac{\Delta}{\sqrt{n_2 + a_2 - 1}}}}{\sqrt{a_1 - a_2}},$$

with $a_1 = \alpha_1 + \frac{1}{2}$, $a_2 = \alpha_2 + 1$ and $\alpha_1 > \alpha_2$ integers.

$$x(n_1, n_2) = \frac{\frac{\Delta}{\sqrt{n_1 + a_1 - \frac{1}{2}} \frac{\Delta}{\sqrt{n_2 + a_1 - 1}}}}{\sqrt{a_1 - a_2}}, \ y(n_1, n_2) = \frac{\frac{\Delta}{\sqrt{-n_1 - a_2 + 1} \frac{\Delta}{\sqrt{n_2 + a_2 - 1}}}}{\sqrt{a_1 - a_2}},$$

with $a_1 = \alpha_1 + \frac{1}{2}$, $a_2 = \alpha_2 + 1$ and $\alpha_1 > \alpha_2$ integers.

$$x_1(n_1, n_2) = \frac{f_1(n_1)f_2(n_2)}{\sqrt{a_1 - a_2}}, \quad x_2(n_1, n_2) = \frac{g_1(n_1)g_2(n_2)}{\sqrt{a_1 - a_2}},$$

where

$$\begin{cases} f_1(n_1)f_1(n_1+\frac{1}{2}) = u_1(n_1+\frac{1}{4}) + a_1, \\ g_1(n_1)g_1(n_1+\frac{1}{2}) = -(u_1(n_1+\frac{1}{4}) + a_2), \\ \end{cases} \\ \begin{cases} f_2(n_2)f_2(n_2+\frac{1}{2}) = u_2(n_2+\frac{1}{4}) + a_1, \\ g_2(n_2)g_2(n_2+\frac{1}{2}) = u_2(n_2+\frac{1}{4}) + a_2. \end{cases}$$

<ロト < 合 ト < 言 ト < 言 ト こ の < で 30/1

$$x_1(n_1, n_2) = \frac{f_1(n_1)f_2(n_2)}{\sqrt{a_1 - a_2}}, \quad x_2(n_1, n_2) = \frac{g_1(n_1)g_2(n_2)}{\sqrt{a_1 - a_2}},$$

where

$$\begin{cases} f_1(n_1)f_1(n_1+\frac{1}{2}) = u_1(n_1+\frac{1}{4}) + a_1, \\ g_1(n_1)g_1(n_1+\frac{1}{2}) = -(u_1(n_1+\frac{1}{4}) + a_2), \\ \\ f_2(n_2)f_2(n_2+\frac{1}{2}) = u_2(n_2+\frac{1}{4}) + a_1, \\ g_2(n_2)g_2(n_2+\frac{1}{2}) = u_2(n_2+\frac{1}{4}) + a_2. \end{cases}$$

Eliminating u_1 and u_2 we obtain

$$f_1(n_1)f_1(n_1 + \frac{1}{2}) + g_1(n_1)g_1(n_1 + \frac{1}{2}) = a_1 - a_2,$$

$$f_2(n_2)f_2(n_2 + \frac{1}{2}) - g_2(n_2)g_2(n_2 + \frac{1}{2}) = a_1 - a_2.$$

・ロ・・西・・ヨ・・ヨ・ シック

$$\begin{split} f_1(n_1)f_1(n_1+\frac{1}{2})+g_1(n_1)g_1(n_1+\frac{1}{2})&=a_1-a_2,\\ f_2(n_2)f_2(n_2+\frac{1}{2})-g_2(n_2)g_2(n_2+\frac{1}{2})&=a_1-a_2. \end{split}$$

$$\begin{aligned} &f_1(n_1)f_1(n_1+\frac{1}{2})+g_1(n_1)g_1(n_1+\frac{1}{2})=a_1-a_2,\\ &f_2(n_2)f_2(n_2+\frac{1}{2})-g_2(n_2)g_2(n_2+\frac{1}{2})=a_1-a_2. \end{aligned}$$

This can be solved via

$$f_1(n_1) = \sqrt{\frac{a-b}{\cos\frac{\delta_1}{2}}} \cos(\delta_1 n_1 + c_1), \quad g_1(n_1) = \sqrt{\frac{a-b}{\cos\frac{\delta_1}{2}}} \sin(\delta_1 n_1 + c_1),$$

and

$$f_2(n_2) = \sqrt{\frac{a-b}{\cosh\frac{\delta_2}{2}}} \cosh(\delta_2 n_2 + c_2), \quad g_2(n_2) = \sqrt{\frac{a-b}{\cosh\frac{\delta_2}{2}}} \sinh(\delta_2 n_2 + c_2).$$

<ロト < 部ト < 言ト < 言ト 差 の Q (~ 31/1

$$\begin{split} f_1(n_1)f_1(n_1+\frac{1}{2})+g_1(n_1)g_1(n_1+\frac{1}{2})&=a_1-a_2,\\ f_2(n_2)f_2(n_2+\frac{1}{2})-g_2(n_2)g_2(n_2+\frac{1}{2})&=a_1-a_2. \end{split}$$

This can be solved via

$$f_1(n_1) = \sqrt{\frac{a-b}{\cos\frac{\delta_1}{2}}} \cos(\delta_1 n_1 + c_1), \quad g_1(n_1) = \sqrt{\frac{a-b}{\cos\frac{\delta_1}{2}}} \sin(\delta_1 n_1 + c_1),$$

 and

$$f_2(n_2) = \sqrt{\frac{a-b}{\cosh\frac{\delta_2}{2}}} \cosh(\delta_2 n_2 + c_2), \quad g_2(n_2) = \sqrt{\frac{a-b}{\cosh\frac{\delta_2}{2}}} \sinh(\delta_2 n_2 + c_2).$$

leading to

$$\begin{pmatrix} x_1(n_1, n_2) \\ x_2(n_1, n_2) \end{pmatrix} = \sqrt{\frac{a_1 - a_2}{\cos \frac{\delta_1}{2} \cosh \frac{\delta_2}{2}}} \begin{pmatrix} \cos(\delta_1 n_1 + c_1) \cosh(\delta_2 n_2 + c_2) \\ \sin(\delta_1 n_1 + c_1) \sinh(\delta_2 n_2 + c_2) \end{pmatrix}.$$

$$\begin{pmatrix} x_1(n_1, n_2) \\ x_2(n_1, n_2) \end{pmatrix} = \sqrt{\frac{a_1 - a_2}{\cos \frac{\delta_1}{2} \cosh \frac{\delta_2}{2}}} \begin{pmatrix} \cos(\delta_1 n_1 + c_1) \cosh(\delta_2 n_2 + c_2) \\ \sin(\delta_1 n_1 + c_1) \sinh(\delta_2 n_2 + c_2) \end{pmatrix}.$$

うせん 前 ふかく ボット しゃ

$$\begin{pmatrix} x_1(n_1, n_2) \\ x_2(n_1, n_2) \end{pmatrix} = \sqrt{\frac{a_1 - a_2}{\cos \frac{\delta_1}{2} \cosh \frac{\delta_2}{2}}} \begin{pmatrix} \cos(\delta_1 n_1 + c_1) \cosh(\delta_2 n_2 + c_2) \\ \sin(\delta_1 n_1 + c_1) \sinh(\delta_2 n_2 + c_2) \end{pmatrix}.$$

$$\begin{pmatrix} x_1(n_1, n_2) \\ x_2(n_1, n_2) \end{pmatrix} = \sqrt{\frac{a_1 - a_2}{\cos \frac{\delta_1}{2} \cosh \frac{\delta_2}{2}}} \begin{pmatrix} \cos(\delta_1 n_1 + c_1) \cosh(\delta_2 n_2 + c_2) \\ \sin(\delta_1 n_1 + c_1) \sinh(\delta_2 n_2 + c_2) \end{pmatrix}.$$

$$\begin{pmatrix} x_1(n_1, n_2) \\ x_2(n_1, n_2) \end{pmatrix} = \sqrt{\frac{a_1 - a_2}{\cos \frac{\delta_1}{2} \cosh \frac{\delta_2}{2}}} \begin{pmatrix} \cos(\delta_1 n_1 + c_1) \cosh(\delta_2 n_2 + c_2) \\ \sin(\delta_1 n_1 + c_1) \sinh(\delta_2 n_2 + c_2) \end{pmatrix}.$$

Discrete "square root" parametrization.

Discrete parametrization by elliptic functions.

= ♥) Q (♥ 37/1

≣⇒

Discrete parametrization by elliptic functions.

≡ ↔) Q (↔ 38/1

≣⇒

 Discrete version of metric coefficients (Lame coefficients / first fundamental form)

- Discrete version of metric coefficients (Lame coefficients / first fundamental form)
- All two-dimensional coordinate surfaces are isothermic (using above metric coefficients)

- Discrete version of metric coefficients (Lame coefficients / first fundamental form)
- All two-dimensional coordinate surfaces are isothermic (using above metric coefficients)
- Satisfy a discrete Euler-Poisson-Darboux equation.

- Discrete version of metric coefficients (Lame coefficients / first fundamental form)
- All two-dimensional coordinate surfaces are isothermic (using above metric coefficients)
- Satisfy a discrete Euler-Poisson-Darboux equation.
- Discrete focal conics and corresponding discrete Dupin cyclides.

- Discrete version of metric coefficients (Lame coefficients / first fundamental form)
- All two-dimensional coordinate surfaces are isothermic (using above metric coefficients)
- Satisfy a discrete Euler-Poisson-Darboux equation.
- Discrete focal conics and corresponding discrete Dupin cyclides.
- Connection to incircular nets and elliptic billiards.

Discrete focal conics

Discrete Dupin cyclides

< □ > < 部 > < 言 > < 言 > 差 ● < こ > < こ > < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4 / (2) < 4

IC-nets as discrete confocal conics

